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Abstract

This thesis provides new statistical connections between noncircularly-
symmetric central and circularly-symmetric noncentral underlying complex
Gaussian models. This is particularly interesting since it facilitates the anal-
ysis of noncircularly-symmetric models, which are often underused despite
their practical interest, since their analysis is more challenging.

Although these statistical connections have a wide range of applications
in different areas of univariate and multivariate analysis, this thesis is framed
in the context of wireless communications, to jointly analyze noncentral and
noncircularly-symmetric fading models. We provide an unified framework
for the five classical univariate fading models, i.e. the one-sided Gaussian,
Rayleigh, Nakagami-m, Nakagami-g and Rician, and their most popular gen-
eralizations, i.e the Rician shadowed, n-, x-u and x-u shadowed. Moreover,
we present new simple results regarding the ergodic capacity of single-input
single-output systems subject to x-y shadowed, -y and n-p fadings.

With applications to multiple-input multiple-output communications, we
are interested in matrices of the form W = XX’ (or W = X'X), where X is
a complex Gaussian matrix with unequal variance in the real and imaginary
parts of its entries, i.e., X belongs to the noncircularly-symmetric Gaussian
subclass. By establishing a novel connection with the well-known complex
Wishart ensemble, we facilitate the statistical analysis of W and give new

insights on the effects of such asymmetric variance profile.
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Resumen

Esta tesis proporciona nuevas conexiones estadisticas entre los modelos
Gaussianos complejos no-circularmente simétricos centrales y circularmente
simétricos no centrales. Esto es particularmente interesante, ya que facilita el
andlisis de modelos no-circularmente simétricos, que a menudo son infrauti-
lizados a pesar de su interés practico, ya que su andlisis es mas dificil.

Aunque estas conexiones estadisticas tienen una amplia gama de aplica-
ciones en diferentes dreas del andlisis de variable aleatoria y de mltiples
variables aleatorias, esta tesis se enmarca en el contexto de las comunica-
ciones inalambricas, para analizar conjuntamente los modelos de desvanec-
imiento no centrales y no-circularmente simétricos. Proporcionamos un
marco unificado para los cinco modelos clasicos de desvanecimiento, es de-
cir, los modelos Gaussiano unilateral, Rayleigh, Nakagami-m, Nakagami-q
y Rician, asi como sus generalizaciones mas populares, es decir los modelos
Rician con ensombrecimiento, 7-f, k-t y £-f1 con ensombrecimiento.

Para comunicaciones con multiples antenas, esta tesis se interesa por ma-
trices de la forma W = XX (0 W = XX), donde X es una matriz Gaus-
siana compleja con varianzas desiguales en las partes real e imaginaria de
sus entradas, es decir, X pertenece a la subclase Gaussiana no-circularmente
simétrica. Estableciendo una nueva conexién con el conocido conjunto com-
plejo de Wishart, se facilita el analisis estadistico de W, a la vez que damos

una mayor comprension de los efectos de este perfil de varianza asimétrico.
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Chapter 1

Introduction

Complex Gaussian random variables (RVs) are widely used to model ran-
dom fluctuations in many different areas, such as optics [1], nuclear physics
[2], signal processing [3], principal component analysis [4], and wireless com-
munications [5], to name a few. In all of these areas, it is often assumed (usu-
ally implicitly) that these RVs are circularly-symmetric, i.e. with equal vari-
ance in their real and imaginary parts. This assumption actually simplifies
the analysis of a multitude of problems.

However, there are many other cases where the circularity assumption
is even inappropriate. In optics, the roughness of transmitting or reflect-
ing surfaces affects unequally the variances of the real and imaginary parts
of the scattering far-field, which can no longer be modeled with circularly-
symmetric Gaussian RVs [6], [7]. In nuclear physics, the study of nuclear
energy-level spacings requires the analysis of noncircularly-symmetric (or
improper) Gaussian random matrices [8]. In signal processing, the imbal-
ance between the in-phase and quadrature (I/Q) branches due to I/Q mis-
matches makes the received signal improper [9]. In wireless communica-
tions, noncircularly-symmetric underlying Gaussian models are convenient
when a heavy shadowing or a strong ionosphere scintillation are present in
mobile-satellite and inter-satellite communications [5]], [10], [11].

Despite the vast number of applications, the analysis of noncircularly-

symmetric models is far more scarce than that of circularly-symmetric ones.
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Considering an imbalance between the real and imaginary parts presents a
significant challenge as classical RV properties are often not applicable.

In this context, the main focus of this thesis is to simplify the analysis
of models arising from noncircularly-symmetric Gaussian RVs in a wireless
communication context. Specifically, we are interested in establishing new
statistical connections between noncircularly-symmetric fading models and
the more tractable circularly-symmetric ones. These will be employed to
study the performance of single-input single-output (SISO) and multiple-
input multiple-output (MIMO) systems subject to fadings that consider a
power imbalance between the in-phase and quadrature channel components.

In SISO scenarios, a particular noncircularly-symmetric fading model
has found its niche among classical fading models: the Nakagami-¢q (Hoyt)
model. This model arises when studying the envelope of a complex baseband
received signal Z = X +jY, where X and Y are zero-mean real Gaussian RVs
with different variances 0% and o}, respectively. When o3 = 0%, | Z|* follows
an exponential distribution (central chi-squared distribution with 2 degrees
of freedom), or equivalently, |Z| is Rayleigh-distributed. When ¢% = 0 or
oy = 0, |Z|* follows a central chi-squared distribution, or equivalently, |7
is one-sided Gaussian-distributed [12]]. The distribution of | Z| is well-known
[13], [14] and is commonly given in terms of the parameter ¢ which gives the
ratio between the typical deviation of the real and imaginary parts such that
q € [0,1]. Then, g = 0 corresponds to ¢% = 0 or o3 = 0 (one-sided Gaussian)
and g = 1 corresponds to 0% = o3 (Rayleigh).

This intermediate model finds applications in very different wireless com-
munication scenarios to model the diffuse component or scattering, oftenly
referred to as small-scale propagation effects [15]. In mobile communica-
tion systems, the Nakagami-¢ model is considered for error-rate performance

analysis [16], outage analysis [17], statistics of noise spikes occurring in
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limiter-discriminator FM receivers [18]], and mobile satellite channel mod-
eling when there is a heavy shadowing [11]. In inter-satellite communication
systems, the Nakagami-q is employed when a strong ionosphere scintillation
is present [5]. In general, the Nakagami-¢ model is suitable for those scenar-
ios where the propagation conditions are more severe than Rayleigh, since
the Nakagami-q distribution includes all the intermediate cases between the
Rayleigh (¢ = 1) and the one-sided Gaussian (¢ = 0) models.

The statistical characterization of such model has been extended over
more than sixty years [5], [10], [11]], [13], [14], [16]-[19]. Actually, we still
tind recent contributions [19]-[23], even for its fundamental statistics; e.g.,
the cumulative distribution function (cdf) was given in closed-form for the
tirst time in 2009 [19]. This justifies that a very recent work was interested
on simplifying the analysis of such noncircularly-symmetric model. In [23]],
a novel connection is established between this model and the well-known
Rayleigh model. Key of this approach is to adopt a “condition and average”
method which allows to connect the statistical properties of the Nakagami-
¢ model with those of the Rayleigh model, and to leverage existing results
for such model. However, the connection does not always allow to give a
further insightful analysis, since the Nakagami-¢ model is expressed as an
equivalent Rayleigh model whose average power follows a non-classical dis-
tribution given in [23]].

The scientific community has also been interested by the natural general-
ization of the Nakagami-¢g model: the n-; fading model. The 7-x model is a
general model only for non-line-of-sight (NLOS) scenarios and can be seen as
a Nakagami-¢ model with more degree of freedoms, i.e., a sum in power of
2,0 Hoyt RVs. With its two shape parameters n and i which allow a better fit
between measurements and theoretical results, the model can subsume the
Nakagami-g, one-sided Gaussian, Rayleigh, and Nakagami-m models.

In general, the statistical characterization of the n-u fading model poses
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some challenges. For instance, the -1 cdf expression involves a complicated
special function, the confluent Lauricella function @f), which is not available
in standard packages and needs a script to be computed [24]. Moreover, there
is no tractable analysis of the ergodic capacity of systems subject to the n-p
fading in the literature. The ergodic capacity of such systems was only given
in a very complicated form involving infinite sums of Meijer G-functions [25].

In the context of MIMO communications, the study of the Nakagami-¢q
fading model requires the statistical characterization of a particular Wishart-
type random matrix, defined as W = XX (or W = XX), where X is a zero-
mean noncircularly-symmetric complex Gaussian matrix, i.e., with unequal
variance in the real and imaginary parts of its entries. These matrices have
been referred to as the cross-over ensemble between the Laguerre unitary
ensemble (LUE) and the Laguerre orthogonal ensemble (LOE) [26]. When the
variances of the real and imaginary parts of the entries of X are equal, W is
a central complex Wishart matrix (LUE); when one of these variances is zero,
W is a central real Wishart matrix (LOE). Similar intermediate ensembles
between the unitary and orthogonal groups have been a subject of interest
in the context of (non Wishart-type) Gaussian ensembles, i.e. GUE and GOE,
with applications to the study of energy-level spacings in nuclear physics [8].

Despite its cross-disciplinary interest, this intermediate ensemble is still
an open problem of the literature. Although the cross-over ensemble be-
tween GUE and GOE has been analyzed in tractable form [27], previous
works have shown how challenging it is extending those results to the case
of Laguerre ensembles [26], [28].

The complexity and scarcity of results in [26]], [28] are mainly due to the
challenge posed by the asymmetric variance profile, which renders classical
random matrix properties no longer applicable. In particular, results for the
extreme eigenvalue distributions are not available thus far, even for a 2 x 2

matrix X, and the implications of this real-imaginary variance asymmetry
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remain largely unknown. It seems then necessary to explore other strategies
to tackle the characterization of such noncircularly-symmetric Wishart-type
matrices.

Classically, the analysis of these noncircularly-symmetric models for
NLOS scenarios, both for SISO and MIMO applications, has been always
separated from that of circularly-symmetric models for LOS scenarios, since
there is no clear connection between those two sets of models which have
arisen very differently. As a result, the analysis of the n-u fading model
has been always presented apart from that of its circularly-symmetric LOS
brother, the x-;; fading model [29]. A similar remark can be given for the
statistical characterization of noncircularly-symmetric Wishart-type matri-
ces. Previous approaches have not considered a connection with the simpler

complex Wishart ensemble, since it does not seem possible in principle.

1.1 Focus of the Thesis

Among the vast literature related to fading models, the main focus of the the-
sis is to connect the analysis of a set of noncircularly-symmetric fading mod-
els with the analysis of the more tractable circularly-symmetric ones, both
in SISO and MIMO contexts. The approach here presented needs to revisit
a recently proposed and very general fading model for the univariate case
(with SISO applications), the x-; shadowed model, as well as the statistical
properties of the well-known complex Wishart ensemble for the multivariate
case (with MIMO applications). In both cases, the derivations are based on a
collection of new statistical properties, which are presented in Chapter
Specifically, Chapter |3| briefly reviews the classical fading models, and
some of their generalizations, as well as it presents a deep analysis of the

-yt shadowed underlying model. Chapter |4 presents a general and unified
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framework for all fading models presented in Chapter 3, which makes fea-
sible to connect a set of noncircularly-symmetric models with that of very
popular circularly-symmetric models. Moreover, the ergodic capacity analy-
sis of these very different fading channels is unified with a simple formula-
tion. Finally, Chapter 5| connects the noncircularly-symmetric Wishart-type
ensemble with the well-known complex Wishart one, which facilitates the
analysis of such matrices, as well as it gives further insights on the behav-
ior of largest eigenvalue distribution when there is a power imbalance in the

underlying Gaussian model.

1.2 Dissertation Overview

In this thesis, we have addressed the performance analysis of SISO and
MIMO systems that considers a power imbalance between the in-phase and
quadrature components of the received signal subject to fading. We have
simplified the analysis of such noncircularly-symmetric fading models in
both SISO and MIMO scenarios. We have also presented a strong unifica-
tion of a vast number of fading distributions for SISO scenarios, leading to
different contributions to the literature.

The main contributions of this thesis can be split into two categories: the
ones derived from the analysis of SISO scenarios, and the ones corresponding
to the analysis of MIMO scenarios.

In the context of SISO systems, we show that a particular LOS model,
whose diffuse component is modeled with a circularly-symmetric Gaussian
RV and its LOS component randomly fluctuates, is mathematically equiva-
lent to a NLOS model with noncircularly-symmetric diffuse component. This
has an important relevance in practice in the context of SISO performance
analysis, since we can unify a multitude of classical and generalized fading

models.
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Moreover, we have simplified the ergodic capacity analysis of such vast
set of models with a high signal-to-noise ratio (SNR) regime approach. The
explicit solution involves a higher order hypergeometric function, which has
been derived by taking the derivative of a Gauss hypergeometric function.
Key of this approach is using first a well-known transformation, usually
referred to as Euler relation, which makes easier to perform the derivative
and then allows to identify the higher order hypergeometric function. This
new result was essential to give a simple unification of the ergodic capacity
analysis of the x-u and n-; models, as well as the Rician shadowed, Rician,
Nakagami-m, Nakagami-q, Rayleigh and one-sided Gaussian fading models.

In the context of MIMO systems, we have studied in depth the statistical
properties of Hermitian matrices of the form W = XX (or W = X'X),
where X has unequal variance in the real and imaginary parts of its entries.
We have connected the statistical characterization of such matrices with that
of the well-known noncentral complex Wishart matrices. By exploiting this
novel method, we have provided, for the first time, exact expressions for the
extreme eigenvalue distributions, as well as an asymptotic expansion (deep
in the left-hand tail) for the largest eigenvalue distribution of W.

Although the exact expressions are not simple, the simplicity of the
asymptotic expression for the largest eigenvalue distribution here derived is
quite remarkable, particularly when considering the complexity of the joint
eigenvalue distribution derived in [26].

With these new expressions, we have studied the performance analysis
of MIMO systems that employ the well-known beamforming principle [15]
and are subject to Nakagami-q (Hoyt) fading, bringing new insights into the

outage probability and outage data rate of such systems.



8 Chapter 1. Introduction

1.3 Additional Related Contributions

During the course of my Ph.D. studies, we develop other contributions which
are not included in this thesis in order to preserve a consistent guiding
thread. Their respective details can be found in the published papers listed
in the next section.

The additional contributions include:

e Performance analysis of SISO systems subject to x-;1 Extreme (k-4-E)

fading.

— New cdf of the x-;-E fading envelope in terms of the Marcum Q-
function. This allows to compute the probability density function
(pdf) from it and derive an asymptotic expression of the right-

hand tail distribution.

- New method for generating x-;-E samples. From the new cdf ex-
pression, an inversion-based algorithm is applied for generating a

set of k-;1-E samples.

- Ergodic capacity analysis in both low and high-SNR regimes. The
expression in the high-SNR regime only involves the Exponential
Integral function as special function. The slope of the capacity as
a function of the logarithm of the average SNR is lower than the
unit value for a finite product - . This is in contrast to the unified
ergodic capacity analysis presented in this thesis, where the slope
is equal to the unit value regardless of the parameter of each fading

model.

e Joint parameter estimation for the Two-Wave with Diffuse Power

(TWDP) fading model.

— Estimation of the parameters K and A of the TWDP model from

the sample moments of the received signal.
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— Analysis of the performance of the proposed estimators for K and
A. To that end, the asymptotic variance was computed, and com-
pared to the Cramer-Rao Bound, which determines the minimum
achievable variance of any unbiased estimator. Also, the effect of

a finite number of observations was studied in details.

1.4 Publications

The following is a list of publications in refereed journals and conference
proceedings produced during my Ph.D. candidature. In some cases the con-

ference papers contain material overlapping with the journal publications.

1.4.1 International Journal Papers

e [30] L. Moreno-Pozas, E. J. Lopez-Martinez, S. L. Cotton, ]J. E. Paris, and
E. Martos-Naya, “Comments on "Human body shadowing in cellular
device-to-device communications: channel modeling using the shad-
owed k-p fading model"”, IEEE |. Sel. Areas Commun., vol. 35, no. 02,
pp- 517-520, Feb. 2017.

e [31] L. Moreno-Pozas, F. ]J. Lopez-Martinez, J. F. Paris, and E. Martos-
Naya, “The x-;1 shadowed fading model: unifying the x-;1 and n-p dis-
tributions”, IEEE Trans. Veh. Technol., no. 12, pp. 9630-9641, Dec. 2016.

e [32] ]. Lopez-Fernandez, L. Moreno-Pozas, F. J. Lopez-Martinez, and E.
Martos-Naya, “Joint parameter estimation for the two-wave with dif-

fuse power fading model”, Sensors, vol. 16, no. 7, Jun. 2016.

e [33] E ]. Lopez-Martinez, L. Moreno-Pozas, and E. Martos-Naya,
“Novel results for the x-/1 extreme fading distribution: generation of
white samples and capacity analysis”, IEEE Commun. Lett., vol. 19, no.

9, pp. 1580-1583, Sep. 2015.
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We must clarify that the main publications which gather the main con-
tributions of this thesis referring to the analysis of SISO wireless systems are
[30] and [31]. Also mention that the main contributions of this thesis referring
to MIMO systems were developed in collaboration with Matthew R. McKay.
The corresponding paper has not been included in this list since it has just
been submitted to an IEEE journal for possible publication.

Finally, papers [32] and [33] correspond to the additional work developed
during the Ph. D. studies and presented in Section [I.3]

1.4.2 International Conference Papers

e [34] ]. Lopez-Fernandez, L. Moreno-Pozas, F. J. Lopez-Martinez, and E.
Martos-Naya, “Moment-based parameter estimation for the two-wave
with diffuse power fading model”, in 2016 IEEE 83rd Vehicular Technol-
ogy Conference (VTC Spring), Sep. 2016.

e [35] L. Moreno-Pozas and E. Martos-Naya, “On some unifications aris-
ing from the MIMO Rician shadowed model”, in 2016 IEEE 83rd Vehic-

ular Technology Conference (VTC Spring), May 2016, pp. 1-5.

1.4.3 National Conference Papers

e [36] L. Moreno-Pozas, F. J. Lopez-Martinez, J. F. Paris, and E. Martos-
Naya, “The Nakagami-q fading distribution: a particular case of the Ri-
cian shadowed model”, in XXXI Simposium Nacional de la Unién Cienti-

fica Internacional de Radio, URSI, Sep. 2016 (best student paper finalist).
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Chapter 2

New Univariate and Multivariate

Statistical Properties

This chapter presents new statistical properties on the theory of random vari-
ables and finite-dimensional complex random matrices. These new results
provide the essential tools for establishing the statistical connections between
a multitude of random models. These will allow to unify the performance
analysis of SISO and MIMO systems operating under a wide set of fading
environments, including those which consider a power imbalance between
the in-phase and quadrature components of the received signal.

To that end, necessary preliminary results and definitions are first intro-
duced. Some classical distributions of the literature are revisited, as well as
some properties of determinant and pfaffians.

This chapter is organized as follows. Firstly, we introduce the general
notation that will be used throughout this thesis in Section Secondly,
we present some definitions and preliminary results associated with the uni-
variate analysis of this thesis in Section Then, we give the corresponding
definitions and preliminary results which will be helpful regarding the mul-
tivariate analysis of this thesis in Section Finally, the main results of this
thesis are exposed in Sections 2.4/and
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2.1 General Notation

All vectors are defined as column vectors and designated with bold lower

case. All matrices are given in bold upper case.

Notation for common sets

j imaginary unit, V-1
Re, Im Real and imaginary parts.
R,C Real and complex numbers.
Z,N Integers and natural numbers.
R*, Z* | Positive real numbers and integers excluding 0.

Notation for common functions

log,e | Natural logarithm, Euler’s constant.
max, min Maximum and minimum.
sup, inf Supremum and infimum.
lim Limit.
N For all.
£ Defined as.

Notation for probability and asymptotics
Pr(-) Probability.
E[] Expectation operator.
~ Statistically distributed as.
fx(x) Pdf of the RV X.
Fx(x) Cdf of the RV X.
N(mg,o0?) Real Gaussian RV with mean m, and variance o2.
CN(mg,o?) Complex Gaussian RV with mean m, and variance o?.
o(+) f(z) =o(g(x)), g(x) > 0, states that f(z)/g(x) — 0,as x — oc.
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Matrix-vector notation

Rmxn Cmxm Real and complex m x n matrices.
R™,C™ Real and complex m x 1 vectors.
{X}i; (i, j)th element of the matrix X.
tr(X) Trace of the matrix X.
etr(X) Shorthand for %),
det(X) Determinant of the matrix X.
Pf(X) Pfaffian of the matrix X.
L, n x n identity matrix.
0, n X n matrix of all zeroes.
0,5 n X m matrix of all zeroes.
()T, ()7 Transpose, conjugate-transpose.
diag(ay,...,a,) | Square diagonal matrix with ay, ..., a, on the diagonal.
X >0 Positive-definite matrix X.
X>0 Positive semi-definite matrix X.

2.2 Preliminaries of Univariate Analysis

The following sections provide some basic definitions and preliminary re-
sults, which will be useful when dealing with the univariate statistical anal-

ysis presented in this thesis.

2.21 Special Functions

Here, we introduce the special functions that are used throughout this thesis.
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The Gamma Function

The Euler’s integral of the second kind, also referred to as gamma function,

is defined as [37, eq. (6.1.1)]

'(z) = /000 = e tdt (2.1)

with Re(z) > 0. Alternative representations, special cases and other proper-

ties can be found in standard textbooks [37], [38].

The Digamma Function

The digamma function is defined in terms of the first derivative of the gamma

function I''(-), such as [37, eq. (6.3.1)]

Y(z) = (2.2)

with Re(z) > 0. The reader is referred to the same standard textbooks for

alternative representations and other properties.

The Incomplete Gamma Function

The incomplete version of the integral in (2.1) is known as the incomplete
gamma function. There are two definitions of the gamma function. Firstly,

the lower-incomplete gamma function is defined as [37, eq. (6.5.2)]

b
’y(z,b)—/ > e tdt (2.3)
0

with Re(z) > 0 and b € RT. Secondly, the upper-incomplete gamma function

is defined as [37, eq. (6.5.3)]

F(z,a):/ t*te tdt (2.4)
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with Re(z) > 0 and a € R*. Again, we referred the reader to the same

textbooks for alternative representations and other properties.

The Pochhammer Symbol

The Pochhammer symbol can be defined in terms of the gamma function

such as [37, eq. (6.1.22)]
['(z+n)

(=203 @5)

The Pochhammer symbol is useful to define the next function.

The Generalized Hypergeometric Function

The generalized hypergeometric function of one scalar argument is defined
as

= (a1)y .. (ap), 2
s, Qb by ) = — 2.
pfq(alv y Ap; blv ) q7x) Z bl)r--~(bq)r 7"!7 ( 6)

where (a), is the Pochhammer symbol, a; € C and b; € C*\Z".

r=0 (

Among the multitude of hypergeometric functions properties, we must
mention the well-known Kummer’s relation or transformation, as well as

the Euler’s relation or transformation:
1Fi(as by z) = e 1 Fi(b — a; by —2), (2.7)
o F1(a,byc;2) = (1 — Z)C_a_b oFi(c—a,c—b;c;z). (2.8)

The Incomplete Beta Function

The incomplete beta function is defined as [38) eq. (8.391)]

B.(a,b) = /O ) (1 — )bt (2.9)

with a, b € R**.
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We can relate this function with the Gauss hypergeometric function, such

as

B.(a,b) = % oFila, 1 —bya+1;2). (2.10)

The modified Bessel Function of the First Kind

The vth order modified Bessel function of the first kind with v € {R > —1}
can be defined as [37, eq. (9.6.18)]

_ ﬂ ! 42 1/7% +zt
L) = )/_(1 2= eotgy (2.11)

(
73l v+ 1

N |+

Particularly, this function can also be expressed in terms of the Bessel hy-

pergeometric function ¢ F;(+; -) [37, eq. (9.6.47)], such as

2

L(x) = — (%)” oFi (u 41 ZZ) 2.12)

where —v ¢ N*.

The Marcum ()-Function

The generalized Marcum )-function is defined as [39]

a

@m(a,b) = /OO x (f)m_l e’#fm,l(ax)dx (2.13)
b

wherea € RT,b € R < oo, and m € Z*. When m = 1, we find the standard
Marcum Q-function.
The Marcum @Q-function is used, e.g., to express the cdf for the noncentral

chi-squared distribution [12} eq. (2-1-124)].
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The Nuttall Q-Function

The Nuttall Q-function is defined as [40]

a2

Qm.nla, b):/ xme_%ln(ax)dx (2.14)
b

wherea €e R, 0 € R < oo,and m,n € Z™.

When m+n —or, equivalently (m —n)—is odd, we can express the Nuttall
Q-function in terms of finite sum of generalized Marcum @-functions and
modified Bessel function of first kind, such as [41, eq. (8)]

k+1

Quizirin(a,b) = cra™ Q4 (a,b)
= (2.15)

k
o252
+ e J2rb Z Pkm(bQ)arfleH*T‘JrlInJrril(ab)
r=1

where

k! k+n
= ot — 2.1
i (l—l)!(k—l+1> (2.16)

and P, (b%) is a polynomial of order k£ — r in b%, namely

k—r
Pep(6%) =) djp b (2.17)
=0
with
o ik=1=9( k+n
dip, =28 1)) . 2.1
9k (r—1)! <kz—r—j) (2.18)

2.2.2 Some Statistical Distributions

Here, we review some classical statistical distributions that will be used to
connect some noncircularly-symmetric random models with a wide set of

circularly-symmetric ones.
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Uniform Distribution

The pdf of a RV X uniformly distributed in [a, b] is given by

ﬁ, a<xz<b
fx(z) = (2.19)
0, otherwise.

Gaussian (Normal) Distribution

The pdf of a Gaussian or normally distributed RV X with mean m, and vari-
ance o2, i.e. X ~ N(m,,0?) is given by [12, eq. (2-1-92)]
1 _@omg?

fx(x) = e 22 . (2.20)

2mo

Central Chi-Squared Distribution

Let Y = X? where X ~ N(0,0?). Thus, the pdf of Y is given by [12, eq. (2-1-

105)]

1 y

oY) = e,y 20, (221)
Yo

Central Chi-Squared Distribution with n Degrees of Freedom

LetY = >, X?, where X;, i = 1,...,n are independent and identically
distributed (i.i.d.) (0, 02). Thus, the pdf of Y is given by [12, eq. (2-1-110)]

1 oy

A 27,y >0 (2.22)

on2n/2 %n

fr(y) =

Gamma Distribution

Let W be a RV which statistically follows a gamma distribution with shape

parameter « and rate parameter 3, i.e, W ~ I'(a, 3), then its pdf is given by

fw(w) = ﬁwa—le—ﬂ% (2.23)
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where a, 8 € RT. If W ~ I'(m/2,2/0?), then W follows a chi-squared distri-

bution with m degrees of freedom.

