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A.3.2 Resultados Teóricos . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.3.3 Resultados Numéricos . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.4 Probabilidad de Cobertura en Sistemas Multi-Usuario . . . . . . . . . . . . 234

A.4.1 Modelo de Sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.4.2 Resultados Teóricos . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.4.3 Resultados Numéricos . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.5 Probabilidad de Cobertura con Desvanecimiento Hoyt . . . . . . . . . . . . 238

A.5.1 Modelo de Sistema . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
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List of Figures 22
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Abstract

Heterogeneous Cellular Networks (HCNs) and vehicular communications are two key in-

gredients of future 5G communication networks, which aim at providing high data rates

on the one former case and high reliability on the latter one. Nevertheless, in these two

scenarios, interference is the main limiting factor, which makes achieving the required

performance, i.e., data rate or reliability, a challenging task. Hence, in order to cope with

such issue, concepts like uplink/downlink (UL/DL) decoupling, Interference-Aware (IA)

strategies or cooperative communications with Cloud Radio Access Networks (CRANs)

has been introduced for new releases of 4G and future 5G networks. Additionally, for

the sake of increasing the data rates, new multiple access schemes like Non-Orthogonal

Multiple Access (NOMA) has been proposed for 5G networks.

All these techniques and concepts require accurate and tractable mathematical mod-

elling for performance analysis. This analysis allows us to obtain theoretical insights about

key performance indicators leading to a deep understanding about the considered tech-

niques. Additionally, it also allows us to perform optimization, determining the optimal

set of system’s parameters that maximize a certain metric. Due to the random and ir-

regular nature that exhibits HCNs, as well as vehicular networks, stochastic geometry

has appeared recently as a promising tool for system-level modelling and analysis. Nev-

ertheless, some features of HCNs and vehicular networks, like power control, scheduling

or frequency planning, impose spatial correlations over the underlying point process that

complicates significantly the mathematical analysis. Therefore the main goal of this thesis

is to obtain analytic closed-from expressions for key performance indicators in HCNs as

well as in vehicular networks. The focus is here on providing simple expression to complex

problems where some spatial correlations complicate the tractability of the problem at

hand.
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Firstly, it is derived a mathematical framework for the analysis of an Interference-Aware

Fractional Power Control (IAFPC) for interference mitigation in the UL of HCNs. The

analysis reveals that IAFPC outperforms the classical Interference-Unaware Fractional

Power control (IUFPC) in terms of Spectral Efficiency (SE), average transmitted power,

and mean and variance of the interference. Then, it is investigated the performance of a

scheduling algorithm where the Mobile Terminals (MTs) may be turned off if they cause

a level of interference greater than a given threshold. To make the results and conclusions

closer to real systems, it is proposed a novel framework to obtain the Binary Rate (BR)

and SE by using Adaptive Modulation and Coding (AMC), which provides results closer

to real implementations.

Secondly, the focus is set on homogeneous networks where the fairness under Rayleigh

and coverage under Hoyt fading are investigated. In particular, a multi-user UL model to

assess the coverage probability of different MTs in each cell is proposed. This framework

allows us to assess the fairness as the difference between the coverage probability of the

best and worst MTs. It is proven that with a full channel inversion power control, the

fairness of the system is maximal, since all MTs exhibit the same coverage probability.

Then, coverage probability of cellular systems under Hoyt fading (Nakagami-q) is studied.

This fading model, allows us to consider more severe fading conditions than Rayleigh,

which is normally the considered fading model for the sake of tractability. Closed-form

expressions are obtained by expressing the fading as a conditional exponential distribution.

Thirdly, a novel NOMA-based scheme for CRANs is proposed, modelled and analyzed.

In this scheme, two users are scheduled in the same resources according to NOMA; however

the performance of cell-edge users is enhanced by means of coordinated beamforming. To

account for the spatial correlation of BSs that belong to the same cooperating cluster,

it is considered a cluster point process with a minimum distance between cluster centers

to avoid cluster overlapping. Results reveal that the outage probability of cell-edge users

greatly improves thanks to coordinated beamforming.

Finally, the performance of a decentralized Medium Access Control (MAC) algorithm

for vehicular communications is investigated. With this strategy, the cellular network

provides frequency and time synchronization for direct Vehicle to Vehicle (V2V) commu-

nication, which is based on its geographical information. This type of communication aims

at increasing the safety in the road and hence it imposes severe reliability constraints over
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the messages that are exchanged.The analysis demonstrates that there exists an operation

regime where the performance is noise-limited. This means that the capture probability,

i.e., the probability of successful message reception, can be arbitrary increased by increas-

ing the transmit power. Then, the optimal transmit power that maximizes the Energy

Efficiency (EE) of the system subject to a minimum capture probability constraint is

derived.



Resumen

Las redes heterogéneas y las comunicaciones vehiculares son dos ingredientes primordiales

de las futuras redes de comunicación 5G, que tienen como objetivo proporcionar altas

velocidades de transmisión de datos en el primer caso y alta fiabilidad en el segundo. Sin

embargo, en estos dos escenarios, la interferencia es el principal factor limitante, lo que

hace que alcanzar el rendimiento requerido, es decir, velocidad de datos o fiabilidad, sea

una tarea dif́ıcil. Por lo tanto, para hacer frente a este factor limitante, se han introducido

conceptos como el desacoplamiento de los enlaces ascendente y descendente, estrategias

conscientes de la interferencia (IA, Interference-Aware) o las comunicaciones cooperativas

con las Redes de Acceso de Radio en la Nube (CRAN, Cloud Radio Access Networks) para

las nuevas versiones de redes 4G y las futuras redes 5G. Además, con el fin de aumentar las

velocidades de datos, se han propuesto nuevos esquemas de acceso múltiple como NOMA

(Non-Orthogonal Multiple Access) para las redes 5G.

Todas estas técnicas y conceptos que se proponen para las futuras redes celulares re-

quieren un modelo matemático preciso y manejable para el análisis de prestaciones. Este

análisis nos permite establecer conclusiones teóricas sobre indicadores clave de las presta-

ciones del sistema que conducen a una comprensión profunda de las técnicas consideradas.

Además, también nos permite realizar la optimización, determinando el conjunto óptimo

de parámetros del sistema que maximizan una determinada métrica. Debido a la nat-

uraleza aleatoria e irregular que exhiben las redes heterogéneas (HCNs , Heterogeneous

Cellular Networks), aśı como las redes vehiculares, la geometŕıa estocástica ha aparecido

recientemente como una herramienta prometedora para el modelado y análisis a nivel de

sistema. Sin embargo, algunas caracteŕısticas de las HCNs y las redes vehiculares, como

el control de potencia, la planificación dinámica de recursos o la planificacin de frecuen-

cias, imponen correlaciones espaciales sobre el proceso punto subyacente que complican
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significativamente el análisis matemático. Por lo tanto, el objetivo principal de esta tesis

es obtener expresiones anaĺıticas cerradas para los indicadores clave de las prestaciones en

HCNs, aśı como en redes vehiculares. El foco está puesto en proporcionar expresiones sim-

ples a problemas complejos donde algunas correlaciones espaciales complican el problema

a tratar.

En primer lugar, se deriva un marco matemático para el análisis de un mecanismo de

control de potencia fraccional consciente de la interferencia (IAFPC, Interference-Aware

Power Control) para la mitigación de interferencias en el enlace ascendente (UL, Uplink)

de HCNs. El análisis revela que IAFPC supera al control de potencia fraccionado clásico,

que es inconsciente de la interferencia, en términos de eficiencia espectral (SE, Spectral

Efficiency), potencia media transmitida y media y varianza de la interferencia. A contin-

uación, se investiga el rendimiento de un algoritmo de planificación de recursos en el que

los terminales móviles (MTs, Mobile Terminals) se pueden apagar si causan un nivel de

interferencia mayor que un umbral dado. Para acercar los resultados y las conclusiones

a los sistemas reales, se propone un nuevo marco para obtener el régimen binario (BR,

Binary Rate) y la SE mediante la modulación y codificación adaptativas, que proporciona

resultados más cercanos a las implementaciones reales.