Noncentral Chi-Squared distribution:

Let Y = X? where X ~ N (m,,0?). Thus, the pdf of Y is given by

1 Yy m?c €T
) = e o (V) yz0 ey

2myo o?

Noncentral Chi-Squared Distribution with n Degrees of Freedom

LetY = 3" X7, where X;, i = 1,...,n are independent N (m;, 0?). Thus,
the pdf of Y is given by [12, eq. (2-1-118)]

1 n—2 3 y+52

fy(y)z—(s%) DT I (ﬂ%) y >0 (2.25)

where the noncentrality parameter s* is

=) m (2.26)
=1

and 7,(-) is the vth order modified Bessel function of the first kind.
We must note that, although the set of central and noncentral chi-squared
distributions is usually defined with o = 1, we have used here the unnormal-

ized definitions presented in the standard textbook [12].

2.3 Preliminaries of Multivariate Analysis

The following sections provide some basic definitions and preliminary re-
sults, which will be useful when dealing with the multivariate statistical anal-

ysis presented in this thesis.
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2.3.1 Determinants

The determinant operator applied to square matrices is commonly found in
the analysis of random matrix models. It can be defined as follows:

Let X be an n x n matrix. Then,

n

det(X) = > (=P [[{X} s, (2.27)

{8} k=1

where 8 = {84, ..., 3,} isa permutation of {1, ..., n} with sign (—1)P*®), and
the sum is over all such permutations.
We must highlight the following lemmas, involving integrals of determi-

nants.

Lemma 2.1 [42] Let X and Y be two n x n matrices whose (i, j)th entries are,
respectively, {X}, ; = fi(w;) and {Y }; ; = g;(w;), where fi, and gi, k = 1,...,n,

are functions defined on RY, and wy > ... > w,. Then, for b > a > 0

=1

/ " / " det (X) det (V) ﬁwi — det(A) (2.28)
a a

n—fold

where A is another n x n matrix whose (i, j)th entry is

b
{A}m:/ fi(x)g;(x)dz. (2.29)
|

Lemma 2.2 [43] Let X be an n x n matrix whose (i, j)th entries are {X};; =
fi(w;), where fi, k = 1,...,n, are functions defined on RY, and wy > ... > w,,.

Then, for b > a >0

/b e /b det(X) ﬁwi = P{(B) (2.30)

n—fold
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where P1{(-) is a pfaffian, the properties of which can be found in next section, and B

is an n x n matrix whose (i, j)th entry is given by

b b
(B}, = / / fi@)f; ()sen(y — o)dedy. (2.31)

|

The first lemma, which involves a n-dimensional integral of a product

of two determinants, is useful when studying the extreme eigenvalue statis-
tics of unitary ensembles [44]-[47]. The second result, which involves a n-
dimensional integral of a single determinant, is useful when analyzing the
extreme eigenvalue distributions of orthogonal ensembles [47], [48]]. We here
are interested in both results, since we will deal with an intermediate ensem-

ble between the orthogonal and unitary ones.

2.3.2 Pfaffians

Pfaffians have been extensively studied in [49] and in [43]. We here present a
brief summary of their properties, as well as the computation of pfaffians in

the context of this thesis.

Definition and Properties

Usually pfaffians are defined for skew-symmetric matrices of even di-
mension as follows. If X is a skew-symmetric 2n x 2n matrix, ie.,

{X}i;=—{X};4 4,5 = 1,...,2n, and {X},; = 0, then its pfaffian is defined

by

n

PEX) = —— S (= 1P T[{X s (2.32)

21|
{6} k=1

where 8 = {f,..., B2} is a permutation of {1,...,2n} with sign (—1)P=®),

and the sum is over all such permutations. The next properties hold:
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e Property 1: Let P is a 2n x 2n arbitrary matrix, then

Pf(PXP") = Pf(X) det(P) (2.33)

e Property 2: If X is non-sigular, then

Pf(X)? = det(X). (2.34)

It may be remarked that Pf(X) can be also defined by if X is
not skew-symmetric. We cannot, however, consider this possibility, since
Pf(X) = Pf((X — X7)/2), and X — X* is skew-symmetric V X.

Nonetheless, considering pfaffians of odd dimension matrices can be use-
ful. Let K be a skew-symmetric (n — 1) x (n — 1) matrix, where n is odd. The
n x n matrix K* arises from K by adding an nth column consisting of n — 1
elements of 1, an n th row consisting of n — 1 elements of —1, whereas the
element {K*},, ,, = 0. For this skew-symmetric matrix K* of odd dimension,

the next properties hold:
e Property 3: P{(K™) = Pf(K).

e Property 4: Let a = {ay,...,a,} be a set of ordered elements. If the

(¢, j)th element of the n x n matrix A is given by

{A}i,j = CL]‘ — a;, (235)

then
Pf(A) = (—1)Pe(@, (2.36)
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e Property 5: Let py,...,p, be real or complex numbers, and let Y be a

n X n matrix, such as

{Y}i,j = sgn(aj — CLZ‘) +pj — Pi (237)

where sgn(-) is the signum function and a;, 7 = 1,. .., n are the elements

of the ordered set a defined in the previous property. Then,

Pf(Y) = (—1)Per(@), (2.38)

e Property 6: Let P be an (n + 1) x (n + 1) matrix such as

1, 1=y

Phij=qp, i=1....mj=n+1 (2.39)

0, otherwise
\

and consider Y defined in the previous property. Then, Y+ = PATP7.

Hence,

Pf(Y) = Pf(Y") = Pf(AT) = Pf(A) = (—1)P@, (2.40)

Computation of Pfaffians in this Thesis

In this thesis, the pfaffians will appear as a result of applying Lemma[2.2] The
pfaffian in (2.30) can be computed as [43]

Pf(B) = 1/det(C) (2.41)

where the definition of C depends on n, the dimension of B. When n is even,
C is an n x n matrix whose (7, j)th entry is given by the right-hand side of

(2.31). When n is odd, Cis an (n + 1) x (n + 1) matrix whose (i, j)th entry is
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given by

(
ff fab filx) f;(y)sen(y — z)dxdy, i,57=1,....n

() I, filw)da, i=1,...n+1,j=n+1

%] , | |
— [, fi(z)dz, i=n+1,j=1,....n+1
0, i=j=n+1
\
(2.42)

2.3.3 Complex Zonal (Schur) Polynomials

Zonal polynomials of a matrix argument are a fundamental building block
in multivariate statistics, forming the basis of the hypergeometric functions
of a matrix argument (see next subsection). We will use exclusively com-
plex zonal polynomials of Hermitian matrix arguments (also known as Schur
polynomials [50]), in order to present later an expression of the pdf of

noncircularly-symmetric Wishart-type matrices.

Concept of Partition

Before presenting the definition of these polynomials, we must introduce the
concept of a partition. Let & > 0; then x = (ky, ko, ..., k,), such that >}, k; =
k, ki > ke > ...k, > 0, is a partition of k into p parts.

Complex Zonal Polynomial Definition

Let X be an n x n Hermitian matrix. The complex zonal polynomial 5H(X) is

defined as [51, eq. (85)]

CH(X> £ X[/{](l)X{ﬁ}<X) (243)
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where x{.1(X) is the character of the representation {x} of the linear group,

given as a symmetric function of the eigenvalues z, ..., z, of X by

det xfﬁn_j P
i (%) = 28 bt (244)

and x(. (1) is the dimension of the representation [x] of the symmetric group

given by
N
X (1) = &! itk =k =i +))
[ T(n+ki—i+1)

(2.45)

Note that the traditional definition given above requires that X have all

non-zero distinct eigenvalues, otherwise (2.44) yields an indetermination 0/0.

Properties

e Property 1:
Co(YX) = Cu(Y2XY?) = C,(XY) (2.46)

where Y is an Hermitian positive define n x n matrix, and Y2 is its
unique hermitian positive definite square root. Note that this property
follows from the fact that C,(-) is a symmetric homogeneous polyno-

mial in the eigenvalues of the matrix argument.

e Property 2: Reproductive property

~ ~ C.(XZ71)
etr(—=Z2Y)det(Y)C.(XY)(dY) =T',,(m)|m],—————=
[ () de ()G (XY)(aY) = F ), S
(2.47)
where Re(m) > n — 1, Z is an n x n Hermitian positive definite matrix,

-];; is defined in 1} and T,,(m) is the complex multivariate Gamma
function [51} eq. (83)], i.e.

To(m) =75 [[T(m —i+1). (2.48)

=1
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2.3.4 Hypergeometric Function of Matrix Arguments

This thesis will deal exclusively with complex hypergeometric functions of
Hermitian matrix arguments, denoted I (+), which are defined as follows:
Let X an n x n Hermitian matrix. The hypergeometric function of a matrix

argument pfq(al, oy apy by, .o by X)) ds defined as [48]

o CH(X)
oEy(ay, ... ay by, . Z Z K) - (2.49)
k=0 &
where k = (ky, ..., k,) is a partition of £ and [-],; is the complex multivariate

hypergeometric coefficient
=[[a—1+1) (2.50)
1=1

where (b), is the Pochhammer symbol.

2.3.5 Real and Complex Wishart Distributions

We consider both real and complex Wishart Distributions. Although the real
Wishart distribution does not directly apply in the performance analysis of
MIMO systems, we will see that the central real Wishart matrix will play
an important role in the analysis of noncircularly-symmetric Wishart-type
matrices, and thus, in the performance analysis of MIMO systems in Hoyt-

faded environments.

Central Real Wishart Distribution

Let Hg be a p x n (p > n) matrix whose entries are i.i.d. N'(0,0%). The real
Gram matrix W = HEHp, follows a central real Wishart distribution with p

degrees of freedom, covariance matrix %1, i.e., Wg ~ W, (p, 0%1,,0,), if its
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pdf is given by [51} eq. (55)]

p

etr (—10:2W) det(W 5
2zt I, NG %(z —1))

(2.51)

Noncentral Complex Wishart Distribution

Let Ho be a p x n (p > n) matrix statistically, whose entries are indepen-
dent, such as {H¢};; ~ CN({Hc}i;,02), where Ho € CP*" is the mean
matrix. The complex Gram matrix W¢ = HEHC follows a noncentral com-
plex Wishart distribution with p degrees of freedom, covariance matrix o1,
and noncentrality matrix © = oZ2HLH¢, i.e., We ~ OW,(p, 021, ©), if its
pdf is given by [51} eq. (99)]

etr(—o5*W) det(W)P—"

fwe (W) = e etr(—O)o [ (p; 052OW)  (2.52)
T et L T — i+ 1)

where (F} (-; -) is the complex Bessel hypergeometric function of matrix argu-

ment [51]].

2.4 New Univariate Statistical Properties

Armed with the definitions and preliminary results from the previous sec-
tion, we can then present our main contributions to the univariate analysis
field.

First, we expose new general underlying Gaussian models which will al-
low new statistical connections between very different univariate models.
This will be used in Chapter [4 to create a general framework that unify the
analysis of SISO systems which are subject to a multitude of fading envi-
ronments. Then, we give a new result involving the Gauss hypergeometric
function, which will be also used in Chapter 4 to analyze the ergodic capacity

of systems which belong to that general framework.
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2.4.1 New General Underlying Gaussian Models

The following two propositions will be used in Chapter 4| to build a general
framework that jointly analyze SISO systems subject to all classical and their

most popular generalized fading environments.

Proposition 2.3 Let A be a RV defined as
A=) |Zi+pil (2.53)
i=1

where Z; = X; + jY;, with X; and Y;, i = 1,...,n, iid.  N(0,02%); p;,
i = 1,...,n are complex deterministic constants; and |¢|* is a gamma RV such

as [€]? ~ T'(m, m). The pdf of A is then given by

]. —1 __a_ 52 )
a) = —ma" e 27 1 F [ myn; a
fale) (202)°T(n) (1 + 2227 ! 1( 202(s2 + 2mo?)

2mo?

(2.54)
2.

where s* =31 | |pi

Proof: The RV A, conditioned to the RV |§|2, follows a noncentral chi-square

distribution with 2n degrees of freedom, such as

fae(a, &) = ! ( . >Qea2ﬁs22 n-1 <\/5|§—|28>. (2.55)

202 \ [¢]2s?

Moreover, since [£]? ~ T'(m, m), then [£]2 >4, [pi]® ~ T(m,m/ > 5 |pil?).

We obtain the result by averaging (2.55) over |¢], similarly as in [52]. [

Proposition 2.4 Let B be a RV defined as

B=Y |Zi+&pl (2.56)
i=1
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where Z; = X; + jY;, with X; and Y;, i = 1,...,n, i.id. N(0,0%); pis a complex
deterministic constant; and |&;|, i = 1,...,n, are i.i.d. RVs ~ T'(1n, m). The pdf of
B is also given by with s* = n|p|*.

Proof: The RV B, conditioned to the sum of the i.i.d. RVs ¢, i = 1,...,n,
P =1p|* >t &, follows the distribution in when substituting [£]?s?
by P. Moreover, since ||? ~ T(m,m) Vi, then P ~ T'(m,m/|p|?), where
m = Yt m = p-m. We obtain then the result by averaging over P,

similarly as in [52]. [ |

2.4.2 New Particular Cases

The following corollaries are used in Chapter @] to show how the general

framework embraces different fading environments.

Related to the RV A

Corollary 2.5 If m — oo, then A follows the noncentral chi-squared distribution

in with 2n degrees of freedom and noncentrality parameter s>.

Proof: By taking the limit m — oo in (2.54) and applying the following

properties
i 1
JI (a; b;az> — A (b; z) (2.57)
. 1\
lim (1 - —.CE) =e 7 (2.58)
a—00 a

where (2.58) is the well-known limit that defines the exponential function,

we obtain result. [
Corollary 2.6 If s — 0, then A ~ T'(n,1/(20?)).

Proof: By taking the limit s — 0 in (2.54) and applying the property

lim ,F, (ar...a,;by...bp5c2) =1 (2.59)

c—0
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we straightforwardly obtain the result.

Notice that eq. can be carried out by simply exploiting the series
expression of the hypergeometric function of scalar argument, where the first
term has the unit value and the rest of the terms are powers of the scalar

argument [37, eq. (13.1.2)], so that they become zero when taking the limit.

]
Related to the RV B
Corollary 2.7 If m = n/2, then the pdf of B is given by
ntl ooy ML n—1
fa(ty = YVTLEME (5) ° ( b ) 2
2n0°T () /(1 — )"z \2no? (2.60)

n 2 2
« 6*7(1;,%’) I (Mb)

2\ 8nno?

where n = (no?)/(s* + no?).

Proof: When m = n/2, we can apply in (2.54) the following property [37,

eq. (9.6.47)]
1
VFi(a;2a; 2) = 22711 (a + 5) z%_“ezﬂla_% <§> . (2.61)
This leads to the result after some simple algebraic manipulations. [

The previous corollary will be essential to connect the statistical analysis

of noncentral and noncircularly-symmetric fading models in Chapter
Corollary 2.8 If m = n, then the pdf of B ~ T'(n,n/(s* + 2no?))

Proof: The result is straightforward by applying in (2.54) the property

1F1 <a; a; z) = e (2.62)
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2.4.3 New Result Involving Moments

The following theorem is useful since it involves the moments of the RV A
defined previously and their derivatives. In particular, this derivative will
be employed in Chapter 4] to analyze the capacity of a multitude of fading

channels, with a similar approach as in [53].

Theorem 2.9 Let A defined as in Proposition (2.3). Then,

D(n+t) [s2+2mo?\’ s?
) _ —_—m. —tn — 2.63
E[A ] F(TL) ( m 2]:1 n m, ta n; 82 + 2m0_2 ( )

and

d

(A= = — () — log (

s%2 4+ 2mo? )
dt

m(s? + 2no?)
s*(n —m)
n(s% + 2mo?)

(2.64)

52

X3.7:2<1,1,n—m+1;2,n—|—1;m>,

where 1) (-) the digamma function and 3 F,(-) a generalized hypergeometric function

of one scalar argument.

Proof: We first compute the ¢th order moment of 4, i.e.

E[A] & /0 " it fala)da
1
C(202)T(n) (14 5205)" (269

2mo?
+o0 " 82
X a"t e 1 Fy (min = sva | da.
0 202(s2 4 2mo?)

Observing that the remaining integral corresponds to a Laplace transform

evaluated in s = 1/(20?), we then have [54, eq. (4.23.17)]

C(n+t) (2no?)! (m' o 2 >
D) w1t oy 2\ e g (2.66)

E[AY =
(4] " 52 4+ 2mo?

2mao?
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where ,F(-) is the Gauss hypergeometric function of scalar argument [37,
eq. (15.1.1)].
Invoking the Euler relation in (2.8), we obtain

T(n+t) (24 2mo?\’ s
E[AY] = —m,—t;n; ————|. (267
4 I'(n) ( m 21 m, =t s2 + 2mo? (2.67)

Expressing the Gauss hypergeometric function in series form, the derivative
of the tth order moment with respect to ¢ is then obtained with the product
rule. Since the derivative of a Pochhammer symbol can be given by a differ-

ence of digamma functions ¢ (-), we obtain

%E[At] :T(;”L(:)t) (52 - 2m02)t { [¢(n +¢) +log (Wﬂ

Xo JF1 (n —m,—t;n; m> (2.68)
400 s> r

. (77, — m)r(_t)r o r) — . (32+2m02)
> e - o )

where the infinite sum starts at » = 1 because the first term equals zero.

Setting the moments order ¢t = 0, we get

2

iE[Ath:o =—(n) —log (%) + Z (n—m),(1), 1 (m) .

dt — (n), d
(2.69)
By applying some algebraic manipulations, we finally obtain
d s* + 2mo? s*(n —m)
—E[A"]|i=0 = — —1
dt [ATle=o ¥(n) —log ( m ) * ns? + 2nmo?
0 s2 r—1 2.70
% i (TL —m+ 1)T—1(1)T—1(1)T—1 (32+2m0'2) ( )

(n+1),-1(2)r1 (r—1)!

r=1

where the infinite sum can be expressed in terms of the generalized hyperge-

ometric function 355 (-) and so we have the result. [ |
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Notice that this result gives a simple new expression for the derivative
of the Gauss hypergeometric function o7 (a, b; ¢, z) with respect to a or b,
when this same parameter a or b equals zero. The derivative is expressed in
terms of the generalized hypergeometric function 375(-), instead of the more

complicated form in terms of a Kampé de Fériet function proposed in [55].

2.5 New Random Matrix Theory Results

We here present new statistical expressions for noncircularly-symmetric
Wishart-type matrices, i.e., Gram matrices generated from complex Gaus-
sian matrices with unequal variance in the real and imaginary parts of their

entries.

2.5.1 New Random Matrix Pdf

The following proposition presents, for the first time, an expression of the
joint distribution of the entries of noncircularly-symmetric Wishart-type ma-

trices, which will be used in Chapter

Proposition 2.10 Let W be an Hermitian matrix of the form:

XXT, p<n
W = 2.71)
XX, p>n
with
X = Xo + Xz (2.72)

where the matrices X¢c € CP*" and Xp € RP*"™ are mutually independent with
zero-mean i.i.d. entries. The entries [X¢l;; are circularly-symmetric CN (0,02,

while [Xgl;; ~ N(0,0%). Let s = min(p, n) and t = max(p,n). When oc,or > 0,
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the pdf of W can be given by

20202 \"
fw (W) =K ;etr (—O'C det )ie Z Z (02 j_ 2;”2 )
=0 ® cT R (2.73)
x / etr(—V) det(V) "2 C.(VW)(dV)
VT=V>0
where C,(-) is the complex zonal polynomial and
738(871) fa, st
()
K, = (2.74)

G T (5 -5 -0 —i+1)

Proof: Define Wy = XRXE if p < norWpr = X%XR otherwise. When
conditioned on Wy € R***, W follows a noncentral complex Wishart dis-
tribution with ¢ degrees of freedom and real noncentrality matrix Wp, i.e.,
W|Wg ~ CWs(t, 021, Wg). The pdf of the W is carried out from the follow-

ing integration over the space of real positive definite matrices, such as

AW = [ e (WIW) - S (Wa)( W) @79

where W|Wj ~ CW,(t,021,,0,*°Wpg) and Wy ~ W,(t, 031, 0,), so that

3s(s—1)

71 etr(—o,*W) det(W)i—*
2on/262" G TP T (5 — 36— 1)) T(t —i+ 1)

x/ etr (— (ac + gR> )det (W) 7 (276)
WI=Wpr>0

Xo Fy(p; 05" W W) (dWg).

fw(W) =
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Naming o2, = 0% + 30°, we make the change of variables V = ¢2 Wg, so

s+1
that (dV) = a;fqg (dWg) [56, Theorem 2.1.6], and we use the series represen-
tation of the hypergeometric function to obtain

fw(W) =K, etr(—o;*W) det(W)! 55

eq

x>y ﬁ /V etr(—V) det(V) "2 C.(VT)(dV)

k=0 k Eihi: T=v>0

(2.77)

where K, is given by 1i and T = 0;12054W. Finally, noting that
C,.(aW) = a*C,,(W), which follows easily from the definition of Schur poly-
nomial in (2.43), we have the result. [ |

2.5.2 New Exact Extreme Eigenvalue Distributions

In the following theorem, we give for the first time exact expressions for the
extreme eigenvalue distributions of noncircularly-symmetric Wishart-type
matrices. We present both largest and smallest eigenvalue distributions, al-
though we will restrict ourselves in Chapter |5 to analyze MIMO systems

where the largest eigenvalue distribution plays the lead role.

Theorem 2.11 Consider W in , with oc,op > 0. The cdf of the largest

eigenvalue of W admits
Fppa () = — 2= (2.78)

where P{(-) denotes the matrix pfaffian operation, 2 (x) is s X s with entries

{E1(x) }ij :/000 /OOO filz,uw) fi(x, z)sgn(z — u)dudz (2.79)
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with sgu(-) the signum function, and

—y/o%
fe(z,y) = (U%/W [Qs+t2k+1,ts (\/ 21//0%70)

(2.80)
— Qstt—2k41,0—s (\/29/‘7207 \/2515/‘7%‘> ]
where Q)...(-, -) is the Nuttall Q-function. The matrix By is s X s with entries
+oo +oo
{E2}i; :/ / gi(u)g;j(z)sgn(z — u)dudz (2.81)
0 0

where

[ _ /o2,
gk(y) = ((;/ZJWQSH—%JFM—S (\/ 2y/0%, 0) . (2.82)
C

Proof: Let 7 = t — 5. Conditioned on Wpg, the cdf of the largest eigenvalue
®max of W is given by [45]

F¢max‘wR(x) éljr((él’l'lax S leR)

2s(s—1)—2st 715 —o52w; (283)
SLCHE LGRS
(71)* [T (wi — wy)

where w; > ... > w; > 0 are the eigenvalues of W§. The entries of A(z) are
given in [45, eq. (50)] as a difference between a confluent hypergeometric
function and a Nuttall @-function. Here, for computational reasons, we use

the alternative form [57, eq. (20)]

7_|0_23‘/73+2i+22i—5 .
A ij = . s+t—2i+1,7 2w; ;0
{A(2)}iy (ijy/%_wj/a% Qstt—2i11, (\/ w; /¢ )
- Qs+t72i+1,r (\/ij/0%> \/255/0%) ] .

(2.84)
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Since (2.83) only depends on the eigenvalues of Wz, we remove the
conditioning by averaging with respect to fy, ., (w1,...,ws), the jpdf of
wy > ... > w,, which corresponds to the eigenvalue jpdf of a central real

Wishart matrix [51, eq. (58)]. This gives

T7—1

Fy.(z) =c! / det(A(x)) Hw?e’”ngidwl - dwy (2.85)
Ve 5

where £ = {0 < w, < ... < w; < 00}, 02, = 05° + 03°/2 and ¢ is a normal-

ization constant. Using Lemma the multiple integral is expressed as
Fpp (&) = ¢ PH(E, (2) (2.86)

where the elements of E;(z) are given by (2.79). Moreover, from (2.86), it is
clear that ¢ = lim,_,., Pf(E,(z)), which can be also expressed as ¢ = Pf(E,),
with the elements of Z, given in (2.81), since the second Nuttall ()-function

in (2.80) vanishes when © — oo. [

Theorem 2.12 Consider W in (5.1), with o¢,0r > 0. The cdf of the smallest

eigenvalue of W admits
F¢min (x) = 1 - (2.87)
where P1{(-) denotes the matrix pfaffian operation, Y (x) is s X s with entries

{Y(z)}i,; = /OOO /000 vi(x, w)v;(z, z)sgn(z — u)dudz (2.88)

and

_ /o‘%
Uk(l’, y) :\/ (Uegcjw@sﬂzkﬂ,ts (\/23//0%7 \/237/0%) . (2.89)

The matrix sy is s x s with entries given in (2.81).
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Proof: Conditioned on W, the cdf of the smallest eigenvalue ¢in of W is

given by

F¢min|WR (m) £1 - Pr(¢min > ~T’WR)

s(s—1)—2s s o 2w 2.90
A | SR

T T T (s — wy)

where w; > ... > w; > 0 are the eigenvalues of Wp. The entries of the s x s

matrix ¥(x) are given by [57, eq. (16)]

T!O_Btfs+2i+2 2i—5

{\I’((L‘)}l,] = (QUJCT)T/?e—wj/O% QS_H_QH_LT (\/221)]‘/0%’, \/2$/0‘%) . (291)

Since (2.90) has a similar form as (2.83), we can follow the steps of the
proof of Theorem to obtain the result. [

2.5.3 New Asymptotic Expansion (in the Tail) of the Largest

Eigenvalue Distribution

The following theorem will be used in Chapter 5|to give a unified expression
for the asymptotic expansions of the largest eigenvalues of noncentral and
noncircularly-symmetric Wishart-type matrices. In addition, we use this the-
orem to give further insights on how the noncircular symmetry of the entries
of W affects the distribution of its largest eigenvalue, as well as we simplify
the analysis of the outage probability and outage data rate of Hoyt-faded

MIMO communications.

Theorem 2.13 Asx — 0,

Fipp(2) = hgyaly o™ + o(2™) (2.92)
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where
Ccw T (s —9)!
= 2.93
ot iI:[l(s+t—i)! (2.93)
and
1
hey = = (2.94)
(O‘C\ /20% + 0%)
Proof: When conditioned on Wg, as + — 0 we have [57, eq. (28)]
7251‘, HS (
F _ —o5%w; st st 2.95
¢max|WR<x) Hf 1(8—|—t—l Z1:[6 ¢t +O( ) ( )

Removing the conditioning as in the proof of Theorem we get

2 4% o oc [y (s — i)

r _ 2
oo () = I, (%—z+1) (——2+1)(s—|—t—i)'
" / I« oo F H _w H duw, (2.96)
L om=1 1<j
+ o(z*).
Making the multiple change of variables \,, = angm, m = 1,...,s, the

remaining multiple integral can be identified with the Selberg integral for

the central real Wishart matrix [51} eq. (568)]. This leads to the result. [ |

2.6 Conclusions

This chapter has presented new results in both univariate and multivariate
statistical analyses. Of important mention are the result involving the deriva-
tive of a Gauss hypergeometric function presented in Section as well as
the eigenvalue results in Sections 2.5.2) and 2.5.3] which will find direct ap-

plication in the following chapters. It is important to note, however, that
the class of complex random matrices considered in this chapter arises in a

large number of different areas. Thus, it is expected, and hoped, that many of
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these new results will find further application beyond the analysis of wireless

communication systems considered in this thesis.
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Chapter 3

Classical and Generalized Fading

Models

The mathematical description of radiowave propagation through wireless
channels poses some challenging issues. Since there are various effects which
depend on the propagation environment, such as multipath and shadowing,
this description is sometimes complicated and does not always allow any
further insightful analysis of these effects on the performance of wireless sys-
tems. However, there is a flurry of papers that made considerable efforts to
characterize these effects in a wide variety of scenarios.

Among the plethora of fading models in the literature, this chapter briefly
reviews the classical fading models and their most popular generalizations.
A more detailed explanation of these and other models can be found in [5],
[29], [52], [58]. This chapter also introduces the notation regarding fading
model parameters that will be used throughout the thesis.

This chapter is organized as follows. The classical LOS and NLOS fading
distributions, usually adopted as models for frequency-flat fading channels,
i.e. corresponding to narrowband transmission, are described in Section
Their most popular generalizations are introduced in Section Finally, the
k- shadowed fading distribution, which has been recently proposed in [52],
is analyzed in detail in Section[3.3]
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3.1 Classical Fading Models

In a wireless communication link, there are three main effects that can de-
grade the received signal power: path loss, shadowing and multipath. Path
loss is mainly caused by dissipation of the power radiated by the transmitter.
Path loss models generally assume that the power loss in the received signal
only depends on the distance between the transmitter and receiver antennas.
Shadowing can be caused by objects which appear between the transmitter
and receiver sides. Path loss and shadowing produce variations of the sig-
nal over relatively large distances when compared to the signal wavelength,
and therefore, they are sometimes referred to as large-scale propagation ef-
fects. Multipath is due to the constructive and destructive combination of
randomly delayed, reflected, scattered, and diffracted signal components [5].
It produces signal variations which occur over distances similar to the signal
wavelength. That is the reason why multipath is also referred to as small-
scale propagation effects.

The analysis of these propagation effects in wireless communication has
been a subject of several contributions in the literature. Depending on the
nature of the radio propagation environment, there are different models to
describe the statistical behavior of the envelope of the received signal. We
here consider only flat-fading models, i.e., models employed to describe fad-
ings which affect narrowband wireless systems.

Let a be the fading amplitude, where « is a RV with E[a?] = Q. When
the narrowband signal propagates through the fading channel, the received
carrier amplitude is modulated by «, whose statistical properties depend on
the nature and conditions of the propagation environment. The signal is also
perturbed at the receiver by additive white Gaussian noise (AWGN), which
is typically assumed to be statistically independent of «, and which is char-

acterized by a one-sided power spectral density N, Watts/Hz. Defining the
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instantaneous SNR per symbol by v = a?E,/N, and the average SNR per
symbol by ¥ = QFE, /Ny, where E; is the energy per symbol, the pdf of v can

be obtained by introducing the following change of variable in the pdf of «

[5, eq. (2.3)]:
(V) o

p'y(V) = —
2\/q

We now present the classical models involved in performance analysis of
SISO systems subject to different fading environments. Such models further
assume that there are many objects in the environment that scatter the radio
signal before it arrives at the receiver. Then the central limit theorem holds,
such that the channel impulse response will be well-modeled as a Gaussian

process irrespective of the distribution of the individual components.

3.1.1 Rayleigh

The Rayleigh model can be defined as the magnitude « of a two-dimensional
Gaussian random vector «, whose entries are [z]; ~ N (0,€/2). The pdf of «

is given by [5] eq. (2.6)]

»

200«

pal@)=-ge 7, a>0, (3.2)
and hence, following (3.1)), the instantaneous SNR per symbol v is distributed

as

fH() = 56‘? (3.3)

It is evident from that the Rayleigh model is closely related to the
central chi-squared model presented in Section To better illustrate this,
let Y = X? + X2 where X; and X, are i.i.d. N(0,0%). It follows that Y is
central chi-squared distributed with two degrees of freedom. Then, the pdf
of VY is given by with Q = 202
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The Rayleigh model is normally used in NLOS scenarios, where the in-
phase and quadrature components of the received signal have the same av-
erage power and there is no dominant component, i.e., no LOS component.

Several contributions have employed this model to shed light on the per-
formance of wireless systems. We can say that the Rayleigh model is the most
employed NLOS fading model thanks to its simplicity. We find the Rayleigh
model to study a wide variety of communication systems, which includes

mobile systems [58] and ship-to-ship radio links [59].

3.1.2 One-sided Gaussian

The one-sided Gaussian model is defined as the magnitude « of a real Gaus-

sian RV ~ N (0, Q). The one-sided Gaussian distribution is given by

V2 2
e 29, a > 0. 3.4
= (3.4)

I}

fa(O‘) =

With (3.I), we obtain the pdf of instantaneous SNR per symbol of the

I 2
Py 120 (35)

Using the one-sided Gaussian distribution in fading modeling can gen-

channel as

erate an ample debate. The one-sided Gaussian model does not arise from
a complex underlying model, which is the natural model when analyzing
bandpass signals using their baseband equivalents.

However, some contributions have considered the analysis of wireless
systems subject to this fading. The one-sided Gaussian model can be seen
as the worst fading case, since we are losing one of the two signal compo-
nents —the in-phase or the quadrature component. The significance of this
model is then reflected in its theoretical interest as a limiting worst-case. This

has relevance in practice since it can be useful in the design of wireless links
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with applications that demand stringent qualities of service, such as financial

transfers and confident data [60], [61].

3.1.3 Nakagami-m

The Nakagami-m model has in essence the same underlying Gaussian model
as a central chi-squared distribution with 2m degrees of freedom. Given X
a central chi-squared-distributed RV with 2m degrees of freedom and 0 = 1,

we obtain a Nakagami-m-distributed RV such as
a=+/Q/(2m)X. (3.6)

The Nakagami-m distribution is then given by

2mmalml a2

pa(a) - er(m) €_T7 «Q Z 0 (37)

where m is the shape parameter which ranges from 0.5 to oo, and Q = E[a?]
is a second parameter which controls the spread.

Applying (3.1), we obtain the SNR per symbol, which is distributed ac-
cording to a central chi-squared (gamma) distribution, i.e.

mam—1
mry" Ty
D =_———€ 7, v = 0. 3.8)

The Nakagami-m model can be seen as the generalization of the Rayleigh
and one-sided Gaussian models. From the Nakagami-m model, the Rayleigh
model can be derived as a particular case by setting m = 1, while the one-
sided Gaussian model is obtained when m = 0.5.

Many publications have used the Nakagami-m in very different NLOS
scenarios. Since it is a more general model than the Rayleigh one, it can bet-

ter fit experimental data. Actually, the original work by Nakagami, where
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this model was introduced, does not explain any physical phenomena that
could justify to employ this model. This model was just proposed from em-
pirical observations of signals propagating through the ionosphere and the

troposphere [13].

3.1.4 Nakagami-q (Hoyt)

The Nakagami-¢ fading model is defined as the magnitude o of a
noncircularly-symmetric complex Gaussian RV, i.e., with unequal variances

in its real and imaginary parts, such as

a=|X+jY| 3.9

where X and Y are jointly independent real Gaussian RVs with arbitrary
variances, i.e., X ~ N(0,0%) and Y ~ N(0,0%). The Nakagami-q fading

distribution is given by

14+¢° o (1—¢*

fala) = e ae  42e T [ < 170 a |, a>0 (3.10)
where [j(-) is the zero-th order modified Bessel function of first kind (see
Section 2.2.1), and ¢ € (0, 1] is the Nakagami-¢g parameter, which is defined

as

o
_Xa ox <oy

g=<{" (3.11)
Z—;, otherwise.

Using (8.1), the instantaneous SNR per symbol is given by

14+¢* ™ ((1—q')y
= a%5 I _— > (0. 3.12
1) = 52 (St) vz 61

If ¢ = 1, we obtain the Rayleigh distribution. When ¢ — 0, we have the

one-sided Gaussian distribution.
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The Nakagami-¢ model has been commonly employed in satellite-based
communications [5], [10], [11] or, in general, when the fading conditions are

more severe than those of a Rayleigh-faded environment.

3.1.5 Rician

The Rician model is also known as Nakagami-n model [13]. This model is
defined as a being the magnitude of a non-zero mean complex Gaussian RV.

The pdf of a is given by [62]

2(1+ K)e 82 g4ma? K1+ K
Pala) = %e_( o Iy <2a %) , a>0 (3.13)

where K is the Rician factor, which corresponds to the ratio of the power
of the dominant component to the average power of the scattered compo-
nent. When applying (3.1), the SNR per symbol of the channel is distributed

according to a noncentral chi-squared distribution given by

1+ Ke fa _atxn K(1+ K)y
pv(’ﬂ:% T 1o (2 (+>

e 7 > , v > 0. (3.14)

v g
Therefore, the Rician model is related to the noncentral chi-squared model
presented in Section2.2.2] To better illustrate this, let Y = X7 + X3 where X,
and X, are independent Gaussian RVs with means m,, i = 1, 2, respectively,
and common variance o?. It follows then that Y is noncentral chi-squared-
distributed with two degrees of freedom and noncentrality parameter s* =
m?+m3. Then, the pdf of v/Y is given by with Q = 20? and K = s?/202.
The Rician model is the first model here presented for LOS scenarios, i.e.
which considers a dominant component to the scattered component. Simi-
larly as in the Rayleigh model case, it is the most employed model in LOS

scenarios due it simplicity. It can be seen as the natural extension of the
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Rayleigh model to LOS scenarios. Therefore, it can be applied to all propaga-
tion environments where the Rayleigh model was used and, in addition, to

those on which there is a LOS between the transmitter and receiver antennas.

3.2 Generalized Fading Models

The scientific community has been greatly interested by generalizing these
aforementioned classical models in order to have a higher accuracy when
titting experimental data. Many of these generalizations can be found in
standard textbooks [5], [58], including the Weibull and Beckmann models
which are not in the scope of this thesis, since they are not very tractable. The
moment generating function (mgf) of the Weibull model involves a Meijer G-
function, and there is no closed-form expresion for the pdf of the Beckmann

model [5].

3.2.1 Rician Shadowed/Shadowed-Rice

In the literature, two different Rician Shadowed or Shadowed-Rice models
were proposed. The original Rician shadowed model was presented in [63],
where the dominant component of the Rician model suffers from shadowing.
The shadowing component was chosen to follow a log-normal distribution,
which is the natural distribution for large-scale perturbations [5], [15]. The
presence of this shadowing in the model was justified from experimental ob-
servations of signals propagating through land-mobile satellite (LMS) fading
channels. When traveling through sparsely wooded area, a light shadow-
ing is observed. In turn, a heavy shadowing is experienced when traveling
through densely wooden areas [64].

The channel model is defined as [63, eq. (1)]

o = |zef? + wel?|, z,w >0 (3.15)



3.2. Generalized Fading Models 49

where the phases ¢, and ¢ are uniformly distributed between 0 and 27, w has

a Rayleigh distribution, and z is log-normally distributed, i.e.

1 _(nz=5)?
L(z) = 2d 3.16

where dy = E[2?] and z = E|[z].

The pdf of the fading envelope « is then given by [63, eq. (6)]

o OO]_ 7(lnz—2)27(r2+z2) rz
)= —2 [ e () d 3.17
pole) =y [T (B e

where by = E[w?]/2.

This model has shown to have reasonably good agreement with measure-
ments in LMS links, both in the presence of light and heavy shadowing [63],
[64]. However, the analysis of wireless systems subject to this fading can be
sometimes complicated, since the pdf in is given in integral form.

In this context, a second Rician shadowed model was proposed in [65].
This new model preserves the underlying model in (3.15). The difference
lies in the shadowing, which is no longer log-normally distributed, but
Nakagami-m distributed. With this in mind, the pdf of the fading ampli-
tude can be given in a simpler form than without compromising the
accuracy when fitting experimental data [65].

The pdf of the amplitude « for this new model is given by [65, eq. (3)]

m 2.2
Pala) = (%) %62&:} 1F1 (m, 1; 2b0(2£0:l+p2)> ) a>0
(3.18)
where p? is the average power of the dominant component, 2b, is the av-
erage power of the scattered component, and m is extended version of the
Nakagami-m parameter, which now ranges between (0, c0). The function

1F1(+, ;) is the confluent hypergeometric function of scalar argument (see

Section [2.2.1).
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Applying the transformation S = «o?, the pdf of the fading power S asso-

ciated with this model is

20om \" 1 . p%s
= —— — 1; > 0.
ps(s) <2bom+p2> 2b0€ o 1F (m, Do (2bom + 7)) s>
(3.19)

3.2.2 k-

The x-p fading model was proposed by Yacoub in [29]. The x-; fading enve-
lope « can be written in terms of the in-phase and quadrature components of

the fading signal as [29, eq. (6)]

2 2

a® = Z(Xz +pi)* + Z(Y; +q)° (3.20)

=1 =1

where X; and Y; are mutually independent Gaussian processes with E(X;) =
E(Y;) = 0, E[X?] = E[Y}?] = ¢% p; and ¢, are respectively the mean values of
the in-phase and quadrature components of the multipath waves of cluster i;
and y is the number of clusters of multipath.

The physical justification of the model can be found in [29] and is as fol-
lows. The fading model for the x-u distribution considers a signal composed
of clusters of multipath waves, propagating in a nonhomogeneous environ-
ment. Within any cluster, the phases of the scattered waves are random and
have similar delay times, with delay-time spreads of different clusters be-
ing relatively large. The clusters of multipath waves are assumed to have
scattered waves with identical powers, but within each cluster a dominant
component is found, which presents an arbitrary power.

Despite Yacoub’s effort to justify the model from a physical perspective,
it is still not clear why the components of different clusters are summed in
power at the receiver, as shown in (3.20), instead of in amplitude. Answering

this question is, however, not necessary when seeing the good accuracy of
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the x-u model when fitting experimental data [29]. With the two parameters
x and 1, the model has more flexibility when compared to classical models.

The k-p» model can be seen as a generalization of the Rician model, which
is obtained as a particular case when p = 1. This generalized model can be
employed in all LOS scenarios where the Rician was used to increase the ac-
curacy between theoretical results and measurements. Moreover, one could
extend the parameter 4 to take real values to further improve the accuracy of
the model while fitting real data, despite the underlying model in loses
its significance.

In addition, the statistical characterization of the x-: fading envelope is as
tractable as the Rician model one. The pdf of the fading amplitude « is given

by [29, eq. (11)]

fala) = M (%)“ e_“(”"‘)(%)QIM—l <(2,u\//<;(1 + n)%) (3.21)

—1
O3 emn

where 2 = E[o?], I,,(-) is the v-th order modified Bessel function of first kind
(see Section [2.2.1), and « has a similar meaning as the Rician K-factor, i.e., it
is the ratio of the average power of the total LOS power to the average power

of the scattered component, such as

22
K= M (3.22)

2021
Notice that the pdf of the Rician fading envelope was also given in terms of a
modified Bessel function of the first kind. We must remark, however, that the
distribution in (3.21) is not a new distribution and correspond to a noncentral

chi-squared distribution with 2y degrees of freedom. A similar remark was

given in [66].
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Applying (3.1), the instantaneous SNR per symbol of this channel is given
by

1+ 5)"5" o . 1

£ () =R fﬁ : (2) (o [FAEEY) (303
YK 2 ekr Y g

With the two shape parameter « and i, the x-u model subsumes some of

the classical fading distributions as particular cases, e.g., one-sided Gaussian,

Rayleigh, Nakagami-m and Rician models. However, it does not include the

Nakagami-q (Hoyt) as particular case.

3.23 n-u

The -1 fading model was also presented in [29], together with the x-; model.
This model can be seen as a generalization of the Nakagami-¢q (Hoyt) model,
in a similar fashion as the x-/: is the generalization of the Rician model. There-
fore, it can be employed in all NLOS scenarios where the Nakagami-¢ was
employed to increase the accuracy between theoretical results and measure-
ments.

The -y model may appear in two different formats, for which a different
underlying model can be found in [29]. We here are interested in the so-called

n-p model format 1, for which the fading envelope can be expressed as [29,

eq. (22)]

2p
oF =) (X7 +Y) (3.24)

=1
where X; and Y; are mutually independent Gaussian processes with E(X;) =
E(Y;) = 0, E[X?] = 0% and E[Y;?] = 7. We must note that now the number of
clusters is 241, which can be confusing for the reader since the x-y model was

divided into . clusters. However, we here use the original notation, which

has been conventionally adopted in the literature.
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A physical interpretation of this model, similar to the one given for the
rx-p model, can be found in [29]. We here are just interested in the flexibility
of such model to accommodating to different fading conditions.

The pdf of the n-u fading amplitude « is given by [29, eq. (27)]

<2MH (%)2) (3.25)

where = E[a?], h = (241~ '+n)/4and H = (n~'—n)/4. The parameter 7 in-

+3 2
) = S (045 oy
QU (p)H =2 Q2

N

dicates the scattered wave power ratio between the in-phase and quadrature
components of each cluster, in a similar fashion that the Hoyt parameter ¢
indicates the ratio between the typical deviation of these components. How-

ever, the range of 7 is (0, 00), since the parameter is uniquely defined as

n=X (3.26)

The distribution in yields identical values within the intervals (0, 1) and
(1,00), i.e., the distribution is symmetrical around 7 = 1. This can be mathe-
matically explained from (3.25), since I,(—z) = (—1)"I,(2). Therefore, as far
as the envelope (or power) distribution is concerned, it suffices to consider 7
only within one of the ranges.

In contrast to the distribution of the k-1 model, the distribution of the n-u
model belongs to a different class of distributions which cannot be related to
the one presented in (2.2.2). Actually, it can be seen as a generalization of the
central chi-squared distribution where the underlying Gaussian RVs can be
divided into two sets: a set of Gaussian RVs with variance 0% and a set of

Gaussian RVs with variance o%..
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Applying (3.1), the instantaneous SNR per symbol of this channel is given
by

S

_p(+m?y
2%y

PO v

gl

e

N

p—

(LA )t et (v>“‘ <“(12—;T72)1> . (327)

v

With the two shape parameters 7 and y, this model subsumes some clas-
sical fading models, e.g, the one-sided Gaussian, Rayleigh, Nakagami-m and
Nakagami-¢ models. However, it does not include the Rician model because

of the inherent LOS nature of the latter.

3.3 The x-u Shadowed Fading Model

We here present in details the x-;: shadowed fading model, since it will allow
to connect the x-; and - distributions in the next chapter of this thesis. To
that end, we need to clarify a discrepancy between two underlying models
which have appeared independently in the literature. We must mention that
the work presented in this section was done in collaboration with S.L. Cotton,

and can be found in [30].

3.3.1 Context

The k-1 shadowed model was defined for the first time by Paris in [52] as a
natural generalization of the popular -4 fading model originally proposed
by Yacoub in [29]. The difference with respect to the x-; model appears in the
dominant component of each cluster, which is no longer deterministic and
can randomly fluctuate because of shadowing. Closed-form expressions for
the pdf, cdf and the mgf of the signal power envelope were derived in [52],
and validated using Monte Carlo simulations and field measurements in the
context of underwater acoustic channels. Shortly after, in an independent

work recently published in [67], a x-i« shadowed distribution was proposed
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in the context of device-to-device communications. Starting from an under-
lying statistical model which can be regarded as a generalization of the one
proposed in (3.15), closed-form expressions for the pdf, moments and mgf of
the fading envelope were given, and also validated with field measurements
obtained for a range of different scenarios. Nonetheless, the author of [67]
failed to provide Monte Carlo simulations of the proposed underlying sta-
tistical model which would have helped to identify the discrepancy between
both contributions in [52] and [67]. We note that the analytical expressions
presented in [52] and [67] have the same functional form, even though they

have arisen from two evidently different statistical models.

3.3.2 Statistical Models in [52], [67] Revisited
Underlying Statistical Model in [52]

The x-p shadowed fading model was defined in [52], on which the received

signal power (or squared envelope) can be expressed as

7
ZX+@Z (Y; + £gi)? (3.28)

where X, and Y, are i.i.d. real Gaussian RVs with zero mean and variance
0%, p; and ¢; are constants with d*> = Y ! | p? + ¢7; and ¢ is the shadowing
parameter which follows a Nakagami-m distribution with E[¢?] =

When conditioning to the shadowing parameter &, the model in re-
duces to the x- fading model in (3.20), and the pdf for the RVs v = a2 /E[o?]

representing the instantaneous SNR per symbol is given by

p—1

.6 iiﬁii<1ﬁ2e”%“f G% ii?£> 3.29)

7 e2un \ 25

where £ = d*/(2uo?). This is evident, as the x-u shadowed fading model

in (3.28) arises as a natural generalization of (3.20) in scenarios on which the
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line-of-sight component is subject to shadowing. The x-; shadowed pdf is
then obtained by averaging (3.29) over all possible shadowing states, yield-

ing the following closed-form expression:

(1 + &) (AN s k(14 k)Y
(7)) = - - e 7 Filmipu m——~—=]. (3.30)
) U()3(pk +m)™ \ 5 O e S
Notice that if ;1 takes real values, (3.30) is still a valid pdf, although the
underlying Gaussian model in (3.28) is no longer meaningful. It is important
to extend the parameter y from the integers to the real numbers in order to

increase the flexibility of the model [29], [52].

Underlying Statistical Model in [67]

In a later and independent work, a different x-. shadowed model was de-
fined in [67]. The following complex envelope model was proposed for the

received signal in the presence of shadowed fading]]
Re?? = Wel? 4 Ael% (3.31)

where IV and A are independent and non-identically distributed Nakagami-
m distributed RVs; ¢ follows the distribution defined in [68] and ¢, is a de-

terministic phase. The distribution of the phase ¢ is given by [68], [69]

I'(p)| sin(2¢)[*~

= 3.32
T (52) T (520) | an(0) 032

fs(9)

for ¢ € (0,27) and p € [—-1,1].
After introducing (3.31), the author in [67] states: If A is initially held con-
stant, then the conditional pdf of R is given by ... that of the k-p distribution [29].

However, no explicit proof for this statement was given. As we will later see,

IFor the sake of notational simplicity in the further comparison, we use a and R to denote
the fading envelopes of the models in [52]] and [67]], respectively. We must also note that the
pdfs of o and a? (or R and R?) are related through a simple change of variables.
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this statement is incorrect and therefore, as it stands, the unconditional pdf
obtained when averaging over the distribution of A cannot be regarded as a
-y shadowed fading model.

In fact, we have been unable to derive a simple expression for the pdf of
R|A, let alone for the pdf of R. For this reason, we resort to compare both
models in the next subsection by using the underlying RVs from which they

are built.

3.3.3 Comparing both models

In order to better observe the difference between both models, let us express
each model in terms of underlying Gaussian RVs.
First, we consider the x-; shadowed model originally defined in [52]. Ex-

panding (3.28), the received signal power can be expressed as

“w
2= (X7 +YP) +£2d2+25d2 X% 4 Y;%) .
1=1 i=1

/

(3.33)

Sk

where Z, is defined for convenience of discussion, and will be of later use.
We now consider the received signal power in [67], denoted as R?, which

can be conveniently expressed as

R? = |[Welo=%0) L A2, (3.34)

After some algebraic manipulations, we obtain

R* =W?+ A? + 2WA cos(¢ — ¢). (3.35)

Since W and A follow independent and non-identical Nakagami-m dis-

tributions, for integer values of i we can explicitly express these RVs such
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as
A = &d, (3.36)
W=vVX2+Y2 (3.37)

where X = (=1)*/>7 X?and Y = (-1)"\/>", Y2, with X;, Y;, d and ¢
defined previously; u and v are binary RVs which can take the values {0, 1}
with the same probability. Notice that we have here implicitly considered the
balanced condition defined in [68], [69] (i.e. p = 0in (3.32)), since the number
of real Gaussian RVs is equal in both the in-phase and quadrature signals.

Taking into account that the phase of the scattering component ¢ is given
by [69]

¢ = arctan f—(, (3.38)

we  then  identify W cos(¢) = (=D)*y/> 0, X2 and
Wsin(¢) = (—1)"/> 1, Y;?. Therefore, (3.35) becomes

m

R* =" (X7 +Y?) +&d* + 26d W cos(¢ — ¢o) (3.39)
=1 A

where Zy is given by

Zp = “ cos (o) Z)@ v sin() (3.40)
=1

The difference between and remains in the last term of both
expressions, and is encapsulated in the RVs Z, and Zy. Since for Zy,
is a sum of Gaussian RVs, when conditioned to the shadowing &, the last
term follows a Gaussian distribution. This is a key aspect of the x-u fading
model proposed by Yacoub [29], for which o resembles a non-central chi-
squared distribution. However, Zy is evidently not Gaussian distributed for

i # 1. Therefore, the underlying statistical model presented in [67] when
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conditioned to a specific shadowing value does not follow a x-u distribution,
and neither resembles a non-central chi-squared distribution.
In the very specific case of ;1 = 1, the parameter Zp in (3.39) can be ex-

pressed as

Zr =(—1)"cos(¢o)|X1| + (—1)"sin(¢o)|Y1] (3.41)

which now it is indeed Gaussian distributed. For this reason, the model pre-
sented in [67] is only coincident with the x-; shadowed distributed when
i =1, 1i.e. when it reduces to the Rician shadowed distribution [65]]. This is
coherent, since the underlying statistical models in [67] and [65] are in fact
identical for ;o = 1. We note that for the imbalanced condition in (3.32), (i.e.
p # 0) the conditional model in [67, eq. (2)] does not follow a x-u distribu-
tion even for © = 1. This is easily explained by observing for p # 0:
although W is Rayleigh distributed, the distribution of ¢ is other than the
uniform distribution and hence Zy is not Gaussian.