En segundo lugar se centra el estudio las redes homogéneas, donde se analiza la justicia

entre usuarios con desvanecimientos tipo Rayleigh, y la cobertura con desvanecimientos

tipo Hoyt. En particular, se propone un modelo multi-usuario del UL para evaluar la

probabilidad de cobertura de diferentes MTs en cada celda. Este marco nos permite

evaluar la justicia entre usuarios como la diferencia entre la probabilidad de cobertura

del mejor y peor MT. Se demuestra que con un control de potencia de inversión de canal

completo, la justicia en el sistema es máxima, ya que todos los MTs presentan la misma

probabilidad de cobertura. Después se estudia la probabilidad de cobertura de redes

celulares con desvanecimientos tipo Hoyt (Nakagami-q). Este modelo de desvanecimientos

permite estudiar condiciones de desvanecimiento más severas que las asociadas a un canal

Rayleigh, que es el modelo usado normalmente por su sencillez. Se obtienen expresiones

cerradas expresando la distribución de Hoyt como una exponencial condicionada.

En tercer lugar, se propone, modela y analiza un nuevo esquema basado en NOMA

para CRANs. En este esquema, dos usuarios están planificados en los mismos recursos

según NOMA; sin embargo, se mejora el rendimiento de los usuarios de borde mediante
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la conformación de haz coordinada. Para tener en cuenta la correlación espacial de las

BS que pertenecen al mismo grupo, se considera un proceso punto de tipo cluster con

una distancia mı́nima entre los centros de cada cluster para evitar el solape entre grupos

distintos. Los resultados revelan que la probabilidad de interrupción de los usuarios de

borde de celda mejora en gran medida gracias a la conformación de haz coordinada.

Finalmente, se investigan las prestaciones de un algoritmo descentralizado de Control

de Acceso al Medio (MAC) para comunicaciones vehiculares. Con esta estrategia la red

celular proporciona sincronización en tiempo y frecuencia para la comunicación directa

Veh́ıculo a Veh́ıculo (V2V), que está basada en su información geográfica. Este tipo de

comunicación pretende incrementar la seguridad en la conducción y por tanto se imponen

requisitos de fiabilidad muy estrictos sobre los mensajes intercambiados. El análisis de-

muestra que existe un régimen de operación en el que el rendimiento está limitado por el

ruido. Esto significa que la probabilidad de captura, es decir, la probabilidad de recepción

de mensajes satisfactoria, puede aumentarse arbitrariamente incrementando la potencia

de transmisión. A continuación, se obtiene la potencia óptima de transmisión que maxi-

miza la eficiencia energética (EE) del sistema sujeto a una restricción de probabilidad de

captura mı́nima.



Chapter 1

Introduction

In this chapter it is presented the main motivations and goals of this thesis. The state

of the art of system-level analysis by using tools of stochastic geometry is revisited and

then, the main contributions are summarized. Finally, the structure and organization of

this dissertation is depicted.

1.1 Scope and Overview

With the advent of smart-phones and tablets, demanding higher data rates each year, the

cellular network has been rethought. The response of standardization bodies as the 3rd

generation partnership project (3GPP) to this demand has led to the fourth generation

(4G), which introduces concepts like Heterogeneous Cellular Networks (HCNs), aiming at

improving the spectral efficiency per unit area in a cost-effective way. In this approach,

there are several tiers of Base Stations (BSs), e.g. Macro BSs (MBSs) and Small-cell

BSs (SBSs), that differ in their transmit powers and propagation conditions [3]. This

heterogeneity on the access points makes the association between Mobile Terminals (MTs)

and BSs a paramount issue. On the one hand, the classical association criteria based on

maximal received power from downlink (DL) pilot signals leads to a situation with highly

congested MBSs and sightly loaded or even empty SBSs [4]. Adding a cell bias over SBSs

and an association criteria based on weighted received power may compensate this issue

by shifting MTs to SBSs; however, this cause severe interference to the MTs that are

offloaded [5]. As a result of this trade-off between cell offloading and interference, there
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Figure 1.1: Schematic diagram of the next generation cellular network studied in this
dissertation. Blue links represent desired signals whereas red links are related to interfering
signals. Synchronization signals are represented in yellow. Low speed backhaul links are
represented with orange dashed arrows while high speed fronthaul links that connects BSs
with a CU in CRANs are represented with green dotted arrows.

exists an optimal biasing factor that maximizes the DL performance in terms of average

Binary Rate (BR) [4, 6]. Fig. 3.1 illustrates an sketch of next generation HCNs under

study in this dissertation.

Besides, the fact that association is based on received power on the DL, makes the

interference even more limiting in the uplink (UL). This is due to the fact that MTs

tend to be associated with distant BS, and thanks to power control, they can cause a high

interference on neighboring BSs. The root of the problem relays on having MTs connected

to the same BS in both DL and UL, despite of the fact that DL and UL are different in

many aspects. To overcome this limitation, uplink/downlink (UL/DL) decoupling has

been proposed to facilitate joint optimization of both links [7]. Nevertheless, UL/DL also

poses additional implementation challenges that complicates the arquitecture design [8].

To boost the performance, cooperative techniques for enhanced interference mitigation

in HCNs needs to be developed and proposed for next generation 4G and 5G networks.
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In such context, knowledge about interference is a powerful tool that can be exploited

for interference mitigation and performance improvement. In particular, Interference-

Awareness (IA) have been recently used for smart association in [9], for Energy Effi-

ciency (EE) maximization in 5G networks in [10] and for rank coordination in 5G MIMO

(Multiple-Input-Multiple Output) networks in [11].

Another paramount paradigm for cooperative networks that has been recently intro-

duced is Cloud Radio Access Networks (CRANs). This approach consists on centralizing

functionalities by means of a pool of computational resources, which is known as central

unit (CU). The CU is connected through high speed links (fronthaul) with several radio

remote heads (RRHs) that acts as BSs from the users perspective [12]. Implementing the

networks in this manner leads to a cluster of BS, or equivalently RRHs, that can cooperate

to perform advanced interference mitigation techniques [13]. Besides this, C-RANs offer

numerous advantages like reducing operational costs, facilitating network upgrades and

maintenance and leading to a better energy efficiency [14].

Additionally, to increase the data rates in cellular networks, it has been recently pro-

posed the use of Non Orthogonal Multiple Access (NOMA) [15]. This scheme proposes

that several MTs are scheduled in the same orthogonal resource block; but the transmis-

sion is performed with different power for different MTs. Hence, this allows to perform

Successive Interference Cancellation (SIC) at the receiver to detect the intended signal

[16].

The evolution of 4G, under commercial standards like Long Term Evolution Advanced

(LTE-A) and LTE-A Pro, facilitates the path towards the 5G, which will bring new ser-

vices and applications and it will improve the overall system’s performance. Among the

new services that the evolution of 4G (LTE-A Pro) as well as 5G will offer, the direct

communication between vehicles is one of the most important proposals. This type of

communication aims at increasing the safety on the road and hence it imposes severe re-

liability constraints over the messages that are exchanged between vehicles. One of the

proposals for Vehicle-to-Vehicle (V2V) communications is the IEEE 802.11p standard,

which makes use of Carrier Sense Multiple Access (CSMA) as a MAC protocol, since it

provides decentralized and ad hoc connectivity.

Nevertheless, 802.11p suffers from the main limitations related to 802.xx standards,

such as poor scalability to high traffic density and poor support of high mobility [17].
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Hence, solutions based on 4G and 5G cellular networks come to the fore [18]. LTE V2X

is the response of the 3GPP standardization body to the high market expectations and

will use the same principles as those that are envisioned for Device-to-Device (D2D) com-

munications. Here, instead of the traditional communication through the infrastructure,

which may suffer from long delays, the local data exchange through the direct V2V path

is preferred. With autonomous mode of operation, it is even possible for the devices to

select the transmission resources without network involvement. Yet, the network has a

key role in providing time and frequency synchronization as it is sketched in Fig. 3.1.

1.2 Stochastic Geometry Analysis: state of the art

All the aforementioned techniques and concepts that are proposed for future cellular net-

works require accurate and tractable mathematical modelling for performance analysis.

This analysis allows us to obtain theoretical insights about key performance indicators

leading to a deep understanding about the considered techniques. Additionally, it also

allows us to perform optimization, determining the optimal set of system’s parameters

that maximize a certain metric.

Due to the random and irregular nature that exhibits HCNs, as well as vehicular

networks, stochastic geometry has recently appeared as a promising tool for system-level

modelling and analysis. Nevertheless, some features of HCNs and vehicular networks,

like power control, scheduling or frequency planning, impose spatial correlations over the

underlying point process that complicates significantly the mathematical analysis.