Instead of being equivalent to the x-y distribution, the conditional model
[67, eq. (2)] belongs to a family of bimodal distributions similar to the one
presented in [70] by Beaulieu and Saberali. This is consistent with the fact
that these models only differ in the phase distribution of the scattering waves
and LOS component, which are both considered to be uniformly distributed

in [70].

A simple correction to the underlying statistical model in [67]

For completeness, in this subsection, we introduce a straightforward correc-
tion to (3.31) which ensures that all of the formulations presented therein are
fully compliant with the x-u shadowed fading model. Following from the
statistical model originally proposed by [52], to correct the underlying sta-
tistical model in [67], we rearrange to express ¢ in terms of A and d.
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We then substitute this result into (3.28), so that the mean values of the in
phase and quadrature components of each of the multipath clusters are now
normalized to the the total power contributed by the dominant component,
such that
2 - A 2 A 2

R = ;(Xi +—=p)? + (Vi + =), (3.42)
Now assuming that the formulation given in is used as the underly-
ing statistical model for [67], the conditional pdf given in [67, eq. (2)] and
the subsequent statements and derivations comply fully with the x-x and &-
1 shadowed fading models. We will now provide numerical results which

illustrate the key points discussed in this section.

3.3.4 Numerical Results
Conditioned Statistical Models

We first consider the statistical models analyzed in this paper, when condi-

tioned to a particular shadowing state, i.e.
RIA = |[Wel? + Aei|, (3.43)

where A is held constant.

In Fig. 1, we represent the pdf of conditional RV in eq. generated
by Monte Carlo (MC) simulations for 1+ = 4 and x = 2. We compare it to the
theoretical and simulated pdf of the x- distribution [29]]. We clearly observe
that the conditional distribution (CD) considered in [67] does not follow a
k-p distribution. While the x-p distribution is a unimodal function for every
pair of (x, ) [29], i.e., it has only one local maximum, the conditional pdf of
the model presented in [67] is clearly bimodal for x = 2 and p = 4 since it has

two local maxima.
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FIGURE 3.1: Comparison of the simulated CD pdf with x = 2
and p = 4 with the x-u distribution.
Hence, we have shown that the distribution of the received signal ampli-
tude R, when conditioned to a particular shadowing state, does not follow

the k-u distribution.

Unconditioned Statistical Models

Despite having shown that the CD in [67] does not follow a x-u distribution,
one could think of whether the resulting unconditional distribution (UD) ob-
tained after averaging over all shadowing states in [67] could actually follow
a k-pt shadowed distribution. If we let the m parameter grow to infinity, then
the Nakagami-m pdf is compressed and at the limit degenerates on a deter-
ministic distribution, being its pdf the Dirac delta function. Therefore, for
large but finite values of m the UD model in [67] is expected to have a shape

similar to the conditioned case. This implies that the UD model in [67] will
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FIGURE 3.2: Comparison between the MC simulated UD in
[67], the simulated original model presented in [52] and the
theoretical pdf of the x-;1 shadowed distribution for different
values of the parameter ;; and fixed x = 2, and m = 4.
also exhibit a bimodal behaviour, which is not the actual behavior of the x-u
shadowed distribution.

In order to illustrate this aspect, we will now compare the pdfs arising
from the statistical models in [67] and [52]. For generating the samples for
the UD in [67], we follow the same steps as shown in the previous section,
but now considering that A is a Nakagami-m RV.

In Fig. 2, we plot the pdf of the UD pdf for different values of the param-
eter 1, when the other parameters x and m remain fixed. We observe that the
UD pdf differs from the x-; shadowed model except for = 1. This obser-
vation is consistent with the result presented in [65], and tackled in Section
B.32

In Fig. 3, we now compare the evolution of both models with respect to

the parameter k. We observe that when the underlying statistical model is
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FIGURE 3.3: Comparison between the MC simulated UD in
[67], the simulated original model presented in [52] and the
theoretical pdf of the x-; shadowed distribution for different
values of the parameter « and fixed =4, m = 4.
assumed to be [67, eq. (1)], the UD is not the x- shadowed distribution,
except for the value x = 0, which corresponds to the Nakagami-m case.

Note that when considering the correction described in Section the
results of the UD model in [67] and the original model in [52] would be equiv-
alent.

Therefore, if the underlying statistical model presented in [67] is assumed,
the subsequent pdf presented therein cannot be regarded as a x-;1 shadowed
distribution, simply because the conditional statistical model from which it
is derived does not follow the x-u distribution. In fact, the correct derivation
of the x-y shadowed pdf can be found in [52], where a generalization of the
Yacoub cluster model [29] is presented. Nonetheless, we point out that if the

signal model proposed in [52] is used in place of [67, eq. (1)], the subsequent
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derivations and statistics presented therein are completely correct and valid.

Some other relevant remarks arising from the results here presented are:

e The underlying statistical model originally proposed in [67] corre-
sponds to another type of distribution which includes the Nakagami-m
and the Rician shadowed models as particular cases, together with the
Rayleigh, Rician and one-sided Gaussian, which are particular cases of
the Rician shadowed model. However, the x-u shadowed distribution,
whose pdfis defined in [52], [67], is not included in the statistical model

in [67] and restated in (3.31)).

e The underlying statistical model in [67] belongs to a family of bimodal
distributions which are useful in many scenarios. Some examples are
the generalized diffuse scatter plus LOS fading channel model [70], the
Two-Wave with Diffuse Power fading model [71], the Generalized Two-

Ray fading model [72], and the Fluctuating Two-Ray fading model [73].

e The derivation of the pdf for the statistical model proposed in [67] re-
mains an open problem. Given that the pdfs of the models in [70]-
[72] have complicated forms even in the absence of shadowing, it is

expected that the pdf of interest has a very complicated form.

e We reiterate that the statistics presented in [67] can be made fully com-
pliant with the x-u shadowed model provided that the model proposed
in [52] is used as a starting point for defining the received signal ampli-

tude.

e As a final note, it is worth highlighting that the works presented in
[52] and [67] have both illustrated the significance of the x-; shadowed
model. Through important empirical studies they have demonstrated

the existence of this fading phenomena in real-life applications.
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3.4 Conclusions

In this chapter, a brief overview of the fading channel models employed
throughout this thesis has been provided. We have presented classical and
generalized fading distributions, commonly used to characterize the small-
scale variations of the signal, as well as the large-scale variations of the line-
of-sight component. Also, the terminology and notation regarding the sta-
tistical functions for the characterization of these fading models have been
introduced.

Besides, the x-p shadowed fading distribution [52], a recent and very gen-
eral fading distribution which includes some classical distributions here pre-
sented as particular cases, as well as the generalized Rician shadowed [65]
and x-u [29], has been introduced. Moreover, we have addressed a discrep-
ancy between two underlying models that were available in the literature.
We have shown that the underlying model proposed in [67] cannot be seen
as a x-u shadowed model, but it belongs to a family of bimodal distributions

similar to the one presented in [70] by Beaulieu and Saberali.
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Chapter 4

Unifying the -1 and 7-p Fading
Models

This chapter shows that the x-;: shadowed distribution unifies the set of clas-
sical fading models associated with the x-; distribution, and strikingly, it
also unifies set of classical fading models associated with the n-;: distribution.
Particularly, it reveals that the Nakagami-¢ model can be obtained as a par-
ticular case of the Rician shadowed model proposed in [65], which may seem
counterintuitive at first glance. In addition to a formal mathematical proof of
how the chief probability functions introduced by Yacoub originate from the
ones derived by Paris, we also establish new underlying Gaussian models
for the x-u shadowed distribution that illustrate these mathematical deriva-
tions. In fact, we propose a novel method to derive the Nakagami-¢ and
the n-p distributions which consists of using the shadowing of the dominant
components to recreate a power imbalance between the real and imaginary
parts of the scattering components. This connection, which is here proposed
for the first time in the literature, has important implications in practice: first,
and contrary to the common belief, it shows that the x-y and n-x fading dis-
tributions are connected. Hence we can jointly study the x-y and 7-u fading
models by using a common approach instead of separately. Besides, it im-
plies that when deriving any performance metric for the -/ shadowed fad-

ing model, we are actually solving the same problem for the -y distribution
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and, more importantly, for the n-; distribution at no extra cost.

Leveraging our novel approach, we also derive here simple and closed-
form asymptotic expressions for the ergodic capacity of communication sys-
tems operating under x-i shadowed fading in the high SNR regime, which
can be evidently employed for the x-y and n-p distributions. Unlike the ex-
act analyses available in the literature which require the use of the Meijer G-
and bivariate Meijer G-functions, our results allow for a better insight into
the effects of the fading parameters on the capacity.

This chapter is organized as follows. Firstly, we introduce new underly-
ing Gaussian models for the -1 shadowed model in Section Secondly,
we present the unification of the x-;1 and n-p fading models in Section
Then, we unify the ergodic capacity analysis of the -y shadowed, -y and
n-p models, as well as their particular cases in Section Finally, numerical

results are provided in Section[4.4]

4.1 New r-y Shadowed Underlying Models

4.1.1 Generalized Model with the Same Shadowing for All

the Clusters

Paris model in (3.28) clearly separates the real and imaginary scattering com-
ponents, so that the model is defined by only using real RVs. If we use com-

plex RVs, we can reformulate it as

w
o’ = |Zi+ &l (4.1)
=1

where Z; and p; can be related to the variables of the previous model in form

of Z; = X; 4+ jY; and p; = p; + jg;. Hence, Z; ~ CN (0, 20?) represents the scat-

tering wave of the i-th cluster and |p;|? is the deterministic dominant power
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of the ith cluster.
Observing (4.1), a straightforward generalization of the model in (3.28) is
to consider a complex shadowing component, so that we obtain the following

model

M
Q=Y 1Zi+&pil’s (4.2)
=1

where ¢ is now a complex random variable, with |€]2 ~ I'(m, m) and arbi-
trary phase. Indeed, we are relaxing the assumption of the model in (3.28)
because the real and imaginary parts of ¢ do not need to be Nakagami-m
distributed, but instead the power |£]2 has to be Gamma distributed, i.e., |¢]|
has to be Nakagami-m distributed. This new model obviously represents a
similar scenario as the model in (3.28), since all the clusters suffer from the
same shadowing €.

Let v = %101/, with 4, = E[y4], be the instantaneous SNR per symbol
of the model in {#.2). The pdf of v, is derived thanks to Proposition
such as (2 follows a x-p shadowed distribution, where k = >, |p:]?/ (207 ).
The parameter i can be extended to the real numbers despite loses its
significance.

In fact, we have proved that the distribution of the model is independent
of the phase of the shadowing component ¢. In the next section, we propose

another underlying model for the -1 shadowed distribution.

4.1.2 Generalized Model with I.1.D. Shadowing

In general, all the clusters could suffer from different shadowing effects, so

the instantaneous received power can be expressed as

I
Qo= _|Zi+ &pl, (4.3)
i=1
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where Z; ~ CN(0,20?); |p|* is the power of each dominant component; and
& isa complex random variable which represents the shadowing component
of the i-th cluster, where & are i.i.d. ~ I'(1h, 1h) Vi.

Actually, these propagation conditions are likely to occur in real scenarios
where the dominant components of different clusters could travel through
different paths that are separated enough to suffer from independent large-
scale propagation effects. However, our study is restricted to scenarios which
present the same power p for each shadowed dominant component, since
considering different dominant component powers for each cluster would
lead to a distribution even more general than the x-; shadowed distribution.
Moreover, this assumption allows us to connect the 7-x distribution with the
k-1 shadowed distribution, and is in accordance with the definition of 7-p
channel, where every cluster exhibits the same ratio between the real and
imaginary powers of the scattering waves [29].

Let 7, = 7205/, with 45 = E[y,], be the instantaneous SNR per symbol
of the model in (4.3). Then, 7, is, by virtue of Proposition k-1, shadowed-
distributed with x = |p|*/(20?), m = u - 7. Again, 1 can be extended to the
real numbers.

The different shadowing components ¢ do not have to be identically dis-
tributed to complete the proof. All that is needed is that the normalized rate
parameter 3;/m; of each shadowing power |;|2 must be equal Vi. Although
from a mathematical point of view this is a valid model, this scenario is hard
to imagine in practical conditions. Therefore, we will restrict ourselves to the
case with i.i.d. shadowing components.

Therefore, the SNRs of both underlying models presented in and
follow a k-p shadowed distribution. The closed-form expressions for

the cdf and the mgf can be found in [52].
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4.2 k-p and n-p Unification

In the previous section, we have introduced two different underlying models
which lead to the x-1 shadowed distribution. Now, we mathematically show
how each of these models reduces to the general x-;: and n- fading distribu-
tions, respectively. By doing so, we show that the x-1 shadowed distribution
can unify all classical fading models, both for scattering waves that have a
perfect balance or an imbalance between their real and imaginary compo-

nents, and their most general counterparts.

4.2.1 k-u Distribution and Particular Cases

The k- distribution is employed in environments where the scattering for
each cluster can be modeled with a circularly-symmetric random variable.
The derivation of the x-p distribution from the x-y shadowed can be per-
formed with the help of Corollary 2.5, when m — ooc.

The k-p distribution is actually derived by completely eliminating the
shadowing of each dominant component, which can be done by taking
m — 0o, so that the dominant component of each cluster becomes deter-
ministic. As the parameter m grows, the pdf of each dominant component
is gradually compressed and, at the limit m — oo, it becomes a Dirac delta
function. Thus, the model is defined by a circularly symmetric complex ran-
dom variable with some non-zero mean in each cluster, so that we obtain the
k-p model, whereas in case that 4 = 1 we have the Rician fading model.

In turn, the Nakagami-m underlying model can be derived from (4.2)
when x — 0 with the help of Corollary and the change of variables
71 = 7191 /Q, with 4 = E[y], be the instantaneous SNR of the model in
(@.2). We then get vy ~ T'(11, 11/ 1)

By tending x — 0, we eliminate all the dominant components of the

model, regardless of the value of the shadowing parameter m, so that we only
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have scattering components in each cluster, i.e., we obtain a model which
follows a Nakagami-m distribution or one of its particular cases, Rayleigh or

one-sided Gaussian models, depending on the value of .

4.2.2 np-p Distribution and Particular Cases

The Nakagami-q (Hoyt) and the 7-x distributions are employed in propaga-
tion conditions environments where the scattering model is non-uniform and
can be modeled by elliptical (or non-circularly symmetric) Gaussian RVs. At
first glance, such scenario does not seem to fit with the x-;; shadowed fading
model. However, we can give a different interpretation to the cluster com-
ponents of the model in (#.3): they can be interpreted as a set of uniform
scattering waves with random averages. These random fluctuations in the
average, which are different for each cluster, are responsible for modeling the
non-homogeneity of the environment considered in [29] and ultimately lead
to breaking the circular symmetry of the scattering model. We must note that
a similar connection was inferred in [23], where the squared Nakagami-q dis-
tribution was shown to behave as an exponential distribution with randomly
varying average power.

The circular symmetry of the model can be broken by using the result of
Corollary such as 7o = 5202/, with 7, = E[75], being the instantaneous
SNR of the model in , is n-p-distributed when m = /2, with parameter
n=1/2xk+1).

Hence, we have shown that the n-i fading distribution arises as a par-
ticular case of the more general x-;; shadowed model. This is one of the

main results of this thesis. Notice that, when m = 1/2 = 0.5, we obtain the

1

57 since n = ¢* for n-p

Nakagami-¢ model with shape parameter ¢ =

format 1 [29]1] Thus, the Nakagami-¢ model can be obtained from the Rician

IThe n-u fading model (format 1) is symmetrical for n € [0,1] and 5 € [1,00]. We have
q = /nor g =1/,/n depending on the interval.
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shadowed proposed in [65] by setting m = 0.5.

Although an interpretation of this result is not straightforward, it is clear,
from a mathematical point of view, that if we fix the m parameter to half the
value of the number of cluster p in the k- shadowed distribution, we obtain
the n-u distributionf] In order to give further insights of this result, we use the
following example to illustrate what may happen in the model of when
m = u/2,i.e., whenm = 0.5. Let us consider that each shadowing component
of the model in 1} can be expressed as EZ = z; - ¢/%, where x; ~ N(0,1), so
that \5]2 ~ I'(1/2,1/2), i.e.,, 1 = 0.5. When we consider the simplest case
on which the phase of Eip is deterministic and set to zero, then 5 p becomes
a real Gaussian random variable. Thus, in each cluster, we are adding the
real Gaussian random variable & to the complex Gaussian random variable
Z;, which is equivalent to have a unique complex Gaussian random variable
with different power in its real and imaginary parts in each cluster, so that the
circular symmetry of the model is broken. In the general case of an arbitrary
phase for &, the circular symmetry would be broken in a direction of the
complex plane different from the real axis.

Once m being fixed, the number of degree of freedoms is reduced by one

and the following bi-unique relationship between « and 7 is established,
K=—". (4.4)

This mathematical relationship between « and 1 only has a clear meaning in
the limit cases of the range where « varies. For x = 0, we obtain n = 1 from
the (4.4), which actually corresponds to the Rayleigh case when there is only
one cluster. For k — oo, we have = 0 from the (4.4), which is the one-
sided Gaussian case when we again have one cluster. Therefore, while the

rx-p model in Section IV.A is obtained by totally eliminating the randomness

2We underline the fact that the number of clusters in the k- model, and so in the x-p
shadowed model, is i, while 2u is the number of clusters in the -y model [29].
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of the shadowing component, this is not the case for the n-u fading model.

The Nakagami-m model can be also deduced from the x-; shadowed
model of with a similar method, i.e., without eliminating directly the
dominant component.

Let o = 7282 /Qy, with 7, = E[3], be the instantaneous SNR of the model
in (4.3). If m = 11, we have 5 ~ T'(, j1/72) by virtue of Corollary 2.8

Notice that by setting m = u, we transform the i.i.d. random dominant
components of the into scattering components. Since m = p -, then
we are setting m = 1. For giving an intuitive explanation, let assume the
particular case that the i-th random dominant component is a Gaussian ran-
dom variable when /m = 1. Thus, we are adding two Gaussian RVs together
in each cluster, which straightforwardly leads to an equivalent Gaussian ran-
dom variable, so that the one-sided Gaussian, Rayleigh or Nakagami-m mod-
els are obtained depending on the number of clusters ;1 considered. Very
interestingly, the model in allows us to obtain the particular models
aforementioned with a shadowing which may not be complex Gaussian dis-
tributed when m = 1, or real Gaussian distributed when m = 0.5, since the
distribution of the model does not depend on the phase of the shadowing
components, as we have proved in Proposition and Proposition (2.4).

The table summarizes all the models that are derived from the x-u
shadowed fading model, where the x-; shadowed model parameters are un-
derlined for the sake of clarity. When the -1 shadowed parameters are fixed
to some specific real positive values or tend to some specific limits, we can
obtain all the classical central models, i.e., the Rayleigh, one-sided Gaussian,
Nakagami-¢ and Nakagami-m models, the classical noncentral Rician fad-
ing model, and their general counterparts, the Rician shadowed, x-p and n-p

fading models.
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TABLE 4.1: Classical and Generalized Models Derived from the
k-p Shadowed Fading

Channels k-1 Shadowed Parameters

One-sided Gaussian

b) p=0.5,m = 0.5
aju=1,x—0
Rayleigh v -
b)u=1m=1
a)p=m, 0
Nakagami-m -
b) H=m,m=m
Nakagami-¢ (Hoyt) p=1r=1-¢)/2¢°, m=05
Rician with parameter K p=1r=K,m— o0
K= l_IJ:M,/_f:/‘f,m%OO
n-p p="2p,t=(1-n)/2nm=p
Rician shadowed

It is remarkable that there are two ways for deriving the one-sided Gaus-

sian, Rayleigh and Nakagami-m models, depending on whether the ap-
proaches in Section or Section are used.

4.3 Ergodic Capacity Analysis

The characterization of the ergodic channel capacity in wireless systems sub-
ject to fading, defined as

— +OO
Clbps/Hz] £ / logy (1 + 7). (1),

where + is the instantaneous SNR at the receiver side, has been a matter of

(4.5)

interest for many years [74]-[77]. While for the case of Rayleigh fading it is

possible to obtain relatively simple closed-form expressions for the capacity,
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the consideration of more general fading models [25], [77], [78] leads to very
complicated expressions that usually require the use of Meijer G-functions.
In order to overcome the limitation of the exact characterization of k-u
shadowed channel capacity due to its complicated closed-form [78], it seems
more convenient to analyze the high-SNR regime. In this situation, the er-

godic capacity can be approximated by [53, eq. (8)]

C(Y)|5p = logy(7) — L, (4.6)

which is asymptotically exact and where L is a constant value independent

of the average SNR that can be given by

d E[+*
L= —logz(e)% ’[_yt ] o

(4.7)

The parameter L can be interpreted as the capacity loss with respect to the
AWGN case, since the presence of fading causes L > 0. When there is no
fading, L = 0 and this reduces to the well-known Shannon result. Using
this approach, we derive a simple closed-form expression for the asymptotic
capacity of the x-; shadowed model, which is a new result in the literature.
Thanks to Theorem 2.9} the ergodic capacity of a wireless link subject to -
p shadowed fading can be accurately lower-bounded in the high-SNR regime
by
Crn(7) 5y = 1085(7) = L (4.8)
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where log,(-) is the binary logarithm, 7 is the average SNR at the receiver

side, i.e. ¥ = E[v], and Ly, can be expressed as

Lo = — Togy ()t (1) — logy (L)

pm(1 + k)
K(p —m)

1 49
+ log,(e) Lkt m (4.9)
x3f2<1,1,u—m+1;2,u+1; il )

UK +m

Notice that when ;1 = 1, we obtain the asymptotic ergodic capacity of the
Rician shadowed channel proposed in [65].

As opposed to the exact analysis in [78], which requires for the evaluation
of a bivariate Meijer G-function, Theorem 2.9 provides a very simple closed-
form expression for the capacity in the high-SNR regime. More interestingly,
since the k-p and n-p fading models are but particular cases of the x- shad-
owed distribution, we also obtain the capacity in these scenarios without the
need of evaluating an infinite sum of Meijer G-functions as in [25]. This is
formally stated as follow.

In the high-SNR regime, the ergodic capacity of a x-u channel can be ac-

curately lower-bounded by

Cron(Ml51 = 10g2(7) — Luspss (4.10)
where L, can be expressed as

Ly = — logy(e)t () + logy (1) + logy (1 + k)

4.11)
— H10g2(6)2]:2(1, 1;2, 0+ 1; —,tm).

(4.11) is derived by applying the limit m — oo in (4.9), so that the 375(-)

collapses in a 2 F5(+) hypergeometric function since

lim 3]:2(%7@2,0;51,52;%) = oF2(ay, ag; by, by; 2). (4.12)

c—00
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In the high-SNR regime, the ergodic capacity of an 1-; channel can be

accurately lower-bounded by

C_vﬂ,u(’?)bﬂ = 10g2(’7) - Ln,ua (413)

where L,,, can be expressed as

Ly =— logy(e)y(2p) + logy(p) + logy (1 4 1)

(1-n)
2

(4.14)

+ log,(e) 3‘FQ<171>M+1;272M+1;1—77).

We have obtain the 7-/1 asymptotic capacity loss from by setting m=
p, = 2p and K= 12—_7771 as Tableindicates.

Hence, the expressions of the x-/ and 7-; asymptotic capacities have been
jointly deduced from the result in (#.10), which are also new results. More-
over, deriving the asymptotic capacity of the x-; shadowed has not been
harder than deriving the x-u or n-; asymptotic capacities directly, since the
k-p and n-p moments are expressed, like in the x-y shadowed case, in terms
of a Gauss hypergeometric function [29]. Thus, we are hitting two (actually
three) birds with one stone.

Using the equivalences in Table we can obtain even simpler expres-
sions for classical fading models which reduce to existing results in the liter-
ature, for Nakagami-m [53], Rician [72] and Hoyt [23]. For the sake of clar-
ity, we omit the straightforward derivations of the rest of asymptotic capaci-
ties. Instead, we summarize in Table 4.2| their capacity losses with respect to
the AWGN channel in the high-SNR regime, where I'(a, b) is the incomplete
gamma function and . is the Euler-Mascheroni constant, i.e., 7. ~ 0.5772.
It is also remarkable that, for the first time, we give the asymptotic capacity
expression of the Rician shadowed proposed in [65], which is but a particular

case of the k- shadowed model when p = 1.
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TABLE 4.2: Ergodic Capacity Loss in the High-SNR Regime for

Different Channels
Channels Ergodic capacity loss (L) [bps/Hz]
One-sided Gaussian 1+ -logy(e) ~ 1.83
Rayleigh Ve - logy(€) &= 0.83
Nakagami-m log,(m) — logy(e)w(m)
Nakagami-q (Hoyt) 1+ 7. - logy(e) + log, i >
Rician with parameter K logy (1 + 1/K) — log,(e)I'(0, K)
e — logy(e)u (1) + logy(11) + og(1 + r)

—H10g2(€)2f2<1, 1,2, 1+ 1; —,u/<;>
—log,(e)¥(2p) + logy(p)

n-pe +logy(1+ 1) + log,(e) 152

x3F2 (1,1, pw+1;2,2u 4+ 1;1 — 1)

Ve - logy(e)

K(1-m)
K+m

x3f2<1,1,2 m:2,2; KM)

Rician shadowed —log, ( T K)) + log,(e)

4.4 Numerical Results

We now study the evolution of the capacity loss for the x-u shadowed, x-1
and 7-p fading models with respect to the AWGN case. We underline the
fact that the different parameter values here presented do not come from real
practical channels, but allow the theoretical expressions to be verified.
Depending on the propagation conditions, the parameters x and y can
take very different values [52], [67], [79]-[81]. For instance, in some un-
derwater acoustic communication scenarios [79], the channel parameters
€ [0.03 —9.56], v € [0.90 — 1.27] and m € [1.32 — 18.01], while in some body
centric communication scenarios [67], [80], [81], we have « € [1.08 — 481],

1 € 0.01 — 3.22] and m € [0.04 — 2876].
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FIGURE 4.1: Comparison of classical channel ergodic capacities
with their asymptotic values in the high-SNR regime.