Therefore the main goal of this thesis is to obtain analytic closed-from expressions for

key performance indicators in HCN as well as in vehicular networks. The focus is here on

providing simple expressions to complex problems where spatial correlations complicate

the tractability of the problem at hand. With the derived expressions, interesting insights

about system performance has been obtained.

Stochastic geometry analysis normally considers that the positions of BSs (of each

tier) and MTs can be modelled as independent and identically distributed (iid) uniform

Poisson Point Processes (PPPs) in the entire plane [19, 20]. Several works have recently

proved that stochastic geometry provides estimates of key performance indicators that are

as accurate as simulation results [21–25]. This approach usually considers the typical link
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between a probe MT and its serving BS, where the term typical means randomly chosen

and foresees that the MT can be placed anywhere within the cell.

In the last few years, stochastic geometry has been extensively used for the analysis of

the DL of HCNs. The analysis of the UL, on the other hand, is more involved than that of

the DL. This is because the transmission powers of the interferers are coupled with their

serving BSs’ distances due to power control. Additionally, even if the positions of BSs and

MTs follow a PPP, the positions of the interfering MTs do not follow a PPP, making the

exact analysis intractable [26].

To understand why the positions of the interfering MTs do not follow a PPP, let us

recall that one property of the PPPs is the independence of the number of points falling

in disjoint regions. In current networks, orthogonal resource allocation schemes are used,

which implies that there is a single interfering MT in any association cell [27]. Thus,

given a PPP of BSs, the positions of the interfering MTs are coupled with the positions

of BSs due to the cell association criterion being used, and the interfering MTs are not

distributed according to a PPP. This can be confirmed by considering two disjoint regions

in the same association cell. Having an interfering MT in one of the regions implies that

the other region is empty, which contradicts the PPP assumption. The interfering MTs,

on the other hand, can be viewed as a stemmed form of Voronoi perturbed lattice process

[26, 28], which is not mathematically tractable. This makes the analysis of the UL more

complicated than that of the DL.

In spite of its mathematical challenges, there are recent works that analyze the perfor-

mance of the UL with different power control and association policies. In [29], single tier

networks with FPC are analyzed with the aid of stochastic geometry. In order to avoid

the intractability of the locations of the interfering MTs, the proposed approach assumes

that the MTs that are scheduled in the RB of interest form a Voronoi tessellation and that

a single BS is available in each Voronoi cell. In [30], FPC is analyzed by approximating

the positions of the interfering MTs as an uniform PPP in the entire plane. With this

approach, however, some interfering MTs may undergo, with respect to the probe BS, a

smaller path loss than with their serving BS, which is not a realistic situation.

Recently, [26, 31, 32] have proposed accurate frameworks to model the positions of the

interfering MTs. These works consider the spatial correlation between the locations of

the probe BS and those of the interfering MTs. Such correlation is due to the fact that
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the interfering MTs are placed outside the Voronoi cell of the probe BS [27]. The authors

of [31] consider a truncated channel inversion power control, where the MTs attempt to

fully compensate for the path loss towards their serving BS, provided that they do not

have to transmit with more power than pmax. The cell association is based on the smallest

path loss. The MTs that necessitate higher power than pmax are kept silent. The case

of UL and DL with decoupled access is considered in [26]. The association is based on

maximum weighted received powers and FPC is considered in the UL. Here, to account

for the spatial correlation a non-homogeneous PPP is considered to model the locations

of interfering MTs. A framework for the UL of HCNs with multi-antena BSs is stuided

in [32]. In this work it is considered FPC under a generalized association criteria and two

extreme detection techniques in terms of complexity and performance: Maximum Ratio

Combining (MRC) and Optimum Combining (OC). It is demonstrated that OC greatly

outperforms MRC when MTs use aggressive power control, i.e., when the interference is

high. The spatial correlation is imposed by means of a conditional thinning that takes

into account the generalized cell association procedure.

CRANs are modeled and anlyzed with the aid of point process theory in [33] and [34]

where it is considered a single cluster of cooperating BSs. In [33] it is obtained an exact

expression for the outage probability under dynamic cell selection and an approximated

expression in the high SNR regime for coordinated beamforming. [34] focuses on the case of

coordinated beamforming and provides an accurate expression for the outage probability,

which is valid for any value of SNR. In [35] it is proposed a scheme where b BSs transmits

jointly to k users according to NOMA based access. To improve the performance it is

proposed an opportunistic algorithm to select the set of cooperating BSs. A NOMA-

based scheme with Coordinated Multi-Point (CoMP) transmission is proposed in [36].

Nevertheless, since the scheme is based on Alamuti codes, the number of cooperating

BSs is smaller than 3. A comon factor of the aforementioned works in [33–36] is that

the interference from other clusters, which is the main limiting factor, is not considered.

A CoMP scheme is proposed in [37] for HetNets where the k single-antenna BSs, that

provides strongest average received power to a given user, transmit jointly to improve its

performance. In [38] it is considered a dynamic clustering approach where the k-nearest

multiple-antenna BSs transmit to the same user. The cooperating cluster determine the

beamforming vector that maximizes the desired signal while nullifying the intra-cluster
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interference. Hence, [37] and [38] consider that clusters are formed dynamically for each

user, which on the other hand, possesses implementation challenges for real systems.

For tractability, in those aforementioned papers it is assumed Rayleigh distribution for

the desired link. Nevertheless, Rayleigh fading is not an appropriate distribution for small

scale fading in many scenarios. In this context, Hoyt (Nakagami-q) distribution appears

has an interesting tool, since it models fading conditions more severe than Rayleigh, and it

includes both Rayleigh fading and one-sided Gaussian fading as special cases [39]. There

are some approaches to deal with general fading distributions. In [20] it is proposed to use

the Plancherel-Parseval theorem. Gil-Pealez inversion theorem is used in [40] to derive the

coverage probability and rate of a cellular network. However, these approaches generally

add a single improper integral compared to the case of Rayleigh fading. In [41] it is

analyzed the case of η-µ fading. This distribution account for Hoyt fading when µ = 0.5.

Nevertheless, with the proposed framework, the coverage probability is obtained as an

infinite sum of terms that involve the computation of the k-th derivative of the Laplace

transform of the interference, which is numerically complex. Hence, a framework to obtain

the coverage for Hoyt fading in cellular systems as a simple closed-form expression is still

an open problem.

As for vehicular communications, references in the literature related to performance

analysis have mainly focus on decentralized ALOHA and CSMA as MAC protocols. For

instance, [42] analyzes, with the aid of stochastic geometry, the capture probability, aver-

age throughput and mean density progress of transmitted packets for the case of unicast

transmissions with ALOHA. In [43], CSMA for unicast multi-hop communications is con-

sidered with several routing strategies. It also considers multi-lane abstraction model

which is more accurate than single-lane models for wide roads. The case of a head vehicle

that broadcasts info and control messages to a sectorized cluster of client vehicles is con-

sidered in [44]. This work models the positions of vehicles as a Cox process whose density

follows a Fox distribution; however, the interference caused by other transmitting vehicles

is not taken into account. The spatial propagation of broadcast information is tackled in

[45]; nevertheless, the signal propagation is neglected and it is assumed that transmission

is always successful as long as the distance towards the receiver is smaller than a given

distance. The performance of IEEE 802.11p is assessed with the aid of stochastic geometry

and queuing theories in [46]. Here it is considered the temporal behavior of CSMA which
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adds a delay to access the system by means of a back-off counter. To account for the

spatial dependence, which is derived from the carrier sensing, and also for the temporal

behavior, which is derived from the back-off counter, a discrete Matérn Hard Core Point

Process (HCPP) is proposed to model the locations of concurrent transmitters.

Existing mathematical frameworks, are not enough for the analysis of new interference

mitigation techniques in HCNs and vehicular communications, and hence, new frameworks

need to be derived.

1.3 List of Main Contributions

In this work, we have addressed mathematical modelling and analysis of different tech-

niques for interference mitigation in HCNs, as well as in vehicular communications, where

spatial correlations complicates the tractability of the problem. The focus is on obtaining

simple expressions for key performance indicators as average SE, average BR, mean and

variance of the interference, average transmitted power, capture probability, and average

EE. As stated above, existing mathematical frameworks are not appropriate for analyzing

such techniques and hence, new frameworks have been derived.

The interference is the main limiting factor in HCNs and vehicular communications.

Hence, in this thesis two mechanisms for interference mitigation has been proposed and

analyzed.

Firstly, it is analyzed an Interference-Aware Fractional Power Control (IAFPC) for the

UL of HCNs that keeps the generated interference under a given threshold, i0. To account

for novel concepts in HCNs, like UL/DL decoupling, a generalized cell association has

been considered, which includes the coupled and decoupled settings as special cases. The

proposed mathematical framework avoids the mathematical intractability of the problem

by means of conditional thinning, which adds the necessary correlation that exist between

the probe MT, the probe BS and the most interfered BS. More specifically, the contribution

of this work can be summarized as follows.

• Analysis and comparison of IA and non-IA FPC schemes. From their numerical

comparison, it is shown that interference awareness reduces the mean and the vari-

ance of the interference, as well as the average transmitted power. Also, it increases

the average spectral efficiency.
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• Analysis of several performance metrics that provide better understanding of IA

and non-IA FPC schemes. This includes the average transmitted power, the mean

and variance of the interference, the coverage probability and the average spectral

efficiency.

• Two accurate approximations for the Laplace transform of the interference in the

presence of IAFPC. These approximations greatly reduce the computational com-

plexity of the resulting mathematical frameworks.

• Proposal of an asymptotic framework to gain theoretical insight for system design.

In particular, it is shown that the statistics of the interference are independent of

the BS density in the low i0 regime and under the smallest path loss cell association

criterion.

The contributions mentioned above have been published in [47]. The related work is

presented in Chapter 2.

Then, we investigate the performance of a scheduling algorithm where the MTs may be

turned off (i.e., muted) if they cause a level of interference greater than a given threshold.

This approach, which is referred to as Interference Aware Muting (IAM), may be regarded

as an interference-aware scheme that, contrary to IAFPC, is aimed to reduce the level

of interference at the MAC layer, instead than in the physical layer. Such a muting

procedure introduces further correlations that are appropriately modelled in the developed

framework.

Based on these modeling assumptions, which are validated against extensive Monte

Carlo simulations, we provide the following contributions.

• We develop a tractable mathematical framework for computing the CCDF of the

Signal-to-Interference-plus-Noise-Ratio (SINR), which completely characterizes the

performance of the IAM scheduling scheme.

• We study IAM scheme in terms of average transmit power of the MTs, mean and

variance of the interference. The mathematical analysis reveals that IAM is capa-

ble of reducing the three latter performance metrics compared with IAFPC, which

results in several advantages for practical implementations. Reducing the variance
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of the interference is beneficial for better estimating the SINR and, thus, for reduc-

ing the error probability of practical decoding schemes, e.g., turbo decoding, [48],

and for making easier the selection of the most appropriate Modulation and Coding

Scheme (MCS) to use in LTE systems [49].

• To make our study and conclusions directly applicable to current communication

systems that are based on Adaptive Modulation and Coding (AMC) transmission,

we provide tractable expressions of SE and BR based on practical MCSs that are

compliant with the LTE standard and whose parameters are obtained from a link-

level simulator [1, 2].

• With the aid of the proposed mathematical frameworks, we compare IAFPC and

IAM schemes in terms of SE and BR, which provide different information on their

strengths and weaknesses. The SE provides information on how well the MTs exploit

the available resources (e.g., bandwidth) that are shared among the MTs served by

the same BS, whereas the BR accounts for the specific fraction of resources that is

allocated to each MT served by a given BS. While the IAFPC scheme is superior

in terms of SE, the IAM scheme is superior in terms of RB. This implies that IAM

provides service to fewer users, which get better performance compared with IAFPC.

To characterize this trade-off, we investigate the resource fairness of both schemes,

which is defined here as the probability that a randomly chosen MT gets access to

the resources, and provide a tractable frameworks for its analysis.

• In light of the emerging UL-DL decoupling principle, we develop the mathemati-

cal framework for a General Cell Association (GCA) criterion, whose association

weights may be appropriately optimized for performance enhancement. By direct

inspection of the mathematical framework, we prove that three operating regimes

can be identified as a function of the interference threshold i0: i) the first, where

the performance is independent of i0, ii) the second, where the performance depends

on i0 but it does not depend on the cell association, and iii) the third, where the

performance depends on i0 and the cell association. Of particular interest in this

dissertation is the second regime, which highlights that UL-DL decoupling may not

be an issue for some system setups, which in turn simplifies the design of HCNs.

• As for the relevant case study for the UL where the serving BS of the typical MT
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is identified based on the Smallest Path-Loss Association (SPLA) criterion with

channel-inversion power control [7], we provide simple and closed-form framework

for relevant performance indicators and prove that two operating regimes exist: i) the

first, where the performance depends on i0 (interference-aware) and ii) the second,

where the performance is independent of i0 (interference-unaware). We prove, in

addition, that i) the scaling law of the average transmit power of the MTs, the

mean interference and the probability that a MT gets access to the resources is a

polynomial function of i0 whose exponent depends on the path-loss exponent, ii) the

distance towards the serving BS gets smaller as i0 increases; and iii) the CCDF of

the SINR is independent of the density of BSs.

These aforementioned contributions appear in [50], which has been accepted for publica-

tion, and [51], which is a work under review. The work associated with these contributions

is presented in Chapter 3.

Secondly, we focus on homogeneous networks to assess the fairness under Rayleigh

fading and coverage of the typical MT under Hoyt fading. In particular, a multi-user

UL model to assess the coverage probability of different MTs in each cell is proposed.

Contrary to the resource fairness, which is studied in the above work, this framework

allows us to assess the coverage fairness, which is defined here as the difference between

the coverage probability of the best and worst MTs. It is proven that with a full channel

inversion power control, such fairness is maximal in the system, since all the MTs exhibit

the same coverage probability. These aforementioned contributions have been published

in [52]. The related work is presented in Chapter 4. Then, we provide a closed-from

approximation for the coverage probability of cellular systems under Hoyt (Nakagami-q)

fading. The proposed framework express the fading as conditional functions with expo-

nential distribution. The expectation over the distance towards the serving Base Stations

(BS) is split in two finite range integrals that can be accurately approximated by means

of Gauss-Chebyshev rule. The accuracy of the proposed framework is validated thought

extensive Monte Carlo simulations. These contributions appear in [53], which is under

review. Chapter 5 presents the aforementioned work.

Secondly, a novel NOMA-based scheme for CRANs with coordinated beamforming is

proposed and analyzed. On the one hand, this scheme benefits from NOMA in order

to increase the spectral efficiency, since two mobile terminals (MTs) are scheduled per
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BS. On the other hand, it benefits from cooperation, since each cluster of BSs performs

coordinated beamforming to improve the performance of cell-edge MTs. To model the

locations of BSs in CRANs, it has been considered a cluster point process (CPP), where a

minimum distance over the cluster centers is imposed to avoid spatial overlapping between

different clusters. This model involves two sources of spatial correlation: one from the

cluster process and another from the minimum distance, that complicate the problem at

hand. Besides this, to assess the performance of the system in realistic conditions, both

the intra-cluster interference due to NOMA and the inter-cluster interference from other

clusters are considered.

Based on this modeling framework, we provide the following contributions, which are

validated against extensive Monte Carlo simulations:

• The beamforming gain can be expressed as a mixture Erlang distribution.

• The moments of the beamforming gain are linear functions with respect to the

number of BSs per cluster.

• The outage probability for cell-edge MTs can be expressed as a sum of the k−th

derivative of the Lapalce transform of the inter-cluster interference.

• The proposed scheme greatly improves the performance of the cell-edge MT, which

increases with the cluster size.

These contributions appear in [54], which is under review. Chapter 6 presents the afore-

mentioned work.

Finally, the performance of a MAC algorithm for vehicular communications is analyzed

taking into account the velocity-dependent safe distance, dsafe, between vehicles of the

same lane. With the proposed MAC algorithm, the vehicles access the resources for direct

V2V communication based on its geographical information. Here, the road is divided in

segments and orthogonal Access Resources (ARs) are allocated to consecutive segments.

The mapping is made aiming to maximize the co-channel distance.