In Fig. .1 and Fig. we plot the exact theoretical expressions of the
ergodic capacity of the classical and generalized fading models, respectively,
which are readily available in the literature [25], [78], and we compare them
to the asymptotic theoretical expressions obtained in (4.8+4.13).

We observe that all the models converge accurately to their asymptotic
capacity values, remaining below the Shannon limit, i.e, the capacity of the
AWGN channel. Therefore, the asymptotic ergodic capacity expression de-
rived in for the x-u shadowed model is here validated with the one-
sided Gaussian, Rayleigh, Nakagami-m, Nakagami-g, Rician, Rician shad-
owed, k-it and n-p ergodic capacities in the high-SNR regime.

In Figs. we show the evolution of the x-u shadowed asymptotic

capacity loss L defined in when m grows. Note that this metric does not
pacity &
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FIGURE 4.2: Comparison of generalized channel ergodic capac-
ities with their asymptotic values in the high-SNR regime.
depend on the average received SNR 4. When the shadowing cannot be neg-
ligible, i.e, in Figs. having more power in the dominant components
does not always improve the ergodic capacity, but sometimes raises consid-
erably the capacity loss, especially for a great number of clusters. When
m > 20, i.e., in Fig. the shadowing can be neglected and the model
actually tends to the x-u fading, where an increase in the power of the domi-
nant components is obviously favorable for the channel capacity. Therefore,
receiving more power through the dominant components does not always
increase the capacity in the presence of shadowing. We observe two differ-
ent behaviors in the capacity loss evolution with respect to the parameter .
For m < p, increasing the parameter « is detrimental for the capacity. Con-

versely, when m > u the capacity is improved as  is increased, i.e. in the
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FIGURE 4.3: Evolution of the x-u shadowed ergodic capacity
loss in the high-SNR regime for fixed m = 0.5.

presence of a stronger LOS component. In the limit case of m = p, we see
that the capacity loss is independent of x. We can explain this observation
using again our model for i.i.d shadowing in (4.3), in a similar fashion as
when the interpretation of the Corollary2.7jand Corollary 2.8 was discussed.
For m = u, we have m = 1 since m = p - m. Let us assume that both the
scattering and shadowed dominant components in each cluster are complex
Gaussian RVs, which is the simplest possible case when m = 1. We will ob-
tain an equivalent Gaussian random variable whose power is not affected by
the parameter x. For m > 1, the xk-y shadowed model can be approximated
by the x-p model for m sufficiently high, as Table |4.1) shows. In this case, it
is straightforward to see that increasing the parameter « implies decreasing

the asymptotic capacity losses, since a higher LOS power implies improving
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FIGURE 4.4: Evolution of the x-u shadowed ergodic capacity
loss in the high-SNR regime for fixed m = 1.

the capacity of the x-;1 channel. Conversely, for m < p, the observation may
seem counterintuitive at first glance. Let consider the particular case where
m = p/2, which coincides with the 7-x case. In that case, increasing the pa-
rameter x implies increasing the asymmetry of the non-circularly symmetric
Gaussian underlying RVs of the model, which degrades the capacity. For the
rest of cases where m < 11, a similar justification can be done.

We also see that the capacity loss decreases as ;1 grows, since having a
larger number of clusters reduces the fading severity of the small-scale prop-
agation effects.

We have also marked in Figs. some models that can be deduced
from the -y shadowed model. We can see them in the different legends and

also at some specific points rounded by a circle in different curves.
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FIGURE 4.5: Evolution of the x-u shadowed ergodic capacity
loss in the high-SNR regime for fixed m = 3.

Finally, Fig.[#.7|and Fig.[4.§ depict the asymptotic ergodic capacity loss for
the x-p and n-p fading models respectively. We observe that Fig. 4.7is quite
similar to Fig. because, as mentioned before, the -y shadowed model
with m > 20 can be approximated by the -y fading model. In Fig.
we see that, regardless of the number of clusters 2, there is a minimum in
the channel capacity loss at 7 = 1 which divides in two symmetric parts the
fading behavior as expected. It is also noticeable that in Fig. we have
specified the limit cases for n — 0 and n — co. When p = 0.5, the n-; model
collapses into the one-sided Gaussian model for = 0 or  — oo, whereas
for n = 1 it collapses into the Rayleigh model. When p = 1, the -y model is
reduced to the Rayleigh one for = 0 or  — oco. This is shown in the figure

by including also the Rayleigh and one-sided Gaussian capacity loss values
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FIGURE 4.6: Evolution of the x-u shadowed ergodic capacity
loss in the high-SNR regime for fixed m = 20.

with horizontal dotted and dashed lines respectively.

4,5 Conclusions

We have proved that the x-; shadowed model unifies the x-p and n-; fad-
ing distributions. By a novel interpretation of the shadowing in the domi-
nant components, we have shown that the x-u shadowed model can also be
employed in scenarios where the scattering is modeled with noncircularly-
symmetric complex Gaussian RVs, which gives the x-y shadowed distribu-
tion a stronger flexibility to model different propagation conditions than ex-
isting alternatives, when operating in wireless environments. Thus, the x-1

shadowed model unifies all the classical fading models, i.e., the one-sided
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FIGURE 4.7: Evolution of the x-p ergodic capacity loss in the
high-SNR regime.

Gaussian, Rayleigh, Nakagami-m, Nakagami-q and Rician fading channels,
and their generalized counterparts, the x-11, n-;1 and Rician shadowed fading
models. Simple new closed-form expressions have been deduced to evalu-
ate the ergodic capacity in the high-SNR regime for the -y shadowed, and
hence, using the connection here unveiled, for the simpler -y, 7-p and Ri-
cian shadowed fading models, giving us clear insights into the contribution
of the fading parameters on the capacity improvement or degradation.

As a closing remark, one can think of whether the name of x-;: shadowed
distribution is still appropriate for this model, since its flexibility transcends

the original characteristics presented in [52].



4.5. Conclusions 87
2 | \\\HH\ | \\\HH\ | \\\HH\ | \\\HH\ | \\\HH\ | T TTTTT
| gEmmmmmmmmmmmas —+—p = 0.5 (Nakagami-q) | ____ L.
O I¥ —a—pu=0.7 7l
1.6 ——pu=15
—o—pu=3
1.4 —HF—p =20 ]
N 1.21 "
E Rayleigh
wn
@ 1
3
o 0.8]
0.6
0.4
q
0.2
[] \a\\\\\m \E\\\Hm \E\\\Hm \D\\\Hﬁ \m\\\\\m \a\\\\”r']
1073 102 101 10° 10! 102 103
n

FIGURE 4.8: Evolution of the n-; ergodic capacity loss in the
high-SNR regime. The Rayleigh and the one-sided Gaussian ca-
pacity loss particular cases are also included in horizontal dot-

ted and dashed lines respectively.
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Chapter 5

Noncircularly-symmetric

Wishart-type Matrices

When multiple antennas are present, the performance analysis of wireless
systems becomes more challenging. The univariate analysis presented in this
thesis does not hold. We must then employ a multivariate analysis which is
framed in the theory of random matrices.

The study of the impact of MIMO diversity in the capacity of flat-fading
NLOS channels was studied for a long while [82]-[84] and was finally ana-
lytically evaluated for single-side spatially correlated antennas in [85]. These
analyses consider MIMO systems subject to the simplest possible fading en-
vironment, i.e., the Rayleigh fading, and require the statistical characteri-
zation of central complex Wishart matrices. MIMO systems subject to Ri-
cian fading environments were also deeply studied in the literature [86]-
[88]], showing that their performance analysis is much more complicated than
those subject to Rayleigh fading, since they require the study of noncentral
complex Wishart matrices.

However, in both Rayleigh and Rician environments, the scattering waves
are considered to have a perfect power balance between the in-phase and the
quadrature components. Considering a power imbalance between the in-

phase and the quadrature components of the channel matrix is even more
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challenging, since it requires the study of noncircularly-symmetric Wishart-
type matrices, for which the way is not paved, and only few initial works are
available [26], [28].

In this chapter, we propose a new approach to characterize noncircularly-
symmetric Wishart-type matrices. By exploiting a novel statistical connec-
tion between these matrices and the well-known noncentral complex Wishart
matrix, we derive an expression for the joint distribution of their entries, as
well as exact expressions for the extreme eigenvalue distributions and an
asymptotic expansion (in the tail) for the distribution of the largest eigen-
value, which provide new insights on the effects of the real-imaginary vari-
ance asymmetry of the underlying model of these matrices. We then use
these expressions to study the performance of MIMO communication sys-
tems subject to Nakagami-¢ (Hoyt) fading. In particular, our analytical re-
sults explain the impact of the fading parameter ¢ on the outage performance
of MIMO systems with maximal ratio combining (MIMO-MRC).

This chapter is organized as follows. Firstly, we provide a context of
the analysis of noncircularly-symmetric Wishart-type matrices in Section[5.1]
Secondly, we present the novel statistically connection between these ma-
trices and the well-known noncentral complex Wishart ones in Section
Thirdly, we present in Section 5.3/ a new result for the pdf of noncircularly-
symmetric Wishart-type matrices, as well as we discuss the derivation of the
joint probability density function (jpdf) of the eigenvalues in [26]. Then, we
give new exact expressions for the extreme eigenvalue distributions, as well
as an asymptotic expansion in the left-hand tail for the largest eigenvalue
distribution in Section Finally, we analyze the outage performance of
Hoyt-faded MIMO-MRC communications.

We must note that part of the work presented in this chapter has been
done in collaboration with Matthew R. McKay, during my internship in

HKUST. In particular, the study of the largest eigenvalue distribution has
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been submitted to an IEEE journal for possible publication.

5.1 Context

Despite the rich characterization of the well-known complex and real Wishart
matrices [4], [45], [47], [89], results for Wishart-type models generated from
noncircularly-symmetric complex Gaussian matrices are far more scarce. In

particular, we are interested in matrices of the form:

XXt p<n
W = (5.1)

XX, p>n

where X € CP*" has ii.d. complex Gaussian entries with Re({X};;) ~
N(0,0%,) and Im({X};;) ~ N(0,0},), i.e., with arbitrary variances in the
real and imaginary parts, and where Re({X},; ;) and Im({X}, ;) are mutually
independent.

The model in has been referred to as the cross-over ensemble be-
tween the Laguerre unitary (LUE) and orthogonal (LOE) ensembles [26].
When both variances are equal, i.e. o}, = o, W is a central complex Wishart
matrix (LUE); when one of the variances is zero, W is a central real Wishart
matrix (LOE).

The works in [26] and [28] made initial progress to characterize the in-
termediate Wishart-type ensemble of (5.1). In [28], the analysis is restricted
to a 2 x 2 matrix X and the jpdf of the eigenvalues of W is given in a very
complicated form involving six integrals. In [26], the eigenvalue jpdf is de-
rived for arbitrary dimensions by using Brownian motion properties with a
fictitious time variable which is related to the ratio between the variances o3,
and o?,. However, this expression is still complicated and does not allow for

any further insightful analysis.



92 Chapter 5. Noncircularly-symmetric Wishart-type Matrices

This context, where only two initial works analyze some statistics of W,
has pushed us to explore a novel approach, different from the ones given in
[28] and [26], in order to facilitate the analysis of noncircularly-symmetric

matrices. We explain this approach in the following section.

5.2 A Novel Statistical Connection

We first explain the reasons why the previous univariate statistical connec-
tion presented in this thesis and other related works cannot be directly ex-
tended to the multivariate case. Then, we present the novel statistical con-

nection that will allow to tackle the statistical characterization of (5.1)).

5.2.1 Can We Use Previous Univariate Connections?

Leveraging the statistical connections presented in Chapter 4 in the context
of SISO communications, one first think to directly extend those results to
the multivariate analysis, i.e., to connect the analysis of the Rician shadowed
matrix model with that of the noncircularly-symmetric Wishart-type matrix
defined in (5.1).

The Rician shadowed matrix model was studied in depth in [90] in the
context of LMS communications, where fundamentally statistical results
were provided for the so-called Gamma-Wishart matrices. Further results
were presented in [91] to tackle the general double-correlated case. It seems
then that we have a collection of results that could be helpful for the anal-
ysis of noncircularly-symmetric Wishart-type matrices, when one wants to
extend the univariate analysis here presented to the multivariate case.

Nonetheless, in the context of random matrix theory, connecting
noncircularly-symmetric underlying Gaussian models with the more
tractable circularly-symmetric ones is not that simple. Denote Z the Gram

matrix of a particular channel. The matrix Z is defined from the complex
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channel matrix H, such as Z = H'H or Z = HH', and represents a gen-
eral Hermitian matrix whose diagonal elements are positive real RVs and
off-diagonal elements are complex RVs. Since the work associated with the
univariate analysis of this thesis only involves the norm or the square-norm
of underlying Gaussian models, we can only provide a connection between
the diagonal elements of Z and those of the well-known Gamma-Wishart
matrix. Unfortunately, this partial connection does not allow to characterize
noncircularly-symmetric Wishart-type matrices.

This same reason also discards the possibility of extending the univariate
connection recently presented in [23]], where a Nakagami-Hoyt RV can be
generated from randomly perturbing the average power of a Rayleigh RV

with a specific distribution [23].

5.2.2 A Non-Classical Multivariate Analysis: A Connection

with the Complex Wishart Ensemble

In the model (5.1)), it is convenient to rewrite X as

X =Xc + Xz (5.2)

where the matrices Xz € CP*" and Xp € RP*" are mutually independent
with zero-mean ii.d. entries. The entries {X(};; are circularly-symmetric

CN(0,02), while {Xg}; ~ N(0,0%) with the correspondence

O%' = 2012m ) 0-1%% = U%{e o UIQm : (53)
This redefinition of (5.1) will facilitate the subsequent analysis. Note that,
albeit (5.2) imposes ore > o, this does not imply any loss of generality

regarding the eigenvalue statistics of W, since replacing ogr. with oy, and
g g g p g

vice versa does not affect them.
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For 2 = 0 or 03, = 0, W collapses to a central (real or complex) Wishart
matrix, the properties of which have been studied extensively. However,
with both o¢,0r > 0, one deviates from such classical matrix models, and
the statistical characterization becomes more challenging.

Key to our approach is to adopt a “condition and average” method which
allows us to connect the statistical properties of W with those of non-central
Wishart matrices, and to leverage existing results for such matrices. Specifi-

cally, let Wg = XX, if p<norWpg= X" X » otherwise. Also, let
y R R
s £ min(p, n), t 2 max(p,n). (5.4)

When conditioned on Wy € R***, W follows a non-central complex Wishart
distribution with ¢ degrees of freedom and real non-centrality parameter W,
ie., W|Wpg ~ CW(t, 0215, Wg). The statistics of W can be obtained by av-
eraging that of W|Wp over Wp, which belongs to the space of real positive
definite matrices.

One key advantage of this approach is that it does not need to follow the
classical approach, where each random matrix statistic is derived from the
joint density of the matrix entries. In particular, it circumvents the need to di-
rectly integrate over the joint eigenvalue density of W when deriving the ex-
treme eigenvalue distributions. Such joint density is known for arbitrary s, ¢
[26], however the expression is complicated, involving pfaffians of matrices
whose entries contain double infinite series with terms involving products of
generalized Laguerre polynomials. As such, it appears difficult to compute
the extreme eigenvalue distributions by marginalizing the joint eigenvalue
density in [26]. In the following, by exploiting the noncentral Wishart con-
nection, we provide for the first time, an expression for the distribution of
W, as well as exact expressions for the extreme eigenvalue distributions and

an asymptotic result for the largest eigenvalue distribution of W.
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5.3 Pdf and Eigenvalue Jpdf of W

53.1 Pdfof W

Thanks to Proposition we give for the first time an expression of the pdf
of W:

2 2
o 20
k=0 & c + R

+00 1 95202 k
fw (W) :K&tetr <—O-52W> det(w)t_s Z Z [p] k" ( < : )
o (5.5)

x / etr(—V) det(V) "2 C,(VW)(dV)

where K is defined in[2.74]

This expression is particular interesting, since it allow us to show the pe-
culiarities of the matrix W. The expression involves an integral which is
very similar to the integral of the reproduction property of zonal polynomi-
als presented in (2.47). However, the integral here presented is defined over
the space of real positive definite matrices, instead of the space of Hermitian
positive definite matrices. This does not allow to give a simple result for this
integral, which needs to define another class of matrix argument polynomials
which are not known in the literature. Specifically, if one supposes that the
integral was over the space of Hermitian positive definite matrices, the pdf of
W could have been given in terms of a complex hypergeometric function of
matrix argument. It is hoped that in the future a new class of hypergeometric
functions would be defined to give a compact expression for this pdf.

Moreover, we clearly see the advantage of the approach presented in the
previous section. If we follow the classical approach, we should derive the
eigenvalue jpdf from and, in turn, the extreme eigenvalue distributions
from the eigenvalue jpdf. We here circumvent that and we can directly obtain
those statistics by averaging those of the well-known noncentral complex

Wishart matrix.
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5.3.2 Eigenvalue Jpdf

Let Q = o}, + of, and

2 2
T =log (M) . (5.6)

ORe ~ TIm
The eigenvalue jpdf for arbitrary s, is available in the literature in form of

[26, eq. (10)]

s(s—1)T s s
2Me~ 7 b
,,,,, (0= 2 oty [ (25) Lo
f¢1 ) ( 1 ¢) (29) <2+1) ( ( ))];[1 3 20 E(Qb ¢J)
(5.7)
where w,(x) is the associated Laguerre weight function, i.e.
We(x) = 2%™" (5.8)
C§°) is the normalization constant, such as
s/2 S 1
co =" . . (5.9)
2 11 PG +DIG+ 5%

and F(7) is a 2m-dimensional antisymmetric matrix with 2m = s or 2m =

s + 1, depending on whether s is even or odd. For even s,

_ bi Pj
FOh =0 (5535 (5.10)

For odd s, we have in addition

{F(7)}ist1r = —{F(7) }sr1i = f(T) (;%) (1 = di541) (5.11)

where 9, ; is the Kronecker delta, f;(z) is given by

i eI T D) 0 o) (5.12)

M () = wis
f (x) Wt 2+1 F(,u—l—t_Ts—i—l) 2

pn=0
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where L,(f‘) representing the associated Laguerre polynomials [37,

eq. (22.2.12)] and

o] 1]
— v T t — S — 1
G (0, y) =2weger (R)wegsr (y) Y Y e P24, (T) (5.13)

p=0 v=0

x |18 (20) 18,5, 29) — LY (20) L, (2)]

with
I'(p+3)Tw+1)
F(p+a+3)P(v+a+2)

Kuw(a) = (5.14)

To obtain this eigenvalue jpdf, the authors in [26] employed a complicated
analysis. This cross-over ensemble was recreated with a Brownian motion
process whose fictitious time 7 is related to the variance imbalance.

Although the novel approach here proposed is easier to follow than the
one given in [26], since we only need to average the eigenvalue jpdf of a
noncentral complex Wishart, it would lead to a similar result than the one
presented in [26] and reproduced in this section. Therefore, it is not interest-
ing to explicitly employ our novel method for the analysis of the eigenvalue
jpdf.

However, as commented before, our novel approach is very advanta-
geous since it circumvents the need of manipulating the complicated result
in to derive the extreme eigenvalue distributions. For these reasons, we

move directly to the study of the extreme eigenvalue distributions.
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5.4 Extreme Eigenvalue Distributions

The analysis of the extreme eigenvalue distributions plays an important role
in wireless communications [45]], [90]. While most of contributions gives ap-
plications for the largest eigenvalue distribution, the smallest eigenvalue dis-
tribution is also used to analyze, e.g., MIMO systems which considers a lin-
ear zero-forcing receiver [92]. We here present statistical expressions for both

extreme eigenvalues.

5.4.1 Smallest Eigenvalue Distribution

By virtue of Theorem the cdf of the smallest eigenvalue admits

PE(Y ()

Fypn(@) =1 - m (5.15)

where Y (z) is an s x s matrix whose entries can be given by (2.88). The
specific computation of the pfaffians in depends on whether the matrix
dimension s is even or odd. In either case, however, they may be evaluated
as the square root of a matrix determinant, as detailed in Section[2.3.2]

We can compare the result in with that of the smallest eigenvalue of
noncentral Wishart matrix in [57]. We see that both results can be written in
terms of a ratio, however, of different objects. While the smallest eigenvalue
distribution of noncentral complex Wishart proposed in [57, eq. (15)] involves
a ratio of determinants, here we have a ratio of pfaffians. Furthermore, the
elements of the arguments of those objects can be also compared. While in the
case of the noncentral Wishart matrix these elements can be given in terms of
a Nuttall Q-function [57, eq. (16)], the elements of Y (z) can be expressed in

terms of a double integral involving a Nuttall ()-function, as shown in (2.88).
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Let v = t — s + 1, the elements of the matrix Y (x) also admits a series

representation, such as

{Y(2)}i, :05% Hem2l76 Z Zﬂ ) fimivin (2/08) fie J+m+1($/00)

=0 m=0
(\/_UeqUC) (\/_OeqUC) —2m
il m!
x (By(+w,m+v) = By(m+v,1+0)).
(5.16)
where 02, = 0.% + 05,%/2, B.(a,b) is the incomplete beta function,
id Fl+m+29)L(p—i+1+DI'(p—j7+m+1)
9 (p,qh) = QlFm+2y 5.17
and
n—1 yr
fuly) = 3% (518)

Il
=)

r

The derivation of this series representation of the elements of the matrix Y (z)
can be found in Appendix |Al This representation is of similar complexity
than the expression of the elements of the matrix F(7), which is the pfaffian
argument expression of the eigenvalue jpdf of W presented in [26] and here
reproduced in Section [5.3.2}

Although this expression is exact, it does not give insight into how the
smallest eigenvalue distribution behaves when the variance imbalance be-
tween the real and imaginary parts of X changes. With this in mind, one
could think of establishing a simplified tail expansion for this distribution,
similarly as other works did for the smallest eigenvalue of central and non-
central complex Wishart matrices [57], [93]. However, the corresponding
result for noncentral complex Wishart matrices given in [57, eq. (28)] is al-
ready complicated and lacks insight. We believe that, when deriving the

corresponding noncircularly-symmetric result from it, we will obtain a result
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even more difficult to interpret. Therefore, we will skip such derivation and
jump directly into the study of the largest eigenvalue distribution, since its
asymptotic expansion is prone to be very simple, when one observes that of

the noncentral Wishart case in [57, eq. (28)].

5.4.2 Largest Eigenvalue Distribution

By virtue of Theorem we can give an exact expression of the cdf of the

largest eigenvalue F},_ (z) of W:

Pf(E(x))

Flgnan (7)) = m (5.19)

where E(z) is an s x s matrix whose entries can be given by (2.79).

This result also admits a comparison with the corresponding result for
noncentral Wishart matrices, which is similar as the one given for the smallest
eigenvalue case. Also, the elements of Z(x) have a similar representation in
series as the elements of Y'(z) in the previous section.

We then give an asymptotic expansion in the left-hand tail of the distri-

bution thanks to Theorem Asxz — 0,

Fyoo(@) = hgy ai}’vx“ + o(x®") (5.20)
where
CW : (s —i)!
= —_— 5.21
ot H(s—i—t—i)! (621)
=1
and
1
her = = (5.22)
(0(;\ /20% + J%)

In the expression above, a$}¥ corresponds to the expansion coefficient for

the largest eigenvalue distribution of a central complex Wishart matrix [57],

[93]. Hence, in the left-hand tail, the effect of the unbalanced variances of the
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real and imaginary components of X is clearly revealed, and is decoupled
into the function h,, in (5.22). This simplicity is quite remarkable, particu-
larly when considering the complexity of the exact largest eigenvalue distri-
bution (2.78), as well as that of the joint eigenvalue distribution derived in
[26].

To better interpret the result in (5.20), we express the function A in terms
of the original variances o}, and o7, while we fix the total variance as o}, +
0?2, = 1. Then,

1

het = . 5.23
o= o))" 62

From , hs; is clearly minimized at the “balanced” case, ‘712% = 1/2, for
which h,, = 1, as it should. One observes a significant deviation, however,
as the variances of the real and imaginary components become more unbal-
anced. That is, the higher the imbalance, the slower the decay of the left-hand
tail of Fy_ ().

5.5 Outage performance of MIMO-MRC systems
in Nakagami-q (Hoyt) environments

We here provide an application example for the derived results. Consider a
communication link between a transmitter, equipped with N, antennas, and
a receiver with NV, antennas. The multi-antenna link is subject to Nakagami-
q (Hoyt) fading, typically assumed in satellite-based communications [5]
or, in general, when the fading conditions are more severe than those of a
Rayleigh-faded environment. The channel is modeled by H € C"* with
zero-mean i.i.d. entries {H}, ; representing the complex gain between the j-
th transmit and the i-th receive antennas, where Re({H}, ;) ~ N (0, 0%,) and

Im({H}, ;) ~ N(0,0%,) are mutually independent, o3, = 1/(1+ ¢*), o}, =
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¢*/(1+ ¢*), and q € (0,1) denotes the Hoyt fading parameter, which defines
the power imbalance between the real and imaginary channel components.

Invoking the redefinition in (5.2),

2q>? 1—¢?
H= H H 5.24
\/1+q2 CjL\/lJrq2 f (5-24)

where the entries of H are circularly-symmetric CA/(0, 1), while those of Hg

are N'(0,1). Define Wy; = HH', if N, < N,, or Wy = H'H otherwise.

We further assume that the receiver has perfect knowledge of H while the
transmitter, with only partial knowledge, uses the well-known beamforming
(BF) principle [15] to send data with a total fixed power P. The noise at each
receive antenna is assumed independent CA (0, 1) and we define the transmit

SNR as 7 £ P. The received signal vector r € C"" can then be expressed as

r=+7Hwz +n (5.25)
where x is the transmitted symbol with E[|z|?] = 1, n is the noise vector,
and w is the BF vector with ||w|| = 1. The detection of = is optimal when

w equals the eigenvector corresponding to the largest eigenvalue of Wy and
when the MRC principle is applied to the received signal r, which yields a
post-processing SNR [15]

Y = Y Amax (5.26)

where )\, denotes the largest eigenvalue of Wiy.

Defining v, as the minimum required SNR for a reliable communication
(i.e., with z reliably detected), the outage probability is exactly obtained from
Theorem as

Pout = PI‘(V < ’Yth) = Fquax (m) (527)
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with 62 = 2¢°/(1 + ¢*), 0% = (1 — ¢*)/(1 + ¢*), s =min(N;, N,) and ¢ =
max (N, N,.).

To give further insight, we approximate P, by leveraging the asymptotic
characterization of Theorem In practice, we are interested in small out-
age probabilities, i.e., implying small values of y/7. From Theorem as

PYth/’_Y — 0,

st
Pout = Poye = aSY ( %h) (5.28)
' e\ 0(g)y

where 6(q) = 2¢/(1+¢?) and ¢ > 0. This explicitly reveals that the power gain
one gets by steering the signal along the top channel eigenmode decreases as
the real and imaginary channel components get more imbalanced. Specifi-
cally, the effect of such imbalance can be seen as a reduction in the average
SNR—with respect to the perfectly balanced case (Rayleigh fading, ¢ = 1)—
by a factor of #(q) < 1. The outage probability is then degraded (increased)
by a factor of §(¢)~**, which can be approximated by (2¢)~* for small ¢. Re-
mark that this degradation is exponentially accentuated as the number of
antennas increases.

Fig. depicts the outage probability as a function of the SNR 4 for
2 x 2 and 2 x 3 MIMO systems, operating in three different fading conditions
(¢ =1,q=0.5and ¢ = 0.3). For each ¢, we plot: (i) the empirical probability—
obtained from Monte-Carlo simulations (10° realizations), (ii) the exact Py
in (5.27)—where we compute Fy, (z) from numericallyfl} and (iii) the
asymptotic outage probability Py, in . We observe a good agreement
between (exact) analytical and simulated results in all cases and, as expected,
the asymptotic result coverges to the exact one as P, gets smaller. As antici-

pated, P, degrades significantly as ¢ decreases, with such degradation being

'To compute (2.79) and (2.81), we use the Gauss-Laguerre integration method, where the
Nuttall Q-functions are computed as finite sums of Marcum Q-functions, since the difference
of their orders is odd.
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FIGURE 5.1: Outage probabilities of 2 x 2 and 2 x 3 MIMO-MRC
systems under Nakagami-q (Hoyt) fading for different values of
¢ Y = 0 dB.
more pronounced in the 2 x 3 setting. Even for a dual-antenna (2 x 2) sys-
tem, this degradation at ¥ = 10 dB is approximately one order of magnitude
for the case ¢ = 0.3 (90% of the channel gain in the real part and 10% in the
imaginary part, or vice versa) with respect to the case ¢ = 1 (Rayleigh). This
is consistent with the analytical prediction above, where the F,,; degradation
was given by the factor 6(¢) ~* as vu/5 — 0. For ¢ = 0.3 and st = 4, this factor
yields ~ 10.9.
We are also interested in the outage data rate, defined as the largest

transmission rate (in bits/s/Hz) that can be reliably guaranteed at least
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(1 —€) x 100% of the time, i.e.

Rout(€) =sup(R : Pow(R) < €) (5.29)
R>0

where ¢ is the maximum outage level and P,.(R) is the outage probability

for a given data rate R, i.e.

Pout(R) 2Pr (logy(1 +7) < R)

=Fpun (27 = 1)/7).

(5.30)

Thus,
Rout(€) =logy(1 +7F, " (€)) (5.31)

where qun}ax() denotes the inverse function of F;,  (-). Again, Theorem m
allows us to approximate R, (€) for small values of € by a compact and in-

sightful expression; as e — 0,

s,t

) c 1/st
Rout(e) ~ Rout(e7 Q) = 10g2 (1 + 9(@1)7 (ac_w) > (532)

where, once more, we see the effect of the Nakagami-q fading through the
isolated factor 6(q) which, for ¢ < 1, causes a reduction in the “effective” av-
erage SNR. To better illustrate the proportional outage rate degradation with
respect to the Rayleigh case (¢ = 1), we define the (approximated) fractional

rate loss

A

RL(%) ~ Row(6, 1) = Row(€,9) 0 (5.33)

Rout(ea 1)

Table shows the approximated RL along with the exact RL, computed
with (5.31) by numerically inverting F;, (), for a 2 x 2 setting with a maxi-
mum outage level of e = 107® and 4 = 10 dB. The numbers reveal a substan-

tial rate degradation as ¢ gets smaller, up to ~ 37% loss (¢ = 0.2).



106 Chapter 5. Noncircularly-symmetric Wishart-type Matrices

TABLE 5.1: Data rate loss of a 2 x 2 MIMO system at 7 = 10 dB,
e=10"3

g 105]04] 03] 02

RL | 9% | 17% | 26% | 37%

~

RL | 9% | 18% | 27% | 43%

5.6 Conclusions

We have simplified the study of noncircularly-symmetric Wishart-type ma-
trices, which has allowed to give, for the first time, results regarding the pdf
of such matrices, as well as the extreme eigenvalue distributions. Particu-
larly, we have studied in depth their largest eigenvalue distribution by con-
necting the statistics of those matrices and that of the well-known noncentral
complex Wishart matrices. Although the exact largest eigenvalue distribu-
tion does not allow to give any further insightful analysis, the asymptotic ex-
pansion in the tail clearly translates the effect of a power imbalance between
the real and imaginary parts of the model into a simple decoupled factor.
These results have been applied to 2 x 2 and 2 x 3 MIMO systems under
different Nakagami-¢ (Hoyt) fading severity levels. We have seen that the
presence of an imbalance between the real and imaginary channel compo-
nents significantly degrades the outage performance. This effect is exponen-
tially accentuated for large numbers of antennas at both the transmitter and
receiver sides. We also have observed that the asymptotic results, despite
being very simple, are remarkably tight to the exact ones, even for extreme

fading cases (¢ small).
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Chapter 6

Summary and Future Work

There were two main topics addressed in this thesis, which are summarized

as follows:

e An investigation of the statistical connection between noncircularly-
symmetric fading models, such as the n-; model and its particular
case, the Nakagami-¢ (Hoyt) model, with the more tractable circularly-

symmetric models.

e An investigation of a novel approach that facilitates the analysis of

noncircularly-symmetric Wishart-type matrices.

6.1 Summary

The performance analysis given throughout this thesis is based on different
univariate and multivariate statistical results, which were presented and de-
rived in Chapter 2l The key utility of these results is that, in contrast to many
existing results associated with application to fading modeling, they unify
the statistical analysis of a multitude of models and, therefore, future analy-
ses of these models will not be performed separately as usual so far. We must
underline the fact that, in addition to the vast model unification performed

between noncircularly-symmetric and noncentral models in the univariate



108 Chapter 6. Summary and Future Work

case, the multivariate analysis of noncircularly-symmetric-Wishart type ma-
trices was clearly simplified, with a novel connection with the statistical anal-
ysis of noncentral complex Wishart matrices.

In Chapter 3, we have resolved a controversy between two different un-
derlying models for the recently proposed x-u shadowed model, which was
essential to build all the model connections presented in Chapter @ Indeed,
we have proved that the x-; shadowed model unifies the set of noncentral
models associated with the x-y model, and, strikingly, it also unifies the set
of noncircularly-symmetric models associated with the 7-1 model. In other
words, the analysis of the five classical fading models, i.e., the one-sided
Gaussian, Rayleigh, Nakagami-m, Nakagami-¢ and Rician models, and their
most popular generalizations, i.e., the Rician shadowed, the x-1, n-p1 and s-p
shadowed models, can be jointly performed exclusively with only that of the
latter one, since the rest of aforementioned models can be seen as its particu-
lar cases.

Finally, in Chapter 5, we have tackled the statistical analysis of the
noncircularly-symmetric Wishart-type matrices. We have derived for the first
time an expression for the pdf of those matrices, as well as for the extreme
eigenvalue distributions. Of particular mention is the analysis of the largest
eigenvalue distribution provided in this thesis, since it gives rich insight on

how the variance imbalance of the underlying model affect this distribution.

6.2 Future Work

The univariate analysis provided in Chapter unifies the analysis of
NLOS noncircularly-symmetric fading models with that of LOS circularly-
symmetric ones. An interesting topic for future work is the extension of
these results for LOS noncircularly-symmetric fading models, i.e., underly-

ing models that consider non-zero mean in their Gaussian RVs, such as the
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Beckmann model [45].

The results of Chapter |5 showed that there are many different inves-
tigating paths to follow in the future. Associated with the new pdf of
noncircularly-symmetric Wishart-type matrices, new polynomials of matrix
arguments are needed. Referring to the smallest eigenvalue distribution
of those matrices, it seemed necessary to first simplify the corresponding
asymptotic result of noncentral complex Wishart matrices. Then, we also
propose to derive from it an asymptotic expansion in the tail for the smallest
eigenvalue distribution of noncircularly-symmetric Wishart-type matrices to
shed some light on how the variance asymmetry affects it. Finally, we could
apply this distribution to study the outage performance of MIMO systems

which employ a linear zero-forcing receiver.
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Appendix A

Series Representation of the

Elements of ¥(z)

Proof: From (2.88), we remove the signum function such as

5 i+j
{Y(2)}i; = ( 2>
+o0
/ / t e QUR Qs+t 2i+1,t—s
X z‘?eiﬁzQsH 2j+1,t— s<“ ”—%) dtdz (A1)
Uc
+o0 400 _ 2
_/ / i E R Qert 2i+1,t—s 2
0 z C
i
e "k Qepi—2ji14—s %Z, %I‘ dtdz

Using the series representation of the Nuttall Q-function [94, eq. (5)], i.e

o0 a21+ke—§F<c + k4141, %)
T+ 1+ 12

Qocirr1k(a,b) = (A.2)

=0
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itjtt—s
2
2
0¢

) [iF<t—i+l+1,%x><%>l

Lo D(E — s + [+ 125

we have

{X(2)}i

o0 F(t—j+m+1,%x><%)
« e 9c

= mll'(t — s+ m+1)2m+i=s
+o0 z
« / / tl-‘rt_;_l e—agqtzm—kt_;_l e—angdtdz (A3)
0 0

l
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_ C

C

— IT(t — s+ 1+ 1)2Hi=s
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= mll'(t — s+ m+1)2m+is
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In both incomplete integrals, we identify the the lower- and upper-

incomplete gamma functions. After some simplifications, we have
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2
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The remaining integrals of incomplete gamma functions can be compute

thanks to [38, eq. (6.455.1)] and [38, eq. (6.455.2)], and after some simplifica-

tions we have,

oc

{T(l’)} _223 i j( 22> (cheq)2sf2t72

F(t —i+1+1, %x) (0eqoc)™
% l:O ID(t—s+1+ 1)2

o F(t—]—l—m+1, 2x>(aeqac) —2m
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(A.5)
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Using (2.10) we finally obtain the result. [
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Appendix B

Resumen en Castellano

B.1 Prefacio

Segun la normativa espafiola, se puede escribir la memoria de la tesis com-
. P2 . . 2 " : " :
pletamente en inglés para solicitar la mencién "Doctor Internacional”. Sin
embargo, se requiere escribir un breve resumen (de al menos cinco mil pal-
abras) en castellano. Se ha de tener en cuenta que este anexo no es el propio
manuscrito de la tesis, sino que es s6lo un resumen para mostrar los resulta-

dos més relevantes.

B.2 Introduccion y Motivacién

Las variables aleatorias (VAs) gaussianas complejas son ampliamente uti-
lizadas para modelar fluctuaciones aleatorias en diferentes dreas, como la
Optica [1], la fisica nuclear [2], el procesamiento de sefial [3], [4], y las co-
municaciones inaldmbricas [5], por nombrar algunas. En todas estas &reas,
se suele suponer (por lo general implicitamente) que estas VAs son circular-
mente simétricas, es decir, con igual varianza en sus partes real e imaginaria.
Esta suposicién realmente simplifica el andlisis de una multitud de proble-

mas a expensas de disminuir la exactitud de los resultados.
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Sin embargo, hay muchos otros casos en los que el supuesto de circulari-
dad es incluso inapropiado. En 6ptica, la rugosidad de las superficies trans-
misoras o reflectoras afecta desigualmente las varianzas de las partes real e
imaginaria del campo lejano de la componente dispersiva, que ya no puede
ser modelada con VAs gaussianas circularmente simétricas [6], [7]. En fisica
nuclear, el estudio de los espaciamientos de los saltos energéticos requiere el
analisis de matrices aleatorias Gaussianas no-circularmente simétricas (o im-
propias) [8]. En el procesamiento de sefial, el desequilibrio entre las ramas en
fase y en cuadratura (I/Q) debido a desajustes I/Q hace que la sefial recibida
sea impropia [9]. En las comunicaciones inalambricas, los modelos gaus-
sianos subyacentes no-circularmente simétricos son convenientes cuando un
ensombrecimiento severo o un fuerte centelleo ionosférico estdn presentes en
las comunicaciones méviles por satélite e inter-satélite [5], [10], [11].

A pesar del gran namero de aplicaciones, el anélisis de los modelos no-
circularmente simétricos es mucho mads escaso que el de los circularmente
simétricos. Considerar un desequilibrio entre partes real e imaginaria pre-
senta un desafio significativo ya que las propiedades clasicas de variable
aleatoria son a menudo no aplicables.

En este contexto, el objetivo principal de esta tesis es simplificar el andlisis
de modelos derivados de VAs gaussianas no-circularmente simétricas en un
contexto de comunicacion inaldmbrica. Particularmente, esta tesis establece
nuevas conexiones estadisticas entre los modelos de desvanecimiento no-
circularmente simétricos y auquellos que son circularmente simétricos. Estos
se empleardn para estudiar el rendimiento de los sistemas single-input single-
output (SISO) y multiple-input multiple-output (MIMO) sujetos a desvanec-
imientos que consideran un desequilibrio entre las componentes en fase y

en cuadratura de la sefial.
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B.3 Unificando los Modelos x-11 y n-p

Esta secciéon demuestra que la distribucién x-4 con ensombrecimiento unifica
el conjunto de modelos clasicos de desvanecimiento asociados con la dis-
tribucién «- p1, y sorprendentemente, también unifica el conjunto de modelos
clasicos de desvanecimiento asociados Con la distribucion mbox 7n-u. Par-
ticularmente, revela que el modelo de Nakagami-q se puede obtener como
un caso particular del modelo Rician con ensombrecimiento propuesto en
[65], lo que puede parecer contraintuitivo a primera vista. Se propone un
método novedoso para derivar las distribuciones Nakagami- ¢ y 7-p que
consiste en utilizar el fendmeno de ensombrecimiento de las componentes
dominantes para recrear un desequilibrio de potencia entre las partes real
e imaginaria de las componentes difusas. Esta conexién, que aqui se pro-
pone por primera vez en la literatura, tiene implicaciones importantes en la
préctica: en primer lugar, y en contra de la creencia comtn, muestra que los
modelos k-1 y n-p estdn conectados. Por lo tanto, podemos estudiar conjun-
tamente dichos modelos usando un enfoque comun en lugar de por sepa-
rado. Ademads, implica que al derivar cualquier métrica de rendimiento para
el modelo de desvanecimiento x-u con ensombrecimiento, en realidad esta-
mos resolviendo el mismo problema para la distribucién -1 y, lo que es mds
importante, para la distribucién n-4 sin costo adicional.

Aprovechando nuestro enfoque novedoso, también derivamos aqui ex-
presiones asintéticas simples y de forma cerrada para la capacidad ergédica
de sistemas de comunicacién que operan bajo un desvanecimiento x-/ con
ensombrecimiento en el régimen de relacion sefial-ruido alta, pudiendo ser
evidentemente empleado para las distribuciones x-p y n-p. A diferencia de
los andlisis exactos disponibles en la literatura que requieren el uso de las
funciones Meijer G univariables y bivariables, nuestros resultados permiten

una mejor comprension de los efectos de los pardmetros de desvanecimiento
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en la capacidad.

B.3.1 Modelo x-i con Ensombrecimiento

El modelo x-: con ensombrecimiento fue definido por primera vez por Paris
en [52] como una generalizacion natural del modelo popular -y original-
mente propuesto por Yacoub en [29]. La diferencia con respecto al modelo
k- aparece en la componente dominante de cada clister, que ya no es deter-
minista y puede fluctuar aleatoriamente debido al fenémeno de ensombrec-
imiento. Las expresiones cerradas para la funcién densidad de probabilidad,
la funcién de distribucién y la funcion generadora de momentos de la en-
volvente de potencia de sefial se obtuvieron en [52] y se validaron mediante
simulaciones de tipo Monte-Carlo y mediciones de campo en el contexto de
canales actsticos subacuaticos.

La funcién densidad de probabilidad del modelo -y con ensombrec-

imiento viene dada por la siguiente expresion cerrada [52]:

prm™(1 + k)* (7)”_1 _u(+r)y ( (1 + k) 'y)
— L 5 F P ———————— B.1
O = et m \5) € Films =y ) Y

donde 7 es la relacién sefial-ruido instantdnea y 7 es su media.

B.3.2 Distribucién - y sus Casos Particulares

La distribucién x-1 se emplea en entornos donde la componente difusa para
cada claster puede ser modelada con una variable aleatoria circularmente
simétrica. La derivacion de la distribucién -y a partir de la distribucion x-u
con ensombrecimiento se puede realizar tomando el limite m — oo en y

aplicando las siguientes propiedades

alggo 1F1 (a; b; %z) = oF1 (b; z) (B.2)
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lim (1 + 1x> A =e ", (B.3)
a—r0o0 a

En realidad, la distribucién -y se obtiene eliminando completamente el
sombreado de cada componente dominante, lo que puede hacerse tomando
m — oo, de manera que la componente dominante de cada claster se con-
vierta en determinista. A medida que el pardmetro m crece, la distribucion
de cada componente dominante se comprime gradualmente y, en el limite
m — 00, se convierte en una funcion delta de Dirac. Por lo tanto, el modelo se
define por una variable aleatoria compleja gaussiana circularmente simétrica
con una media no nula en cada clister, de modo que obtenemos el modelo
Kk-p, mientras que en el caso de que ;1 = 1 se obtiene el modelo de Rician con
ensombrecimiento.

A su vez, el modelo subyacente de Nakagami- m puede derivarse del
modelo x-;1 con ensombrecimiento cuando « — 0 en (B.1) y aplicando la
propiedad

lim ,F, (a1...ap;b1...byc2) = 1. (B.4)

c—0

Al tender k — 0, eliminamos todas los componentes dominantes del
modelo, independientemente del valor del parametro de ensombrecimeinto
m, de modo que s6lo tenemos componentes de dispersion en cada cluster, es
decir, obtenemos un modelo que sigue una distribucién de Nakagami-m o
uno de sus casos particulares, es decir el modelo Rayleigh o el modelo gaus-

siano unilateral, dependiendo del valor de p.

B.3.3 Distribucién 7-1 y sus Casos Particulares

Las distribuciones de Nakagami- ¢ (Hoyt) y - se emplean en entornos de
propagacién donde las componentes difusas son no uniformes y pueden ser

modeladas por varaibles gaussianas elipticas (o no-circularmente simétricas).



120 Appendix B. Resumen en Castellano

A primera vista, este escenario no parece encajar con el modelo x-4 con en-
sombrecimiento. Sin embargo, podemos dar una interpretacion diferente a
los componentes del clister de este modelo: pueden interpretarse como un
conjunto de ondas difusas uniformes con medias aleatorias. Estas fluctua-
ciones aleatorias en las medias, que son diferentes para cada cluster, son re-
sponsables de modelar la no homogeneidad del entorno considerado en [29]
y finalmente rompen la simetria circular del modelo. Debemos resaltar que
una conexién similar se presento recientemente en [23], donde se mostré que
la distribucién de una variable Nakagami- ¢ se comporta como una distribu-
cién Rayleigh con una potencia media aleatoriamente variable.

La simetria circular del modelo se puede romper fijando m = ;/2. La dis-
tribucién - surgiria como un caso particular de la distribucién més general
k-fu con ensombrecimiento, donde el pardmetron = 1/(2k+1). Este es uno de
los principales resultados de esta tesis. Obsérvese que cuandom = /2 = 0.5,
se obtiene el modelo de Nakagami- ¢ con el pardmetro ¢ = /1/(2x + 1) ya
que n = ¢* para el modelo 7-u con formato 1 [29] ﬂ Por lo tanto, el modelo
de Nakagami- ¢ puede obtenerse del modelo Rician con ensombrecimiento
propuesto en [65] estableciendo m = 0.5.

Aunque una interpretaciéon de este resultado no es directa, estd claro,
desde un punto de vista matematico, que si fijamos el pardmetro m a la mitad
del valor del ntimero de cldster ; en el modelo k-1 ;« con ensombrecimiento?]

Una vez fijado m, el nimero de grados de libertad del modelo resul-
tante se reduce en uno y se establece la siguiente relacion bi-tinica entre los
parametros K y 7,

1 —n

'El modelo 7- p es simétrico para n € [0,1] y 7 € [1,00]. Se tiene ¢ = \/oq = 1/\/7
dependiendo del intervalo.

2Se ha de subrayar el hecho de que el nimero de clusters en el modelo % - 4, y por lo tanto
en el modelo k-1 shadowed, es i, mientras que 2y es el nimero de clusters en el modelo 7-u
model [29].



B.3. Uniticando los Modelos k-1 y n-j 121

Esta relacién matemaética entre s y 7 sélo tiene un claro significado fisico en
los casos limite del rango donde « varia. Para x = 0, se obtiene n = 1 a partir
de (B.5), que en realidad corresponde al caso Rayleigh cuando sélo hay un
cluster. Para kK — o0, se obtiene n = 0 de la , que es el caso gaussiano
unilateral cuando de nuevo tenemos un claster. Mientras, como se ha visto
antes, el modelo x-y se obtiene eliminando totalmente la aleatoriedad de las
componentes dominantes, este no es el caso para el modelo 7-.

El modelo de Nakagami- m se puede deducir también con un método
similar, es decir, sin eliminar directamente la componente dominante.

Sim = p, se obtiene la distribucién Nakagami-m a partir de gracias
a la propiedad

1F1 (a; a; z> = e”. (B.6)

Obsérvese que al establecer m = 1, se transforma las componentes domi-
nantes aleatorias del modelo presentado en [52] en componentes difusas. En
cierta manera, se estd agregando dos variables aleatorias gaussianas juntas
en cada claster, lo que directamente conduce a una variable aleatoria gaus-
siana equivalente, de modo que los modelos gaussiano unilateral, Rayleigh
o Nakagami- m se obtienen dependiendo del nimero de clusters ; consider-
ado.

La tabla[B.T|resume todos los modelos que se derivan del modelo -1 con
ensombrecimiento, donde los pardmetros de éste se subrayan por razones de
claridad. Cuando los pardmetros del modelo x-u con ensombrecimiento se
fijan a algunos valores positivos reales especificos o tienden a ciertos limites
especificos, podemos obtener todos los modelos centrales clasicos, es decir,
los modelos Rayleigh, gaussiano unilateral, Nakagami- ¢ y Nakagami- m,
asi como el modelo clasico no central de Rician, y sus generalizaciones mds

populares, los modelos Rician con ensombrecimiento, x-f1 y 1-ft.



122 Appendix B. Resumen en Castellano

TABLE B.1: Modelos Clésicos y Generalizados Derivados a par-
tir del Modelo x-1 con Ensombrecimiento

Channels k-p Shadowed Parameters

One-sided Gaussian a) p=05t—0

Rayleigh )
)

Nakagami-m

Nakagami-¢ (Hoyt) p=1r=(1-¢)/2¢, m=05
Rician with parameter K p=1r=K,m— o0
K= B=p, K=HK,Mm— 00

n-H p=2pk=(1-n)/2nm=p
Rician shadowed p=1=K m=m

Es notable que hay dos maneras de derivar los modelos gaussiano unilat-
eral, Rayleigh y Nakagami- m, dependiendo de si se usan los enfoques de las

secciones oB.3.3

B.3.4 Analisis de la Capacidad Ergédica

La caracterizacion de la capacidad ergddica de canales sujetos a desvanec-

imientos, definida como

+oo
Clops/Hz) £ [ oz, (1 +9)f, (1), (B7)

donde 7 is relacién sefial-ruido instantdanea en el transmisor, ha levantado
gran interés a lo largo de varias décadas [74]-[77]. Mientras que para sis-
temas que sufren desvanecimientos de tipo Rayleigh es posible obtener ex-

presiones relativamente sencillas y con forma cerrada para la capacidad
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ergoddica, la consideraciéon de modelos mds generales conlleva la obtencion
de expresiones muy complciadas que normalmente requieren el empleo de
funciones especiales como la funciones Meijer G[25], [77], [78].

Con el fin de superar los problemas que se derivan de la caracterizacién
exacta de la capacidad de un canal -/ con ensombrecimiento debido a su
complicada forma cerrada [78], parece mas conveniente analizar el régimen
de alta relacién sefial-ruido. En esta situacién, la capacidad ergéddica puede

ser aproximada por [53, ecuacién (8)]

C()|5p = logy(7) — L, (B.8)

que es asintoticamente exacta and donde L is a constante independiente of la

relacion sefial-ruido media y puede ser dada por

(B.9)

El pardmetro L puede interpretarse como la pérdida de capacidad con re-
specto al caso en el que el canal sélo introduce ruido aditivo blanco gaussiano
(AWGN), ya que la presencia de desvanecimiento causa L > 0. Cuando no
hay desvanecimiento, L = 0y esto se reduce al bien conocido resultado de
Shannon. Usando este enfoque, derivamos una simple expresiéon de forma
cerrada para la capacidad asintética de canales x-1 con ensombrecimiento, y
esto es un nuevo resultado en la literatura.

La capacidad ergédica de un enlace sin cables que sufre desvanecimientos
con distribucién x-u con ensombrecimiento puede ser acotada inferiormente

con precision en el régimen de alta relacion sefial-ruido por

C_(Hum('?”"yﬂ = 10g2(’7) - LH;MTU (BlO)
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donde log,(-) es el logaritmo binario y L, puede expresarse como

_ _ _pREm
Ligum = — logy(e) (1) — log, <Mm(1+l€)>
R —m)
1 —_ B.11
+ logy(e) Lkt m ( )
LK
1,1, 0 — 1;2 1; .
X3f2(a s—m+ 12, p+ ’Mﬁ‘i‘m)

Notese que cuando p = 1, se obtiene la capacidad ergddica del canal
Rician con ensombrecimiento propuesto en [65].

A diferencia del andlisis exacto en [78], que requiere la evaluacion de una
funcién Meijer G bivariable, este resultado proporciona una expresién en
forma cerrada muy simple para la capacidad en el régimen de alta relacién
sefial-ruido. Ademads, puesto que los modelos k-1 y n-p1 son casos particu-
lares de la distribucién s-;1 con ensombrecimiento, obtener la capacidad en
estos escenarios se puede realizar sin la necesidad de evaluar una suma in-
finita de funciones Meijer G' como en trabajo presentado en [25]. Esto se
declara formalmente de la forma siguiente.