The aforementioned safe distance imposes some correlation between locations of the

vehicles, since the case of two neighboring being closer than dsafe is not feasible. Hence,

the location of vehicles in this work is modeled by means of a Matérn HCPP of type

II. However, such a point process is generally intractable, and only some moments of
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the interference can be obtained without resorting to approximations [55]. To overcome

such an intractability, we will use conditional thinning. In simple terms, the locations of

vehicles are first assumed to be placed according to a PPP of a given density. Then, spatial

constrains (correlation) in the form of a minimum distance between points are imposed

by means of an indicator function, but only in the proximity of the transmitter and the

receiver. Additionally, it is considered that the length of the road is much higher than its

width, and hence it is assumed that locations of the vehicles in each lane can be modeled as

points in the real line. Based on these modeling assumptions, which are validated against

extensive Monte Carlo simulations, the following contributions are provided:

• We propose a mathematical framework for the analysis of GLOC considering a min-

imum distance between vehicles of the same lane. Two kind of resource alloca-

tion schemes are considered: Single-Lane Partition (SLP) and Multi-Lane Partition

(MLP), which have different trade-offs and mainly differ on whether lane-finding is

required or not. With SLP, the road is divided into different segments, whereas with

MLP, each lane is divided into segments. Both broadcast messages, i.e., periodic and

non-periodic, are modeled to obtain a complete understanding about the capabili-

ties of GLOC as a MAC for ITS. Additionally, system-level parameters like message

size, reporting rate, broadcast distance, etc. are taken from recommentations of

the 3GPP Work Items [56] and [57] to study the support of LTE for V2V services.

The path loss slope and path loss exponent is taken from [58] where it has been

performed a vast V2V channel measurement campaign conducted in Sweden over a

carrier frequency of 5.2 GHz. Interestingly, the path loss exponent in V2V chan-

nels, α, is normally smaller than 2 [58–60]. This means that only one-dimensional

PPPs can be considered1. Finally, mathematical expressions for a wide variety of

performance indicators have been obtained, leading to a deep understanding of the

studied techniques. In particular, the capture probability, the average interference,

the average Binary Rate (BR) and the average Energy Efficiency (EE) are derived.

• Many useful insights have been obtained from the derived expressions. Interestingly,

it has been shown that: (i) the capture probability is an increasing function with

1As it is mentioned in [61], the Probability Generating Functional of the PPP in Rd, with d ∈ N+, only
exists for a path loss exponent, α > d. Hence, if we consider two-dimensional PPPs, the mathematical
analysis is restricted to the case α > 2.
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respect to the transmit power with exponential dependence; (ii) the system is noise-

limited for MLP when the number of ARs is high enough whereas it is interference-

limited in case of SLP; (iii) the average interference diverges when it is evaluated in

co-channel segments with SLP, whereas it always converges for the case of MLP. The

fact that with MLP the system is noise-limited for a given number of ARs means

that it is possible to achieve an arbitrary high capture probability by increasing the

transmit power.

• The optimum transmit power that achieves maximal EE subject to a minimum

capture probability is obtained. Such a minimum value is expressed as a percentage,

δ, of the maximum capture probability that can be achieved. Interestingly, the same

optimal transmit power is obtained for SLP and MLP.

These aforementioned contributions appear in [62], which has been accepted for publica-

tion, and [63], which is a work under second round of reviews. The work associated with

these contributions is presented in Chapter 7.
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1.5 Outline of the dissertation

This dissertations is structured as follows. The proposed framework for analysis and mod-

elling of IAFPC for the UL of HCNs is presented in Chapter 2. Then, the performance

of IAM is investigated in Chapter 3. A model to assess the coverage probability of dif-

ferent MTs within the same cell is proposed in Chapter 4. The performance of cellular

systems under Hoyt fading is investigated in Chapter 5. A novel NOMA-based scheme for

CRANs is proposed and analyzed in Chapter 6. Finally, the focus is placed on vehicular

communications with Chapter 7. To conclude this dissertation, main conclusions derived

with this work are presented in Chapter 8 whereas a summary (in Spanish) of this thesis

is provided in Appendix A.



Chapter 2

Performance Analysis of

Interference-Aware Fractional Power

Control

Inter-cell interference is one of the main limiting factors in current Heterogeneous Cellu-

lar Networks (HCNs). Uplink Fractional Power Control (FPC) is a well known method

that aims to cope with such a limiting factor and to save the battery life of the Mobile

Terminals (MTs). In order to do that, the transmit power of each MT is adjusted as a

function of a set of parameters that usually depend only on the link between MTs and

serving Base Station (BS), such as the desired received power at the serving BS or the

path loss between the MT and its serving BS. Contrary to these classical FPC schemes,

in this chapter we use stochastic geometry to analyze a power control mechanism that

keeps the interference generated by each MT under a given threshold. We also consider a

maximum transmitted power and a partial compensation of the path loss. Our analysis

reveals that such Interference Aware (IA) method can reduce the average power consump-

tion and increase the average spectral efficiency at once. Additionally, the variance of

the interference is reduced, thus improving the performance of Adaptive Modulation and

Coding (AMC) schemes since the interference can be better estimated.

51
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2.1 Introduction

Since the early deployments of cellular systems, interference has been the main limiting

factor. This is due, in part, to its highly indeterministic nature and its sensitivity to

network conditions. This situation is even aggravated in the uplink, since the interfering

set of Mobile Terminals (MTs) depends on the scheduling policies of other cells (that may

change from one sub-frame to another), on their channel states, on their locations and

on their transmission powers. In irregular networks, in addition, interfering MTs can be

closer to the serving BS than its intended MT.

In order to cope with interference, Fractional Power Control (FPC) schemes are con-

sidered to be essential components of the uplink (UL) of Long Term Evolution (LTE)

and LTE-Advanced communication standards [65]. Essentially, FPC partially compen-

sates for the path loss and allows cell-interior MTs to save battery while ensuring that

cell-edge MTs do not cause excessive interference to neighboring cells [66–68]. Such an

approach, however, still generates an undesired level of interference that reduces the UL

performance. Beside this, the highly indeterministic nature of UL interference poses addi-

tional challenges for interference estimation, which degrades the performance of Adaptive

Modulation and Coding (AMC) schemes [69].

To solve these issues, an Interference Aware Fractional Power Control (IAFPC) scheme,

which is compliant with LTE specifications, was proposed in [49]. This power control

mechanism establishes a maximum interference level, i0, that each MT is allowed to cause

to the most interfered BS. As discussed in [49], both open and closed loop implementations

are possible. In the open loop case, each MT estimates the path loss and shadowing

towards its serving and the most interfered BS. In the LTE standard, this can be done

thanks to the orthogonality of the reference signals from nearby BSs [70]. Hence, the open

loop implementation has the benefit that it does not require control overhead between

MTs and BSs. The channel reciprocity between UL and Downlink (DL) transmissions,

however, must be fulfilled, or, at least, UL and DL links need to have similar path loss and

shadowing. Typically this holds in Time Division Duplex (TDD) implementations, but it

may not always be true in Frequency Division Duplex (FDD) implementations [71]. To

overcome this limitation, closed loop schemes can be used. In this case, each BS measures

the received interference in each Resource Block (RB) and then shares this information

with its neighboring BSs via the X2 interface [72]. Subsequently, each BS determines the
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most interfered BS for each of its served MTs and applies power control. This is done

by sending power control messages that increase or reduce the transmitted power of each

MT. Based on [49], closed loop schemes can achieve similar performance as their open

loop counterparts.

There are several works that have studied IA power control methods [49, 73–75]. How-

ever, they are based on simulations and are applicable to single tier network deployments.

These studies have demonstrated that IAFPC leads to significant performance improve-

ment, by reducing the variance of the interference, increasing the average rate and decreas-

ing the power consumption. This holds for both open or closed loop schemes. Motivated

by these potential gains of IAFPC, there is the compelling need for tractable analytical

approaches that enable their analysis and optimization, as well as lead to a better under-

standing of power control and cell association strategies in the UL. In addition, analytical

models are always beneficial as they enable quick evaluation of large sets of candidate

solutions.

2.1.1 Related Work

The increasing demand of capacity across service areas and the associated deployment of

Heterogeneous Cellular Networks (HCNs) are changing the topology of cellular networks,

from a regular grid to a more irregular and random deployment of BSs. In this con-

text, stochastic geometry is considered to be a powerful mathematical tool that enables

the tractable analysis of cellular systems where the positions of the BSs are distributed

according to a uniform Poisson Point Process (PPP) [20]. Several works have recently

proved that stochastic geometry provides estimates of key performance indicators that are

as accurate as simulation results [21, 24]. This approach usually considers the typical link

between a probe MT and its serving BS, where the term typical, means randomly chosen

and foresees that the MT can be placed anywhere within the cell.