En alta relacién sefial-ruido, la capacidad ergédica de un canal x-u puede

ser acotada inferiormente con precisiéon por

Cron(V)lst = 10go(7) = Ly, (B.12)
donde L, puede expresarse como

Ly = — logy(e)t(p) + logy () + logy (1 + k)

(B.13)
— klogy(e)aFs (1, 1,2, 0+ 1; —;m).

(B.13) se deriva applicando el limite m — oo en (B.11), de forma que la

funcién 35 (-) collapsa en una funcién hypergeométrica ».F5(-) puesto que

lim 3f2(a1,a2,c; b1>b2;§> = 2]:2(611,@2;517192;2)- (B.14)

c—00
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En alta relacién sefial-ruido, la capacidad ergédica de un canal - puede

ser acotada inferiormente con precisién por

C_(WWNW = logy(¥) — L, (B.15)

donde L,,, puede expresarse como

Ly =— log,(€)¥(2p) + logy (1) + logy (1 4-1)

(1-mn)
2

(B.16)
+ log,(e)

3]:2(1,1,u—l—1;2,2p+ 1;1 —77).

Se ha obtenido la capacidad asintética de un canal n-; a partir de (B.11))
fijando m= p, p= 2y and k= (1 —n)/(2n) como indica la Tabla

Por lo tanto, las expresiones de las capacidades asintéticas para canales
k-1 y 1-p han sido deducidas conjuntamente del resultado en (B.10), que
son también nuevos resultados. Ademas, derivar la capacidad asintética del
canal k-p con ensombrecimiento no ha sido més dificil que derivar las capaci-
dades asintéticas de los canales x-i0 0 n-p directamente, ya que los momen-
tos de sus relaciones sefial-ruido instantdneas se pueden expresar, como en el
caso k- con ensombrecimiento, en términos de una funcién hipergeométrica
de tipo Gauss [29]. Asi, se han matado dos (en realidad tres) pdjaros con un
mismo tiro.

Usando las equivalencias en la tabla se pueden obtener expresiones
ain mas simples para los modelos clasicos de desvanecimiento, que se re-
ducen a los resultados existentes en la literatura, para Nakagami-m [53]], Ri-
cian [72] y Hoyt [23]]. Por razones de claridad, omitimos las derivaciones di-
rectas del resto de capacidades asintéticas. En su lugar, resumimos en la tabla
las pérdidas de capacidad con respecto al canal AWGN en el régimen de
alta relacion sefial-ruido, donde I'(a, b) es la funcién gamma incompleta y .
es la constante de Euler-Mascheroni, es decir, 7, ~ 0.5772. También es no-

table que, por primera vez, se presenta la expresion de capacidad asintética
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TABLE B.2: Pérdida de Capacidad Ergdédica en alta relacion
sefal-ruido para Diferentes Canales

Channels Ergodic capacity loss (L) [bps/Hz]
One-sided Gaussian 1+ 7. -logy(e) ~ 1.83
Rayleigh Ve - logy(e) &~ 0.83
Nakagami-m log,(m) — log,(e)w(m)
Nakagami-q (Hoyt) 1+ 7. - logy(e) + log, I )

Rician with parameter K log,(1+1/K) —log,(e)l'(0, K)

Kmpt —logy(e)¥(u) + logy(p) +logy(1 + k)
—rlogy(e)aF2 (1, L2, p+ 1 —u%)
—log, (€)1 (2u) + logy (1)

-1 +logy (1 + 1) + logy(e) 152

x3F2 (1,1, p+1;2,2u 4 1;1 — 1)

Ve - logy(e)

Rician shadowed —log, < ok ) + log,(e) 1(@::: )

x3f2<1,1,2 m:2,2: K+m)

del Rician con ensombrecimiento propuesto en [65], que no es mds que un

caso particular del modelo x-y sombreado cuando ;o = 1.

B.3.5 Resultados Numéricos

Es importante estudiar la evolucion de la pérdida de capacidad para los mod-
elos de desvanecimiento x-/ con ensombrecimiento, k-1 y 1)- 1 con respecto al
caso AWGN. Subrayamos el hecho de que los diferentes valores paramétricos
aqui presentados no provienen de canales practicos reales, sino que permiten
verificar las expresiones tedricas.

Dependiendo de las condiciones de propagacion, los parametros x y p

pueden tomar valores muy diferentes [52], [67], [79]-[81]. Por ejemplo, en
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algunos escenarios de comunicacién acustica subacuética [79], los pardmet-
ros del canal k € [0.03 — 9.56], € [0.90 — 1.27] y m € [1.32 — 18.01], mientras
que en algunos escenarios de comunicacion body-centric [67], [80], [81], se
tiene x € [1.08 — 481], i € [0.01 — 3.22] y m € [0.04 — 2876].

En las Fig. 4.1|y Fig. se representan las expresiones analiticas exactas
de la capacidad ergddica de modelos de desvanecimiento cldsicos y gener-
alizados, respectivamente, que estdn disponibles en la literatura [25]], [78], y
los comparamos con la expresioén analitica asintética obtenida en (B.10).

Obsérvese que todos los modelos convergen con precisién a sus valores
asintéticos, permaneciendo por debajo del limite de Shannon, es decir, la ca-
pacidad del canal AWGN. Por lo tanto, la expresion de la capacidad ergddica
asintética derivada anteriormente para el modelo x-u con ensombrecimiento
se valida aqui con las expresiones correspondientes de los modelos gaussiano
unilateral, Rayleigh, Nakagami- m, Nakagami- ¢, Rician, Rician con ensom-
brecimiento, k-p y 1-ft.

En las figuras se muestra la evolucién de la pérdida de capacidad
asintética L, definida en (B.9), del canal x-u con ensombrecimiento cuando
m crece. Téngase en cuenta que esta métrica no depende de la relacién sefial-
ruido promedio recibida 4. Cuando el ensombrecimiento no es despreciable,
es decir, en las figuras tener més potencia en las componentes domi-
nantes no siempre mejora la capacidad ergédica, sino que a veces eleva con-
siderablemente la pérdida de capacidad, especialmente para un gran nimero
de clusters. Cuando m > 20, es decir, en la Fig. el efecto del ensombrec-
imiento se puede despreciar y el modelo en realidad tiende al modelo x-1,
donde un aumento en la potencia de los componentes dominantes es obvia-
mente favorable para la capacidad del canal. Por lo tanto, recibir méas poten-
cia a través de los componentes dominantes no siempre aumenta la capaci-
dad en presencia de ensombrecimiento. Se observan dos comportamientos

diferentes en la evolucién de pérdida de capacidad con respecto al pardmetro
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k. Cuando m < p, el aumento del parametro « es perjudicial para la capaci-
dad. Por el contrario, cuando m > p«1a capacidad se mejora a medida que « se
incrementa, es decir, en presencia de una componente dominante mds fuerte.
En el caso limite de m = p, se comprueba que la pérdida de capacidad es
independiente de . Esto se puede explicar de la forma siguiente. Supéngase
que las componentes difusas y dominantes con ensombrecimiento en cada
claster son variables aleatorias gaussianas complejas, que es el caso méas sim-
ple posible a considerar cuando m = pu. Se obtendrd una variable aleatoria
gaussiana equivalente cuya potencia no se ve afectada por el pardmetro k.
Para m > 1, el modelo k-1 con ensombrecimiento puede ser aproximado por
el modelo x-p para un pardmetro m suficientemente alto, como muestra la
Tabla En este caso, es facil comprender que un aumento del pardmetro
+ implica la disminucion de las pérdidas de capacidad asintética, ya que una
mayor potencia de las componentes dominantes implica mejorar la capaci-
dad del canal k-u. Por el contrario, cuando m < pu, la observacion anterior
puede parecer contraintuitiva a primera vista. Considérese el caso particular
donde m = /2, que coincide con el caso de desvanecimiento de tipo 7-f.
En ese caso, incrementar el pardmetro ~ implica aumentar la asimetria de las
variables aleatorias subyacentes gaussianas no-circularmente simétricas del
modelo, lo que degrada la capacidad. Para el resto de casos donde m < p, se
puede hacer una justificacion similar.

También se observa que la pérdida de capacidad disminuye a medida
que p crece, ya que tener un mayor nimero de clusters reduce la severidad
de desvanecimiento de los efectos de propagacién a pequefia escala.

Por dltimo, las Fig. [.7)y Fig. representan la pérdida de capacidad
ergddica asintética para los modelos de desvanecimiento k-it y n-u, respecti-
vamente. Se observa que la Fig. [4.7]es bastante similar a la Fig. [4.6porque,
como se menciond anteriormente, el modelo k- con ensombrecimiento con

m > 20 puede ser aproximado por el modelo x-;.. En la Fig. se observa
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que, independientemente del ntimero de clusters 2, hay un minimo en la
pérdida de capacidad de canal en n = 1 que divide en dos partes simétri-
cas, como se esperaba, el comportamiento del desvanecimiento. También
se puede observar que en la Fig. 4.8 se ha especificado los casos limite para
n — 0y n — oo. Cuando i = 0.5, el modelo n- colapsa en el modelo gaus-
siano unilateral para n = 0 0  — oo, mientras que para n = 1 colapsa en el
modelo Rayleigh. Cuando 1 = 1, el modelo n-u se reduce al caso Rayleigh
paran = 0 on — oo. Esto se muestra en la figura incluyendo también los val-
ores de pérdida de capacidad de los canales Rayleigh y gaussiano unilateral

con lineas punteadas y discontinuas horizontales, respectivamente.

B.3.6 Conclusiones

Se ha demostrado que el modelo k-;: con ensombrecimiento unifica las dis-
tribuciones x-p1 y n-p. Con una interpretacion de variables subyacentes gaus-
sianas novedosa del efecto de ensombrecimiento en las componentes domi-
nantes, se ha demostrado que el modelo x-/ con ensombrecimiento también
puede ser empleado en escenarios en los que las componentes difusas son
modeladas con variables aleatorias gaussianas complejas no-circularmente
simétricas, lo que da a la distribucién k-;1 con ensombrecimiento una mayor
flexibilidad para modelar diferentes condiciones de propagaciéon que las
alternativas existentes cuando se opera en entornos inaldmbricos. Por lo
tanto, el modelo x-1 con ensombrecimiento unifica todos los modelos clasi-
cos de desvanecimiento, es decir, los canales gaussiano unilateral, Rayleigh,
Nakagami- m, Nakagami- ¢ y Rician, y sus generalizaciones, los modelos x-
i, n-i y Rician con ensombrecimiento. Se han deducido nuevas expresiones
sencillas en forma cerrada para evaluar la capacidad ergédica en el régimen
de alta relacién sefial-ruido para el modelo k-1t con ensombrecimiento, y por

lo tanto, usando la conexién aqui desvelada, para los modelos k-1, - 1y
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Rician con ensombrecimiento, dandose una visién clara de cémo afectan los
pardmetros de desvanecimiento en la mejora o degradacién de la capacidad.

Como comentario final, se puede pensar si el nombre de la distribuciéon
k-t con ensombrecimiento sigue siendo apropiado para este modelo, ya que

su flexibilidad trasciende las caracteristicas originales presentadas en [52].

B.4 Maximo Autovalor de Matrices de tipo
Wishart no-Circularmente Simétricas

La distribucién del maximo autovalor de las llamadas matrices aleatorias de
tipo Wishart juega un papel importante en una amplia gama de aplicaciones,
incluyendo la deteccién de sefiales [95], el modelado de desvanecimiento
[45] y el andlisis de componentes principales [4]. A pesar de la rica carac-
terizacién de las conocidas matrices Wishart complejas y reales, los resulta-
dos para modelos de tipo Wishart generados a partir de matrices Gaussianas
complejas no-circularmente simétricas son mucho mds escasos. En particu-

lar, se distinguen las matrices hermitianas de la forma:

XXt p<n
W = (B.17)

XX, p>n

donde X € CP*" tiene entradas gaussianas complejas independientes e idén-
ticamente distribuidas (i.i.d.) con Re({X}.;) ~ N(0,08,) y Im({X};;) ~
N(0, a%m), es decir, con variances arbitrarias en sus partes real e imaginaria,
y donde Re({X}; ;) y Im({X}; ;) son mutuamente independentes.

El modelo en se ha referido como el conjunto cruzado entre los
ensembles unitarios (LUE) y ortogonales (LOE) de Laguerre [26]. Cuando am-

bas varianzas son iguales, es decir, 0%, = o}, W es una matriz de Wishart
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compleja central (LUE); Cuando una de las varianzas es cero, W es una ma-
triz Wishart real central (LOE). Conjuntos intermedios similares han sido un
tema de interés en el contexto de ensembles gaussianos (no de tipo Wishart),
es decir, GUE y GOE, con aplicaciones al estudio de los espaciamientos de
niveles de energia en fisica nuclear [8]].

Con aplicaciones al modelado de desvanecimiento, las obras de [28] y
[26] hicieron un progreso inicial para caracterizar el conjunto intermedio de
tipo Wishart de (B.17). En [28], el analisis se limita a una matriz X 2 x 2y
la funcién densidad de probabilidad conjunta (jpdf) de los valores propios
de W se da en una forma muy complicada que implica seis integrales. En
[26], la jpdf de los autovalores se deriva para dimensiones arbitrarias usando
propiedades de movimiento brownianas con una variable ficticia de tiempo
que esta relacionada con la relacion entre las varianzas o3, y o7,. Sin em-
bargo, esta expresion sigue siendo complicada y no permite ningtn andlisis
mas profundo. La complejidad y escasez de resultados para el modelo en
se deben principalmente al desafio que plantea un perfil de varianza
asimétrico, que hace que las propiedades cldsicas de matriz aleatoria ya no
sean aplicables. En particular, a pesar de su interés interdisciplinario, los
resultados para el maximo autovalor no estdn disponibles hasta ahora, ni
siquiera para una matriz X de dimensiones 2 x 2, y las implicaciones de este
perfil de varianza asimétricos permanecen en gran medida desconocidas.

En esta seccién, se propone un nuevo enfoque para caracterizar el max-
imo autovalor de W para dimensiones arbitrarios de p, n. Al aprovechar una
nueva conexion estadistica entre W y la bien conocida matriz de Wishart
compleja no central, se deriva una expresion exacta y una expansioén asin-
tética (en la cola) para la distribuciéon del maximo autovalor, que propor-
ciona nuevas conclusiones sobre los efectos del perfil asimétrico de varianza
de X. Despusés, se utilizaran estas expresiones para estudiar el rendimiento

de los sistemas de comunicacién MIMO sujetos al desvanecimiento de tipo
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Nakagami- ¢ (Hoyt), en un contexto similar al de los trabajos en [26], [28].
En particular, los resultados analiticos que aqui se muestran explicaran el
impacto del parametro de desvanecimiento ¢ sobre la probabilidad y la ca-
pacidad de outage de los sistemas MIMO con maximal ratio combining (MIMO-
MRC).

Se debe sefialar que parte del trabajo presentado en este capitulo se ha

realizado en colaboracién con Matthew R. McKay, durante mi estancia en

HKUST.

B.4.1 Distribucion del Maximo Autovalor de W

En el modelo (B.17), resulta conveniente reescribir X como

X = X¢ + Xx (B.18)

donde las matrices X € CP*" y X € RP*" son mituamente independientes
con media cero y entradas i.i.d.. Las entradas {X ¢}, ; son CN (0, 02) circular-

mente simétricas, mientras que {Xz};; ~ N(0, 0%), con las correspondencias:

05 =201, 0% = Oh, — Op, - (B.19)

Esta redefinicion facilitara el subsecuente andlisis. Hay que destacar
que, aunque impone ore > 0y, €sto no implica ninguna pérdida de
generalidad, puesto que remplazar og. por om, y Viceversa no affecta los es-
tadisticos de los autovalores de W.

Sean s = min(p,n), t = max(p,n) y W definida en (B.I7). Cuando
0% =006 0% = 0, W collapsa una matrix Wishart (real or compleja) central,
cuyas propiedades se conocen ampliamente. No obstante, cuando ambas

oc,or > 0,la matriz se desvia de estos modelos clésicos, y la caracterizacion

estadistica se vuelve un reto més dificil.
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La clave para abordar el problema es utilizar un método de “condicionar
y promediar” que permite conectar las propiedades estadisticas de la ma-
trix W con aquellas de la matrices Wishart no centrales, haciendo uso de
los resultados de estas tltimas. Especificamente, definase Wy = X RXE si
p < no Wy = XXy en cualquier otro caso. Cuando se condiciona
a la matriz Wy € R**°, W sigue una distribucién de Wishart compleja
no central con ¢ grados de libertad y matriz de descentralidad Wg, i.e.,
W|[Wg ~ CW(t, 021, Wg). La distribuciéon del méximo autovalor de W
puede ser obtenida promediando la de W|Wp, por la de W, que pertenece
al espacio de matrices reales definidas positivas.

La ventaja principal de este enfoque es que evita la necesidad de inte-
grar directamente la jpdf de autovalores de W. Dicha densidad conjunta
se conoce para s, arbitrarios [26], sin embargo la expresion es complicada,
involucrando pfaffianos de matrices cuyas entradas contienen series infini-
tas dobles con términos que implican productos de polinomios de Laguerre
generalizados. Como tal, parece dificil calcular la distribucién del maximo
autovalor marginalizando la jpdf de autovalares presentada en [26]. A con-
tinuacién, explotando la conexién con la matrix Wishart no central, se pro-
porcionan resultados, por primera vez, exactos y asintéticos para la distribu-
cién del maximo autovalor de W.

Considere W definida en (B.17), con o¢, 0r > 0. La funcién distribucion
del méximo autovalor de W admite

Fo () = % (B.20)
donde Pf(-) denota la operaciéon matricial pfaffiana, Z;(z) es de dimensiones

s X sy con entradas

(Er(2)}hiy = /0 /0 Fi(, ) fy(x, 2)sgn(z — w)dud: (B21)
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donde sgn(-) es la funcién signo, y

—y/o?,
fk(x7 fl/) = (Ofgé/yw [Qs+t2k+1,t5 <\/ 2y/0'%~, 0)
- Qs+t—2k+1,t—s (\/Zy/O'%, \/23:/0-%’> ]

donde Q. .(-,-) es la funcién Nuttall ) [40]. La matriz Z, es de dimensiones

(B.22)

s X s con entradas

{E2}ij = /0+00 /0+OO gi(u)gj(z)sgn(z — u)dudz (B.23)

donde

—y/o2,
gk(y) = (O_GQ/ZJWQS+t—2k+1,t—s (\/ 2y /o2, 0) . (B.24)
\ (o¢

El célculo especifico de los pfaffianos en depende de sila dimension
s de la matriz es par o impar. En cualquier caso, sin embargo, pueden ser
evaluados como la raiz cuadrada de un determinante [43].

Aunque esta expresion es exacta, no da una idea de cémo se comporta la
distribucion del méximo autovalor cuando cambia el desequilibrio de vari-
anza entre las partes real e imaginaria de X. Con esto en mente, se establece
una expansion simplificada de la cola de la distribucién en la subseccién

siguiente.

B.4.2 Expansion Asintética en la Cola

Cuando z — 0,

Fyo(@) = hgy ag’vx“ + o(x®) (B.25)

donde
oV =T ((S;Z)' (B.26)
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1
<a(; \20% + cr%)
cw

En la expresion anterior, a; ;" corresponde con el coeficiente de expansiéon

hst = - (B.27)

para el autovalor méximo de una matriz Wishart compleja central [57], [93].
Por lo tanto, en la cola izquierda, el efecto del desbalanceo de potencia de las
componentes real e imaginaria de X se revela claramente, y se desacopla en
la funcién A, en . La simplicidad de la ecuacién es bastante notable,
particularmente cuando se considera la complejidad de la distribucién exacta
del maximo autovalor en (B.20), asi como la de la distribucién conjunta de los
autovalores presentada en [26].

Para interpretar mejor el resultado en , se expresa la funciéon h,,; en
términos de las varianzas originales o3, y of,,, mientras que se fija la varianza

2 2 _
total como oj, + i, = 1. Entonces,

1
hoy = . (B.28)

) St 2
(402.(1 — 02))™"

A partir de , el factor h,, se minimiza claramente en el caso “equi-
librado", o3, = 1/2, para el cual h,; = 1, como deberia ser. Se observa una
desviacion significativa, sin embargo, a medida que las componentes real
e imaginaria se vuelven mds desequilibradas en potencia. Es decir, cuanto

mayor es el desequilibrio, mas lenta es el decaimiento de la cola izquierda de

Fd)max (':U) °

B.4.3 Probabilidad y capacidad de outage de sistemas

MIMO-MRC en entornos Nakagami-q (Hoyt)

Aqui se ofrece un ejemplo de aplicacién para los resultados previamente

derivados. Considere un enlace de comunicacién entre un transmisor,
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equipado con N, antenas, y un receptor con N, antenas. El enlace multi-
antena esta sujeto a un desvanecimiento de tipo Nakagami- ¢ (Hoyt), tipi-
camente asumido en comunicaciones por satélite [5] o, en general, cuando
las condiciones de desvanecimiento son més severas que las de un entorno
Rayleigh. El canal estd modelado por H € C"** con media cero y en-
tradas ii.d. de la forma {H},;, que representan la ganancia compleja en-
tre las antenas de recepcion j-ésima e i-ésima, donde Re({H}, ;) ~ N(0,03,)
y Im({H}; ;) ~ N(0,0?,) son mttuamente independentes, o, = 1/(1 + ¢?),
ot =¢*/(1+¢*),yq € (0,1) denota el pardmetro de desvanecimiento Hoyt,
que define el desbalanceo de potencia entre parte real e imaginaria de las

componentes del canal. Utilizando la redefinicién en (B.18),

—— 1 H, (B.29)

donde las entradas H¢ son circularmente simétricas CN(0, 1), donde las ma-
trices Hi son A/ (0, 1). Definase Wy = HH',si N, < N,,0 Wy = H'H en otro
caso.

Supdéngase ademds que el receptor tiene un conocimiento perfecto de la
matriz del canal H mientras que el transmisor, con s6lo un conocimiento
parcial, utiliza el conocido principio de beamforming (BF) [15] para enviar
datos con una potencia total fija P. El ruido en cada antena de recepcién
se supone independiente calC'N(0,1) y definimos la relacién sefial-ruido de
transmision como 5 £ P. El vector de sefial recibido r € C puede entonces
expresarse cCOmo

r=+/YHwz +n (B.30)

donde z is el simbolo transmitido con E[|z|?] = 1, n es el vector de ruido, y
w es el vector de BF con ||w|| = 1. La detecciéon de z es 6ptima cuando w

iguala el autovector correspondiente al méximo autovalor de Wy y cuando
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el principio de MRC es aplicado a la sefial recibida r, que lleva a una relacién

sefial-ruido post-procesada de [15]
Y = JAmax (B.31)

donde \,,.x denota el maximo autovalor de Wy.
Definiendo vy como la minima relacién sefial-ruido requerida para una
comunicacién fiable (es decir, con el simbolo x detectado con fiabilidad), la

probabilidad de outage se puede obtener excatamente como

Pout - Pl‘(v < 'Yth) = F¢max (m) (B32)

donde 02 = 2¢*°/(1 + ¢*), 0% = (1 — ¢*)/(1 + ¢*), s=min(N, N,) y t =
max (N, N,.).

Para profundizar en el andlisis, se aproxima P, utilizando la caracteri-
zacion asintética de la subseccion anterior. En la préactica, es interesante con-

siderar pequenas probabilidades de outage, esto es pequeiios valores de /7.

Gracias a (B.25), cuando /5 — 0,

st
Pout = Pyt = aSW( %h_) (B.33)
' et \0(g)y

donde 6(q) = 2¢q/(1 + ¢*) y ¢ > 0. Esto revela explicitamente que la ganan-
cia de potencia que se obtiene dirigiendo la sefial hacia el mayor autocanal
disminuye a medida que las componentes del canal real e imaginaria sufren
mayor desequilibrio. Especificamente, el efecto de tal desequilibrio puede ser
visto como una reduccién en la relacién sefial-ruido media — con respecto al
caso perfectamente equilibrado (desvanecimiento Rayleigh, ¢ = 1) — por un
factor de 0(¢q) < 1. La probabilidad de outage se degradada (aumenta) a razén
del factor 0(q)~**, que puede ser aproximado por (2¢)~* para ¢ pequefios.

Obsérvese que esta degradacion se acenttia exponencialmente a medida que
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aumenta el nimero de antenas.

La Fig. b.1|representa la probabilidad de interrupcién de sistemas MIMO
2 x 2y 2 x 3 en funcién de la relacion sefial-ruido media 7, operando en tres
condiciones diferentes de desvanecimiento (¢ = 1, ¢ = 0,5y ¢ = 0, 3). Por
cada g, se traza: (i) la probabilidad empirica — obtenida a través de simula-
ciones de tipo Monte-Carlo (10° realizaciones), (ii) la exacta P,y en (B.32) —
donde se calcula F;,  (x) a partir de numéricamente [’} y (iii) la proba-
bilidad de outage asintética P, en . Se observa un buen acuerdo entre
los resultados analiticos (exactos) y simulados en todos los casos y, como se
esperaba, el resultado asintético coincide con el exacto cuando P,y se hace
mas pequerio. Como se anticip6, F,.: se degrada significativamente a me-
dida que ¢ disminuye, y tal degradacién es més pronunciada en el escenario
2 x 3. Incluso para un sistema de doble antena (2 x 2), esta degradacién en
74 = 10 dB es aproximadamente un orden de magnitud para el caso ¢ = 0,3
(90% de la ganancia del canal en la parte real y 10% en la parte imaginaria,
o viceversa) con respecto al caso ¢ = 1 (Rayleigh). Esto es consistente con la
prediccién analitica anterior, donde la degradacién P, fue dada por el factor
6(q)~*" cuando /7 — 0. Para ¢ = 0.3 y st = 4, este factor es ~ 10.9.

También es interesante estudiar la capacidad de outage, definida como la
méxima tasa de transmision (en bits/s/Hz) que se puede garantizar de forma

fiable al menos (1 — €) x 100% del tiempo, es decir

Rout(€) =sup(R : Pug(R) < €) (B.34)

R>0

3Para calcular (B.21) y (B.23), se usa el método de Gauss-Laguerre, donde las funciones
Nuttall @) son evaluadas a partir de una suma finita de funciones Marcum @), ya que la suma
de sus 6rdenes es impar [41].
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donde ¢ es the maximo nivel de outage y Pou(R) es la proabilidad de outage

para una tasa de datos R dada, esto es

Pout(R) 2Pr (log,(1 +7) < R)

=Fpun (27 = 1) /7).