In the last few years, stochastic geometry has been extensively used for the analysis of

the DL of HCNs. The analysis of the UL, on the other hand, is more involved than that of

the DL. This is because the transmission powers of the interferers are coupled with their

serving BSs’ distances due to power control, as well as, even if the positions of BSs and

MTs follow a PPP, the positions of the interfering MTs do not follow a PPP, making the

exact analysis intractable [26]. To understand why the positions of the interfering MTs
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do not follow a PPP, let us recall that one property of the PPPs is the independence of

the number of points falling in disjoint regions. In current networks, orthogonal resource

allocation schemes are used, which implies that there is a single interfering MT in any

association cell [27]. Thus, given a PPP of BSs, the positions of the interfering MTs are

coupled with the positions of BSs due to the cell association criterion being used, and

the interfering MTs are not distributed according to a PPP. This can be confirmed by

considering two disjoint regions in the same association cell. Having an interfering MT

in one of the regions implies that the other region is empty, which contradicts the PPP

assumption. The interfering MTs, on the other hand, can be viewed as a stemmed form

of Voronoi perturbed lattice process [26, 28], which is not mathematically tractable. This

makes the analysis of the UL more complicated than that of the DL.

In spite of its mathematical challenges, there are recent works that analyze the perfor-

mance of the UL with different power control and association policies. In [29], single tier

networks with FPC are analyzed with the aid of stochastic geometry. In order to avoid

the intractability of the locations of the interfering MTs, the proposed approach assumes

that the MTs that are scheduled in the RB of interest form a Voronoi tessellation and that

a single BS is available in each Voronoi cell. In [30], FPC is analyzed by approximating

the positions of the interfering MTs as an uniform PPP in the entire plane. With this

approach, however, some interfering MTs may undergo, with respect to the probe BS, a

smaller path loss than with their serving BS, which is not a realistic situation. Recently,

[26, 31, 32] have proposed accurate frameworks to model the positions of the interfering

MTs. These works consider the spatial correlation between the locations of the probe BS

and those of the interfering MTs. Such correlation is due to the fact that the interfering

MTs are placed outside the Voronoi cell of the probe BS [27]. The authors of [31] consider

a truncated channel inversion power control, where the MTs attempt to fully compensate

for the path loss towards their serving BS, provided that they do not have to transmit

with more power than pmax. The cell association is based on the smallest path loss. The

MTs that necessitate higher power than pmax are kept silent. In the UL, traditionally, the

association between MTs and BSs has been coupled with the association in the DL. This

is due to technical reasons that are related to network implementation. However, it has

been recently proposed to split UL and DL associations (decoupled access), by performing

the association in the UL based on a minimum path loss criterion [26]. This approach re-
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duces the UL interference as well, since the MTs are associated with the BSs providing the

minimum path loss, and, thus, their transmit power is reduced. A generalized weighted

association for both coupled and decoupled access with FPC is considered in [26] and the

joint DL/UL rate is analyzed.

2.1.2 Contributions

In this chapter, a novel framework for the modeling and analysis of uplink HCNs with

IAFPC is presented. The proposed model is general, since interference unaware (non-IA)

power control methods can be viewed as particular instances of our analysis when the max-

imum allowed interference level i0 tends to infinity. The proposed framework is based on

a conditional thinning modeling approach, in order to appropriately model the positions

of the interfering MTs and to account for the spatial correlation with the location of the

probe BS. Compared with previous studies that consider FPC but are not IA, the mathe-

matical modeling is more challenging since the spatial correlation with the most interfered

BS need to be considered as well. In addition, it is necessary to deal with non linear func-

tions that depend on the distances towards the serving BS and towards the most interfered

BS. All these issues make the computation of the distribution of the Signal to Interference

Plus Noise Ratio (SINR) not an easy task. To overcome the mathematical complexity of

the problem at hand, we propose two approximations for the Laplace transform of the

aggregate interference: i) it is approximated by using a sigmoid function and then logistic

regression is applied [76], in order to obtain its parameters and ii) it is approximated by

using a suitable function via Moment Matching (MM) methods. In addition, asymptotic

analysis is performed to identify performance trends as i0 becomes low or tends to infinity.

The resulting framework avoids the need of approximating the interference and results in

lower computational complexity. More specifically, the contribution of the chapter can be

summarized as follows.

• Analysis and comparison of IA and non-IA FPC schemes. From their numerical

comparison, it is shown that interference awareness reduces the mean and the vari-

ance of the interference, as well as the average transmitted power. Also, it increases

the average spectral efficiency.

• Analysis of several performance metrics that provide better understanding of IA
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and non-IA FPC schemes. This includes the average transmitted power, the mean

and variance of the interference, the coverage probability and the average spectral

efficiency.

• Two accurate approximations for the Laplace transform of the interference in the

presence of IAFPC. These approximations greatly reduce the computational com-

plexity of the resulting mathematical frameworks.

• Proposal of asymptotic frameworks to gain theoretical insight for system design. In

particular, it is shown that the statistics of the interference are independent of the

BS density in the low i0 regime and under the smallest path loss cell association

criterion.

2.1.3 chapter Organization and Notations

The rest of the chapter is organized as follows. Section 2.2 describes the system model

and the proposed approach. In Section 2.3, the analysis of IAFPC is presented. Two

approximations of the interference in the presence of IAFPC are proposed in Section

2.4. Section 2.5 introduces asymptotic frameworks for the analysis of IAFPC. They are

applicable to non-IA FPC schemes when i0 tends to ∞ and to IAFPC schemes in the low

i0 regime. In Section 2.6, numerical results are illustrated to validate our approach and

findings. Finally, Section 2.7 concludes this chapter.

Notation: E[·] stands for the expectation operator and Pr(·) for the probability mea-

sure. 1(·) is the indicator function. The first and second derivatives of f(x) evaluated

at x0 are represented as f ′(x0) and f ′′(x0). Random variables (RV) and events are rep-

resented with capital letters whereas the lower letter case is used for deterministic values

and parameters. If X is a RV, fX(·), FX(·), F̄X(·) and LX(·) represent its probability den-

sity function (pdf), cumulative distribution function (cdf), complementary cdf (ccdf) and

Laplace transform of its pdf respectively. Γ(z) =
∫∞

0
tz−1e−tdt stands for the Euler gamma

function whereas 2F1(·, ·, ·, ·) is the Gauss hypergeometric function defined in [77] (Ch. 15).

Given the function f(x, y), we write the limit when x→ a as f(y)(x→a) = lim
x→a

f(x, y). Fi-

nally, a function f(x) can be approximated by another function f (x∼a)(x) when x is close

to a if the following equality holds lim
x→a

f(x)

f (x∼a)(x)
= 1. In this case, we say that f(x) and

f (x∼a)(x) are asymptotically similar when x is close to a.
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2.2 System Model

We consider a two-tier HCN, i.e., Macro cell BSs (MBSs) and Small cell (BSs) SBSs,

where the BSs of tier j ∈ K = {1, 2} are spatially distributed in R2 according to a uniform

PPP, Φ(j) = {BS
(j)
0 ,BS

(j)
1 , · · · }, of density λ(j) where BS

(j)
i is the location of the ith BS

in the jth tier. The positions of all BSs are represented by the PPP Φ = ∪j∈KΦ(j).

The MTs are spatially distributed according to another independent and uniform PPP,

ΦMT = {MT0,MT1, · · · }, of density λMT. It is assumed that the density of MTs is high

enough to consider full loaded conditions, i.e., each BS has at least one MT to serve and all

the Resource Blocks (RBs) are used. Hence, the density of interfering MTs is the same as

the density of BSs and there is a single scheduled MT per BS. If saturated conditions do not

hold, the density of interfering MTs is lower than the density of BSs, which leads to lower

interference than with full loaded conditions. Nevertheless, a general load model could

be taken into account by using the approach recently introduced in [32]. The analysis

is performed for the typical MT, i.e., a randomly chosen MT with MT ∈ ΦMT. Since

uniform PPPs are translation invariant, such typical MT can be considered to be placed

at the origin (without loss of generality) thanks to the Slivnyak’s theorem [61]. In this

chapter, the typical MT is referred to as the probe MT and is denoted by MT0. Likewise,

its serving BS is referred to as the probe BS and is denoted by BS0.

2.2.1 Channel Model

The transmitted signal undergoes both shadowing and multi-path fading. For different

locations, fading is modeled as independent and identically distributed (iid) exponential

RVs with unit mean, whereas shadowing is modeled as iid Log-normal RVs with standard

deviation σs and mean µs. A unit mean squared value is assumed, and hence µs =

− ln(10)σ2
s/20 [78]. We use equivalent distances that include shadowing as in [79], i.e.,

Ṙx,y = S
−1/α
x,y Rx,y, where Sx,y is the shadowing between locations x and y andRx,y = ‖x−y‖

is the Euclidean distance. Hence shadowing can be considered as a random displacement

over Φ(j) [24, 61], where the density of the displaced PPP is λ̇(j) = λ(j)E[S−1/α] and

E[S−1/α] = exp
(

ln(10)µs
5α

+ 1
2

(
ln(10)σs

5α

))
. In the rest of the chapter, for simplicity, all the

distances and PPPs are assumed to include shadowing.

The path loss models proposed in 3GPP are typically formulated as L(dB) = aL +
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bL log10(Rx,y(km)), where Rx,y is the distance between locations x and y expressed in km,

and aL and bL depend on several radio frequency parameters. In this chapter, we consider a

similar path loss law, which can be expressed as L = (τRx,y(m))α, where τ = 10(aL−3bL)/bL

is the path loss slope and α = bL/10 is the path loss exponent. In Section 2.6, in particular,

the path loss model adopted in 3GPP ([80], Sec. 4.5.2) is used. It can be formulated as

follows:

aL = 80− 18 log10 (hBS(m)) + 21 log10 (fc(MHz)) ; bL = 40
(
1− 4 · 10−3hBS(m)

)
(2.1)

where fc is the carrier frequency in MHz and hBS(m) is the BS’s antenna height in m.

Every tier is assumed to have the same path loss exponent and the same path loss slope.

2.2.2 Association and Scheduling

The cell association criterion among MTs and BSs is based on the weighted average re-

ceived power [26]. The association weights are denoted by t(j) for each tier j ∈ K.

Let us introduce the event X (j)
MTi

as: MTi is associated with tier j. More formally, it

can be defined as follows

X (j)
MTi

=

{
t(j)
(
τR

(j)
MTi,(1)

)−α
> t(j̃)

(
τR

(j̃)
MTi,(1)

)−α}
(2.2)

where (τRMT)−α represents the path loss at a distance RMT from the transmitter; j̃ =

{x ∈ K : x 6= j} is the complementary tier of tier j and R
(j̃)
x,(q) is the distance from x to

the qth nearest BS of tier j̃, i.e. R
(j̃)
x,(1) is the distance to the nearest BS. The association

weights allow us to model the minimum path loss cell association criterion as a special

case, by setting t(j) = 1, as well as the association criterion based on DL received power.

Full frequency reuse is considered and all the BSs share the same bandwidth, which is

divided in RBs for scheduling purposes. A single RB is the minimum amount of bandwidth

that can be allocated to a transmission. In LTE and LTE-A, each RB is divided into 12

Resource Elements (REs) of 15 kHz. The RB where the probe MT is scheduled for

transmission is referred to as the probe RB. Hence, the set of interfering MTs from tier

k, which is denoted by Ψ(k), is the set of MTs that has been scheduled in the probe RB.

Each BS chooses at random the MT that is scheduled in each RB.
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2.2.3 Power Control Mechanism

We consider an IAFPC mechanism [49], where each MT causes less interference than i0

to its most interfered BS and transmits with less power than pmax. It is assumed that

power control can be adapted to slow variations of the received power, hence it can only

compensate for path loss and shadowing. The transmit power can be expressed as follows

pMT (RMT0 , UMT0) = min (p0 (τRMT0)αε , i0 (τUMT0)α , pmax) (2.3)

where RMT0 is the distance between the probe MT and its serving BS, UMT0 the dis-

tance between the probe MT and its most interfered BS, p0 is the target received signal

power at the serving BS and ε is the FPC compensation factor. All the MTs use the

same set of power control parameters (p0, ε, pmax, i0). If the transmit power is equal to

pMT (RMT0 , UMT0) = pmax, the transmission is truncated by pmax. If pMT (RMT0 , UMT0) =

i0 (τUMT0)α, the transmission is truncated by i0.

Let us define the event Q(m)
MTi

as: the most interfered BS of the transmissions of MTi

belongs to tier m. Hence, we can define the event X (j,m)
MTi

= X (j)
MTi
∩ Q(m)

MTi
as follows: MTi

is associated with tier j and its most interfered BS belongs to tier m. Mathematically this

event can be expressed as

X (j,m)
MTi

= X (j)
MTi
∩

Q(m)
MTi︷ ︸︸ ︷{

R
(j)
MTi,(2) > R

(m)
MTi,(1)

}
, if j 6= m

X (j,j)
MTi

= X (j)
MTi
∩

Q(j)
MTi︷ ︸︸ ︷{

R
(j)
MTi,(2) < R

(j̃)
MTi,(1)

}
, if j = m (2.4)

Fig. 2.1 provides an illustration of the network topology under analysis with IAFPC.

It shows that the locations of the non-truncated MTs are different for each BS. This is due

to the fact that their locations depend on the positions of the neighboring BSs. It can be

noted that the MTs truncated by i0 tend to be placed in positions close to a victim BS,

whereas the MTs truncated by pmax tend to be placed far from their serving BSs but also

far from any other BSs. Intuitively, this mechanism allows the network to reach a balance

between interference and desired received power, which increases the SINR. In our system

model, it is important to note that the MTs that tend to cause more interference than i0
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Figure 2.1: Homogeneous network realization in [−5000, 5000]2 m2 showing with green
color the positions related to non truncated MTs. Yellow and blue colors are associated
with MTs truncated by i0 and to pmax, respectively. The simulation parameters are λ(1) = 2
BS/km2, i0 = −90 dBm, pmax = 30 dBm, p0 = −70 dBm and ε = 1.

or those that attempt to transmit with more power than pmax are not kept silent. They

transmit at a maximum power, instead, that do not violate the aforementioned constraints

(i0 and pmax).

2.2.4 SINR

The SINR of the typical MT, MT0, can be expressed as

SINRMT0 =
HMT0 (τRMT0)−α pMT (RMT0 , UMT0)

Iexact + σ2
n

(2.5)

where HMT0 is the multi-path fading power of the desired link, RMT0 and UMT0 are the

distances towards the serving and the most interfered BSs including shadowing, Iexact is

the aggregate interference and σ2
n is the noise power.

In the UL, as mentioned in Section 2.1, the interfering MTs do not follow a PPP even

if the positions of BSs and MTs are distributed according to a PPP. The nature of such

point process, which depends on the scheduling and association criteria, makes the analysis
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intractable. In this chapter, thus, we assume that the interfering MTs constitute a PPP.

However, it is necessary to take into account appropriate spatial correlation constraints

between the probe BS and the interfering MTs, in order to improve the accuracy of

the analysis [26, 31]. In the UL, in addition, an interfering MT can be located closer

to the probe BS than the probe MT. Nevertheless, the interfering MT has always higher

weighted received power from its serving BS than from the probe BS thanks to the adopted

association criterion. We use this fact, which has been previously used in [31] and [26],

to accurately modeling the locations of the interfering MTs. To this end, we perform a

conditional thinning over the event O(j,k)
MTi

defined as: the interfering MTi belonging to tier

k receives higher weighted power from its serving BS than from the probe BS that belongs

to tier j. In mathematical terms, this can be formulated as follows

O(j,k)
MTi

=
{
t(k) (τRMTi)

−α > t(j) (τDMTi)
−α} (2.6)

where RMTi is the distance between the interfering MTi and its serving BS and DMTi is

the distance between MTi and the probe BS.