(B.35)

Entonces,
Rout(€) =logy(1+7F, " (€)) (B.36)

donde F,! (-) denota la inversa de la function Fy,, (). De nuevo, (B.25) per-
mite aproximar R, (€) para valores pequefios de e con una expresiéon com-

pacta e intuitiva; cuando € — 0,

) c 1/st
Rout(e) ~ Rout<€7 Q) = 10g2 <1 + 9((])”_}/ ((IC_W) ) (B37)

s,t

donde, una vez mas, se ve claramente el efecto del desvanecimiento a través
del factor aislado 6(q) que, for ¢ < 1, causa una reduccién en la relacién sefial-
ruido “efectiva”. Para ilustrar mejor la degradacién de la tasa de outage con
respecto al caso Rayleigh (¢ = 1), se define una aproximacion de la pérdida

de tasa de outage fraccional como

A

5 Rou ) 1) — Rou )
RL(%) ~ t(ef%) (€ 1)t(6 !
out\

x 100. (B.38)

La Tabla la RL aproximada junto con la RL exacta, evaluadas a partir
de con la inversién numérica de Fj,_ (-), para un escenario 2 x 2 con
méximo nivel de outage de ¢ = 107% y 4 = 10 dB. Los nimeros revelan una
degradacion substancial de dicha tasa conforme el valor de ¢ se vuelve maés

pequetio, hasta un ~ 37% de pérdida (¢ = 0.2).
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TABLE B.3: Pérdida de tasa de datos para un sistema MIMO
2x2paray =10dB,e =103

g 105]04] 03] 02

RL | 9% | 17% | 26% | 37%

~

RL | 9% | 18% | 27% | 43%

B.4.4 Conclusiones

Se ha simplificado el estudio de matrices de tipo Wishart no-circularmente
simétricas, que ha permitido dar, por primera vez, resultados sobre la dis-
tribucién del méaximo autovalor, conectando los estadisticos de estas matri-
ces y la de las conocidas matrices Wishart complejas no centrales. Aunque
la distribucién exacta del maximo autovalor no permite realizar un anélisis
profundo del efecto de un perfil asimétrico de potencia entre las partes real e
imaginaria del modelo, la expansion asintética en la cola traduce claramente
este efecto en un simple factor aislado.

Estos resultados se han aplicado a sistemas MIMO 2 x 2 y 2 x 3 bajo difer-
entes condiciones de desvanacimiento de tipo Nakagami- ¢ (Hoyt). Se ha
visto que la presencia de un desequilibrio entre las componentes real e imag-
inaria de canal degrada significativamente la probabilidad y la capacidad de
outage. Este efecto se acenttia exponencialmente para un gran ntimero de an-
tenas en ambos lados del transmisor y del receptor. También se ha observado
que los resultados asint6ticos, a pesar de ser muy simples, son notablemente
ajustados a los exactos, incluso para casos extremos de desvanacimiento (g

pequenios).



141

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

D. Marcuse, “Derivation of analytical expressions for the bit-error
probability in lightwave systems with optical amplifiers”, J. Lightw.
Technol., vol. 8, no. 12, pp. 1816-1823, 1990.

E. ]. Dyson, “Statistical theory of the energy levels of complex systems.

i”, J. Math. Phys., vol. 3, no. 1, pp. 140-156, 1962.

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estima-
tion Theory. Prentice-Hall, 1993.

I. M. Johnstone, “On the distribution of the largest eigenvalue in prin-
cipal components analysis”, Ann. Stat., vol. 29, no. 2, pp. 295-327, Apr.
2001.

M. K. Simon and M.-S. Alouini, Digital Communication over Fading Chan-
nels. John Wiley & Sons, 2005.

J. W. Goodman, “Dependence of image speckle contrast on surface

roughness”, Opt. Commun., vol. 14, no. 3, pp. 324-327, 1975.

J. Ohtsubo and T. Asakura, “Statistical properties of laser speckle pro-
duced in the diffraction field”, Appl. Opt, vol. 16, no. 6, pp. 1742-1753,
1977.

A Pandey and M. Mehta, “Gaussian ensembles of random Hermitian
matrices intermediate between orthogonal and unitary ones”, Com-

mun. Math. Phys., vol. 87, no. 4, pp. 449468, 1983.



142

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

L. Anttila, M. Valkama, and M. Renfors, “Circularity-based I/Q im-
balance compensation in wideband direct-conversion receivers”, IEEE

Trans. Veh. Technol., vol. 57, no. 4, pp. 2099-2113, Jul. 2008.

B. Chytil, “The distribution of amplitude scintillation and the conver-
sion of scintillation indices”, |. Atmos. Terr. Phys, vol. 29, no. 9, pp. 1175
-1177,1967.

N. Youssef, C.-X. Wang, and M. Patzold, “A study on the second order
statistics of Nakagami-Hoyt mobile fading channels”, IEEE Trans. Veh.
Technol., vol. 54, no. 4, pp. 1259-1265, Jul. 2005.

J. G. Proakis, “Digital communications”, McGraw-Hill, New York, 1995.

M. Nakagami, “The m-distribution-A general formula of intensity dis-
tribution of rapid fading”, in Statistical Method of Radio Propagation,

Pergamon Press, 1960, pp. 3-36.

R. S. Hoyt, “Probability functions for the modulus and angle of the
normal complex variate”, Bell Syst. Tech. ]., vol. 26, no. 2, pp. 318-359,
1947.

A. Goldsmith, Wireless Communications. Cambridge University Press,

2005.

M. K. Simon and M.-S. Alouini, “A unified approach to the per-
formance analysis of digital communication over generalized fading

channels”, Proc. IEEE, vol. 86, no. 9, pp. 1860-1877, Sep. 1998.

A. Annamalai, C. Tellambura, and V. Bhargava, “Simple and accurate
methods for outage analysis in cellular mobile radio systems-a unified

approach”, IEEE Trans. Commun., vol. 49, no. 2, pp. 303-316, Feb. 2001.

N. Youssef, W. Elbahri, M. Patzold, and S. Elasmi, “On the crossing

statistics of phase processes and random FM noise in Nakagami-gq



BIBLIOGRAPHY 143

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

mobile fading channels”, IEEE Trans. Wireless Commun., vol. 4, no. 1,

pp- 24-29, Jan. 2005.

J. Paris, “Nakagami-¢ (Hoyt) distribution function with applications”,

IEEE Electron. Lett., vol. 45, no. 4, pp. 210-211, Feb. 2009.

E.]. Leonardo and M. D. Yacoub, “Exact formulations for the through-
put of IEEE 802.11 DCF in Hoyt, Rice, and Nakagami-m fading chan-
nels”, IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2261-2271, May
2013.

V. Bhaskar and N. Peram, “Performance modeling of finite state
Markov chains for Nakagami-g and a-p distributions over adaptive
modulation and coding schemes”, AEU - Int. ]. Electron. Commun., vol.

67,10. 1, pp. 64 —71, Jan. 2013.

P. C. Sofotasios, M. K. Fikadu, K. Ho-Van, M. Valkama, and G. K. Kara-
giannidis, “The area under a receiver operating characteristic curve
over enriched multipath fading conditions”, in 2014 IEEE Global Com-
munications Conference, Dec. 2014, pp. 3490-3495.

J. M. Romero-Jerez and F. J. Lopez-Martinez, “A new framework for
the performance analysis of wireless communications under Hoyt
(Nakagami- ¢ ) fading”, IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1693—
1702, Mar. 2017.

D. Morales-Jimenez and J. F. Paris, “Outage probability analysis for 7-u
fading channels”, IEEE Communications Letters, vol. 14, no. 6, pp. 521-
523, Jun. 2010.

D. B. Da Costa and M. D. Yacoub, “Average channel capacity for gener-
alized fading scenarios”, IEEE Commun. Lett., vol. 11, no. 12, Dec. 2007.

S. Kumar and A. Pandey, “Random matrix model for Nakagami-Hoyt

tading”, IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2360-2372, May 2010.



144

BIBLIOGRAPHY

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M. L. Mehta, Random Matrices, 3rd. Academic press, 2004.

G. Fraidenraich, O. Lévéque, and ]. Cioffi, “On the MIMO channel ca-
pacity for the dual and asymptotic cases over Hoyt channels”, IEEE

Commun. Lett., vol. 11, no. 1, Jan. 2007.

M. Yacoub, “The k- distribution and the n-u distribution”, IEEE An-

tennas Propag. Mag., vol. 49, no. 1, pp. 68-81, Aug. 2007.

L. Moreno-Pozas, F. J. Lopez-Martinez, S. L. Cotton, J. F. Paris, and
E. Martos-Naya, “Comments on "Human body shadowing in cellular
device-to-device communications: channel modeling using the shad-
owed k-u fading model"”, IEEE ]. Sel. Areas Commun., vol. 35, no. 02,
pp- 517-520, Feb. 2017.

L. Moreno-Pozas, F. ]. Lopez-Martinez, J. E. Paris, and E. Martos-Naya,
“The k-p shadowed fading model: unifying the - and n-p distribu-
tions”, IEEE Trans. Veh. Technol., no. 12, pp. 9630-9641, Dec. 2016.

J. Lopez-Fernandez, L. Moreno-Pozas, F. J. Lopez-Martinez, and E.
Martos-Naya, “Joint parameter estimation for the two-wave with dif-

tuse power fading model”, Sensors, vol. 16, no. 7, Jun. 2016.

F. ]J. Lopez-Martinez, L. Moreno-Pozas, and E. Martos-Naya, “Novel
results for the x-u extreme fading distribution: generation of white
samples and capacity analysis”, IEEE Commun. Lett., vol. 19, no. 9,

pp. 1580-1583, Sep. 2015.

J. Lopez-Fernandez, L. Moreno-Pozas, F. ]J. Lopez-Martinez, and E.
Martos-Naya, “Moment-based parameter estimation for the two-wave
with diffuse power fading model”, in 2016 IEEE 83rd Vehicular Technol-
ogy Conference (VTC Spring), Sep. 2016.



BIBLIOGRAPHY 145

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

L. Moreno-Pozas and E. Martos-Naya, “On some unifications arising
from the MIMO Rician shadowed model”, in 2016 IEEE 83rd Vehicular
Technology Conference (VTC Spring), May 2016, pp. 1-5.

L. Moreno-Pozas, F. ]. Lopez-Martinez, J. F. Paris, and E. Martos-Naya,
“The Nakagami-q fading distribution: a particular case of the Rician
shadowed model”, in XXXI Simposium Nacional de la Unién Cientifica

Internacional de Radio, URSI, Sep. 2016.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
Dover New York, 1972.

I. S. Gradshteyn and I. Ryzhik, “Table of integrals, Series, and Prod-
ucts”, USA: Academic, 2007.

J. Marcum, “A statistical theory of target detection by pulsed radar”,
IRE Trans. Inf. Theory, vol. 6, no. 2, pp. 59-267, 1960.

A. H. Nuttall, “Some integrals involving the Q-function”, DTIC Docu-
ment, Tech. Rep., 1972.

M. K. Simon, “The Nuttall Q function-its relation to the Marcum Q
function and its application in digital communication performance
evaluation”, IEEE Trans. Commun., vol. 50, no. 11, pp. 1712-1715, Now.
2002.

C Andreief, “Note sur une relation entre les integrales definies des pro-

duits des fonctions”, Mem. de la Soc. Sci. Bordeaux, 2, 1883.

N. De Bruijn, “On some multiple integrals involving determinants”, J.

Indian Math. Soc., vol. 19, pp. 133-151, 1955.

C. Khatri, “Non-central distributions of ith largest characteristic roots
of three matrices concerning complex multivariate normal popula-

tions”, Ann. Inst. Stat. Math., vol. 21, no. 1, pp. 23-32, 1969.



146

BIBLIOGRAPHY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

M. Kang and M.-S. Alouini, “Largest eigenvalue of complex Wishart
matrices and performance analysis of MIMO MRC systems”, IEEE ].
Sel. Areas Commun., vol. 21, no. 3, pp. 418-426, Apr. 2003.

A. Lozano, A. M. Tulino, and S. Verdd, “High-SNR power offset in
multiantenna communication”, IEEE Trans. Inf. Theory, vol. 51, no. 12,

pp. 4134-4151, 2005.

M. Chiani, “Distribution of the largest eigenvalue for real Wishart and
Gaussian random matrices and a simple approximation for the Tracy—

Widom distribution”, |. Multivar. Anal., vol. 129, pp. 69-81, Aug. 2014.

A. G. Constantine, “Some non-central distribution problems in multi-

variate analysis”, Ann. Math. Statist., vol. 34, no. 4, pp. 1270-1285, 1963.

H. Weyl, The Classical Groups: Their Invariants and Representations.

Princeton University Press, 2016.

I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford Uni-
versity Press, 1995.

A. T. James, “Distributions of matrix variates and latent roots derived
from normal samples”, Ann. Math. Statist., vol. 35, no. 2, pp. 475-501,
Jun. 1964.

J. Paris, “Statistical characterization of ~ - ;1 shadowed fading”, IEEE

Trans. Veh. Technol., vol. 63, no. 2, pp. 518-526, Feb. 2014.

F. Yilmaz and M.-S. Alouini, “Novel asymptotic results on the
high-order statistics of the channel capacity over generalized fading
channels”, in Signal Processing Advances in Wireless Communications
(SPAWC), 2012 IEEE 13th International Workshop on, IEEE, 2012, pp. 389-
393.

A. Erdelyi, W Magnus, F Oberhettinger, and F. Tricomi, Tables of Integral
Transforms. New York, NY, USA: McGraw-Hill, 1954.



BIBLIOGRAPHY 147

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

L. U. Ancarani and G Gasaneo, “Derivatives of any order of the hyper-
geometric function2F 1 (a, b, ; c; z ) with respect to the parameters a,

b and c¢”, J. Phys. A: Math. Theor., vol. 42, no. 39, p. 085210, Sep. 2009.

R. J. Muirhead, Aspects of multivariate statistical theory. John Wiley &
Sons, 2009, vol. 197.

S. Jin, M. McKay, X. Gao, and I. Collings, “MIMO multichannel beam-
forming: SER and outage using new eigenvalue distributions of com-

plex noncentral Wishart matrices”, IEEE Trans. Commun., vol. 56, no. 3,

pp. 424-434, Mar. 2008,

G. L. Stiiber, Principles of Mobile Communication. Springer Science &

Business Media, 2011.

S. Basu, E. MacKenzie, S. Basu, E. Costa, P. Fougere, H. Carlson, and
H. Whitney, “250 MHz/GHz scintillation parameters in the equatorial,
polar, and auroral environments”, IEEE ]. Sel. Areas Commun., vol. 5, no.

2, pp. 102-115, Feb. 1987.

N. C. Beaulieu and A. M. Rabiei, “Linear diversity combining on
Nakagami-0.5 fading channels”, IEEE Trans. Commun., vol. 59, no. 10,
pp. 2742-2752, Oct. 2011.

A. Behnad, N. C. Beaulieu, and B. Maham, “Multi-hop amplify-and-
forward relaying on Nakagami-0.5 fading channels”, IEEE Wireless
Commun. Lett., vol. 1, no. 3, pp. 173-176, Jun. 2012.

S. O. Rice, “Statistical properties of a sine wave plus random noise”,

Bell Syst. Tech. |., vol. 27, no. 1, pp. 109-157, 1948.

C. Loo, “A statistical model for a land mobile satellite link”, IEEE Trans.

Veh. Technol., vol. 34, no. 3, pp. 122-127, Aug. 1985.



148

BIBLIOGRAPHY

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

C. Loo, “Measurements and models of a land mobile satellite channel
and their applications to MSK signals”, IEEE Trans. Veh. Technol., vol.
36, no. 3, pp. 114-121, Aug. 1987.

A. Abdi, W. Lau, M.-5. Alouini, and M. Kaveh, “A new simple model
for land mobile satellite channels: first- and second-order statistics”,

IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 519-528, May 2003.

N. C. Beaulieu and X. Jiandong, “A novel fading model for channels

with multiple dominant specular components”, IEEE Wireless Commun.

Lett., vol. 4, no. 1, pp. 54-57, Feb. 2015.

S. L. Cotton, “Human body shadowing in cellular device-to-device
communications: channel modeling using the shadowed -1 fading

model”, IEEE |. Sel. Areas Commun., vol. 33, no. 1, pp. 111-119, 2015.

I. Porto, M. Yacoub, J. Santos Filho, S. Cotton, and W. Scanlon,
“Nakagami-m phase model: further results and validation”, IEEE Wire-

less Commun. Lett., vol. 2, no. 5, pp. 523-526, Oct. 2013.

M. Yacoub, “Nakagami-m phase-envelope joint distribution: a new

model”, IEEE Trans. Veh. Technol., no. 3, pp. 1552-1557, Mar. 2010.

N. Beaulieu and S. Saberali, “A generalized diffuse scatter plus line-of-
sight fading channel model”, in IEEE International Conference on Com-

munications (ICC), Jun. 2014, pp. 5849-5853.

G. D. Durgin, T. S. Rappaport, and D. A. De Wolf, “New analytical
models and probability density functions for fading in wireless com-
munications”, IEEE Trans. Commun., vol. 50, no. 6, pp. 1005-1015, Jun.
2002.

M. Rao, F. Lopez-Martinez, M.-S. Alouini, and A. Goldsmith, “Mgf ap-
proach to the analysis of generalized two-ray fading models”, IEEE

Wireless Commun., vol. 14, no. 5, pp. 2548-2561, May 2015.



BIBLIOGRAPHY 149

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

J. M. Romero-Jerez, F. ]. Lopez-Martinez, J. F. Paris, and A. J. Goldsmith,
“The fluctuating two-ray fading model: statistical characterization and
performance analysis”, To appear in IEEE Transactions on Wireless Com-

munications, 2017.

W. C. Lee, “Estimate of channel capacity in Rayleigh fading environ-

ment”, IEEE Trans. Veh. Technol., vol. 39, no. 3, pp. 187-189, Aug. 1990.

C. G. Gunther, “Comment on "estimate of channel capacity in Rayleigh
fading environment”, IEEE Trans. Veh. Technol., vol. 45, no. 2, pp. 401-
403, May 1996.

M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading chan-
nels under different adaptive transmission and diversity-combining
techniques”, IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1165-1181, Jul.
1999.

N. Sagias and G. Karagiannidis, “Gaussian class multivariate Weibull
distributions: theory and applications in fading channels”, IEEE Trans.

Inf. Theory, vol. 51, no. 10, pp. 3608-3619, Oct. 2005.

C. Garcia-Corrales, F. J. Canete, and ]. F. Paris, “Capacity of x-u shad-
owed fading channels”, International Journal of Antennas and Propaga-

tion, vol. 2014,

A Sanchez, E Robles, E. Rodrigo, F Ruiz-Vega, U Ferndndez-Plazaola,
and J. Paris, “Measurement and Modelling of Fading in Ultrasonic Un-

derwater Channels”, in Proc. Underwater Acoustic Conf., 2014.

S. L. Cotton, “Shadowed fading in body-to-body communications
channels in an outdoor environment at 2.45 GHz”, in 2014 IEEE-APS

Topical Conf. Antennas Propag. Wireless Commun. (APWC), 2014.

S. L. Cotton, S. K. Yoo, and W. G. Scanlon, “A measurements based

comparison of new and classical models used to characterize fading



150

BIBLIOGRAPHY

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

in body area networks”, in IEEE MTT-S International Microwave Work-
shop Series on RF and Wireless Technologies for Biomedical and Healthcare

Applications (IMWS-Bio) 2014, IEEE, 2014, pp. 1-4.

J. Winters, “Optimum Combining in Digital Mobile Radio with
Cochannel Interference”, IEEE ]. Sel. Areas Commun., vol. 2, no. 4,

pp- 528-539, Jul. 1984.

——, “On the Capacity of Radio Communication Systems with Diver-
sity in a Rayleigh Fading Environment”, IEEE |. Sel. Areas Commun.,
vol. 5, no. 5, pp. 871-878, Jun. 1987.

I. E. Telatar et al., “Capacity of multi-antenna Gaussian channels”, Euro-

pean transactions on telecommunications, vol. 10, no. 6, pp. 585-595, 1999.

M. Chiani, M. Win, and A. Zanella, “On the capacity of spatially cor-
related MIMO Rayleigh-fading channels”, IEEE Trans. Inf. Theory, vol.
49, no. 10, pp. 2363-2371, Oct. 2003.

M.-A. Khalighi, J. Brossier, G. Jourdain, and K. Raoof, “On capacity of
Rician MIMO channels”, in 12th IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, vol. 1, Sep. 2001, pp. 150-
154.

M. McKay and I. Collings, “General capacity bounds for spatially cor-
related Rician MIMO channels”, IEEE Trans. Inf. Theory, vol. 51, no. 9,
pp- 3121-3145, Sep. 2005.

M. Kang and M.-S. Alouini, “Capacity of MIMO Rician channels”, IEEE

Trans. Wireless Commun., vol. 5, no. 1, pp. 112-122, Jan. 2006.

C. Khatri, “Distribution of the largest or the smallest characteristic root
under null hypothesis concerning complex multivariate normal popu-

lations”, Ann. Math. Statist., vol. 35, pp. 1807-1810, Dec. 1964.



BIBLIOGRAPHY 151

[90]

[91]

[92]

[93]

[94]

[95]

G. Alfano, A. De Maio, and A. M. Tulino, “A theoretical framework for
LMS MIMO communication systems performance analysis”, IEE Trans.

Inf. Theory, vol. 56, no. 11, pp. 5614-5630, 2010.

P. Dharmawansa and M. R. McKay, “Extreme eigenvalue distributions
of some complex correlated non-central Wishart and gamma-Wishart

random matrices”, . Multivar. Anal, vol. 102, no. 4, pp. 847-868, 2011.

R. W. Heath and D. ]J. Love, “Multimode antenna selection for spatial
multiplexing systems with linear receivers”, IEEE Trans. Signal Process.,

vol. 53, no. 8, pp. 3042-3056, Aug. 2005.

L. Garcia-Ordonez, D. P. Palomar, A. Pages-Zamora, and J. R. Fonol-
losa, “Analytical BER performance in spatial multiplexing MIMO sys-
tems”, in Proc. IEEE Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), Jun. 2005, pp. 460—464.

P. C. Sofotasios, K. Ho-Van, T. D. Anh, and H. D. Quoc, “Analytic re-
sults for efficient computation of the Nuttall-Q and incomplete Toronto
functions”, in 2013 International Conference on Advanced Technologies for

Communications (ATC 2013), IEEE, 2013, pp. 420-425.

J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios

more personal”, IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.



	Acknowledgements
	Abstract
	Introduction
	Focus of the Thesis
	Dissertation Overview
	Additional Related Contributions
	Publications
	International Journal Papers
	International Conference Papers
	National Conference Papers


	New Univariate and Multivariate Statistical Properties
	General Notation
	Preliminaries of Univariate Analysis
	Special Functions
	The Gamma Function
	The Digamma Function
	The Incomplete Gamma Function
	The Pochhammer Symbol
	The Generalized Hypergeometric Function
	The Incomplete Beta Function
	The modified Bessel Function of the First Kind
	The Marcum Q-Function
	The Nuttall Q-Function

	Some Statistical Distributions
	Uniform Distribution
	Gaussian (Normal) Distribution
	Central Chi-Squared Distribution
	Central Chi-Squared Distribution with n Degrees of Freedom
	Gamma Distribution
	Noncentral Chi-Squared distribution:
	Noncentral Chi-Squared Distribution with n Degrees of Freedom


	Preliminaries of Multivariate Analysis
	Determinants
	Pfaffians
	Definition and Properties
	Computation of Pfaffians in this Thesis

	Complex Zonal (Schur) Polynomials
	Concept of Partition
	Complex Zonal Polynomial Definition
	Properties

	Hypergeometric Function of Matrix Arguments
	Real and Complex Wishart Distributions
	Central Real Wishart Distribution
	Noncentral Complex Wishart Distribution


	New Univariate Statistical Properties
	New General Underlying Gaussian Models
	New Particular Cases
	Related to the RV A
	Related to the RV B

	New Result Involving Moments

	New Random Matrix Theory Results
	New Random Matrix Pdf
	New Exact Extreme Eigenvalue Distributions
	New Asymptotic Expansion (in the Tail) of the Largest Eigenvalue Distribution

	Conclusions

	Classical and Generalized Fading Models
	Classical Fading Models
	Rayleigh
	One-sided Gaussian
	Nakagami-m
	Nakagami-q (Hoyt)
	Rician

	Generalized Fading Models
	Rician Shadowed/Shadowed-Rice
	-
	-

	The - Shadowed Fading Model
	Context
	Statistical Models in Paris, CottonShadowed Revisited
	Underlying Statistical Model in Paris
	Underlying Statistical Model in CottonShadowed

	Comparing both models
	A simple correction to the underlying statistical model in CottonShadowed

	Numerical Results
	Conditioned Statistical Models
	Unconditioned Statistical Models


	Conclusions

	Unifying the - and - Fading Models
	New - Shadowed Underlying Models
	Generalized Model with the Same Shadowing for All the Clusters
	Generalized Model with I.I.D. Shadowing

	- and - Unification
	- Distribution and Particular Cases
	- Distribution and Particular Cases

	Ergodic Capacity Analysis
	Numerical Results
	Conclusions

	Noncircularly-symmetric Wishart-type Matrices
	Context
	A Novel Statistical Connection
	Can We Use Previous Univariate Connections?
	A Non-Classical Multivariate Analysis: A Connection with the Complex Wishart Ensemble

	Pdf and Eigenvalue Jpdf of W
	Pdf of W
	Eigenvalue Jpdf

	Extreme Eigenvalue Distributions
	Smallest Eigenvalue Distribution
	Largest Eigenvalue Distribution

	Outage performance of MIMO-MRC systems in Hoyt environments
	Conclusions

	Summary and Future Work
	Summary
	Future Work

	Series Representation of the Elements of (x)
	Resumen en Castellano
	Prefacio
	Introducción y Motivación
	Unificando los Modelos - y -
	Modelo - con Ensombrecimiento
	Distribución - y sus Casos Particulares
	Distribución - y sus Casos Particulares
	Analisis de la Capacidad Ergódica
	Resultados Numéricos
	Conclusiones

	Máximo Autovalor de Matrices de tipo Wishart
	Distribución del Máximo Autovalor de W
	Expansión Asintótica en la Cola
	Probabilidad y capacidad de outage de sistemas MIMO-MRC en entornos Nakagami-q (Hoyt)
	Conclusiones


	Bibliography