Additionally, interference awareness imposes that MTi cannot cause an interference

level higher than i0. This introduces additional spatial correlation constraints. This corre-

lation, which exists in the exact model, is taken into account by introducing a dependent

thinning with the aid of the event ZMTi defined as: the interfering MTi causes less inter-

ference to BS0 than i0. In mathematical terms, this can be formulated as follows

ZMTi =
{
pMT (RMTi , UMTi) (τDMTi)

−α < i0
}

(2.7)

where RMTi and UMTi represent the distance between MTi and its serving and most

interfering BS, respectively. It is assumed that, for each MTi, the RVs {RMTi , UMTi} are

iid.

Finally, the exact interference term Iexact, which is mathematically intractable, is ap-

proximated as Iexact ' I. If the probe MT is associated with tier j, it can be expressed

as

I =
∑

k∈K

∑

MTi∈Ψ(k)

HMTi (τDMTi)
−α pMT (RMTi , UMTi) 1

(
O(j,k)

MTi

)
1 (ZMTi) (2.8)
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where Ψ(k) is the PPP of the interfering MTs scheduled in the RB of interest and whose

density is λ(k). From (2.8), it can be observed that the locations of the interfering MTs

of tier k are obtained by applying a conditional thinning over Ψ(k) with the aid of the

event O(j,k)
MTi

that discards all the locations that would result associated with the probe BS

and with the aid of the event ZMTi that discards all the locations that would cause higher

interference than i0. In the exact interference term, every interfering MT causes equal or

less interference than i0 to the probe BS, thanks to the power control rule in (2.3). In

the proposed approximated interference model, however, we assume, for tractability, that

the RVs {RMTi , UMTi} are iid. This implies that some interfering MTs may cause more

interference than i0. Since this situation does not happen in the exact model, we impose

this constraint by means of a thinning with the aid of the event ZMTi .

The benefit of the approximated interference model given by (2.8), I, is that it allows

us to model the positions of the interfering MTs as a PPP, Ψ(k), which yields mathematical

tractability. On the other hand, the exact interference model, Iexact, which originates from

the association and scheduling criteria, considers that the positions of the interfering MTs

follow a Voronoi perturbed lattice process [26, 28], which is not mathematically tractable

and can only be simulated. In the following section, hence, the analysis is carried out

based on the approximation I. In the numerical results section, the analytical results

based on (2.8) are compared against simulation results based on Iexact, in order to assess

how accurate the proposed analytical model for the interference is.

2.3 Analysis of Interference Aware Power Control

In this section, the average transmit power, the mean and variance of the interference, the

ccdf of the SINR, and the average Spectral Efficiency (SE) are studied. The probability

of being associated with tier j has been previously obtained in [26] and is reproduced here

for convenience Pr
(
X (j)

MT0

)
= λ(j)/

∑
k∈K

(
t(k)

t(j)

) 2
α
λ(k).

The probability of being associated with tier j and being the most interfered BS for

tier m is provided in the following lemma.

Lemma 1. Assume that the probe MT employs IAFPC. The probability of the event X (j,m)
MT0
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with j 6= m is

Pr
(
X (j,m)

MT0

)
=
λ(j)λ(m)

(
t(j)

t(m)

) 2
α

(λ(j) + λ(m))
2 1

((
t(m)

t(j)

)
> 1

)
+



λ(m)

(
2λ(j) + λ(m)

)

(λ(j) + λ(m))
2 − λ(m)

λ(j)
(
t(j)

t(m)

) 2
α

+ λ(m)


× 1

((
t(m)

t(j)

)
≤ 1

)
(2.9)

If j = m, on the other hand, the probability is

Pr
(
X (j,j)

MT0

)
=

(
λ(j)
)2

(
λ(j) + λ(j̃)

)2 1

((
t(j̃)

t(j)

)
≤ 1

)
+

(
λ(j)
)2
(
t(j)

t(j̃)

) 2
α

(
λ(j) − λ(j̃)

((
t(j)

t(j̃)

) 2
α − 2

))

(
λ(j) + λ(j̃)

)2
(
λ(j̃) + λ(j)

(
t(j)

t(j̃)

) 2
α

) × 1

((
t(j̃)

t(j)

)
> 1

)
(2.10)

Proof. See Appendix 2.8.

The computation of the transmit power (see (2.3)) requires knowledge of the joint pdf

of the distances towards the serving and most interfering BSs. This fact complicates the

analysis even further, since it requires a joint pdf of distances as well as the need of dealing

with the nonlinear function min(·). The next lemma provides the joint pdf of the distances

of interest.

Lemma 2. Assume that the probe MT employs IAFPC. The joint pdf of the distances

towards the serving and most interfered BSs conditioned on the event X (j,m)
MT0

is

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
=
f
R

(m)
MT0,(1)

(w) ζ(j) (v, w)

Pr
(
X (j,m)

MT0

) 1

(
w >

(
t(m)

t(j)

) 1
α

v

)
(2.11)

if j 6= m, and it is
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fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
=

F̄
R

(j̃)
MT0,(1)

(
max

((
t(j̃)

t(j)

) 1
α
v, w

))

Pr
(
X (j,j)

MT0

) f
R

(j)
MT0,(1)

,R
(j)
MT0,(2)

(v, w) 1 (w > v)

(2.12)

if j = m, where

ζ(j) (v, w) = 2πλ(j)ve−πλ
(j)max2(v,w) (2.13)

The joint pdf of the nearest and second nearest point was computed in [52] and is

f
R

(j)
MT0,(1)

,R
(j)
MT0,(2)

(r1, r2) = 4
(
πλ(j)

)2
r1r2e−πλ

(j)r2
2 , r1 < r2 (2.14)

Proof. See Appendix 2.9.

The joint pdf of the distances provided in Lemma 2 allows us to compute the average

transmitted power. More specifically, it can be formulated as

E [PMT0 ] =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0

)
×ERMT0

,UMT0

[
pMT (RMT0 , UMT0) |X (j,m)

MT0

]
(2.15)

where pMT (RMT0 , UMT0) is given in (2.3).

The Laplace transform of the aggregate interference is provided in the following propo-

sition.

Proposition 1. Assume that the probe MT employs IAFPC. The Laplace transform of

the aggregate interference is

LI
(
s|X (j)

MT0

)
= exp

(
β(j) (s)

)
(2.16)
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where

β(j) (s) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi

)

×
∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)
χ (s, r, u) drdu (2.17)

and

χ (s, r, u) =
spMT (r, u) τ−α

α− 2
max2−α

((
t(j)

t(k)

) 1
α

r,
1

τ

(
pMT (r, u)

i0

) 1
α

)

2F1

(
1,
α− 2

α
; 2− 2

α
;−spMT (r, u) τ−αmax−α

((
t(j)

t(k)

) 1
α

r,
1

τ

(
pMT (r, u)

i0

) 1
α

))

(2.18)

and pMT (r, u) is given in (2.3).

Proof. See Appendix 2.10.

From the Laplace transform of the interference, the mean and the variance of the

interference can be obtained by computing the first and second derivatives of β(j)(s).

Mean and variance of the interference are provided in the following corollary.

Corollary 1. Assume that the probe MT employs IAFPC. The mean and variance of the

aggregate interference are as follows

E [I] = −
∑

j∈K

Pr
(
X (j)

MT0

)
β′(j) (0) (2.19)

var (I) = −
∑

j∈K

Pr
(
X (j)

MT0

)(
β′′(j) (0) +

(
β′(j) (0)

)2 − (E [I])2
)

(2.20)
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where

β′(j) (0) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi

) ∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)

τ−αpMT (r, u)

α− 2
max2−α

((
t(j)

t(k)

) 1
α

r,
1

τ

(
pMT (r, u)

i0

) 1
α

)
dudr (2.21)

β′′(j) (0) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi

)
×

∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)

(τ−αpMT (r, u))
2

1− α max2(1−α)

((
t(j)

t(k)

) 1
α

r,
1

τ

(
pMT (r, u)

i0

) 1
α

)
dudr (2.22)

Proof. The proof consists of expressing the mean and variance by conditioning on X (j)
MT0

,

computing the first and second derivatives of the Laplace transform, and evaluating it at

s = 0.

The ccdf of the SINR is provided in (2.23). In order to obtain it, we have used the

total probability theorem over the event X (j,m)
MT0

, by first conditioning on RMT0 , UMT0 and

I.

F̄SINR (γ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0

) ∞∫

v=0

∞∫

w=
(
t(m)

t(j)

) 1
α
v

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
e
− γσ

2
n(τv)α

pMT(v,w)

× LI
(

γ (τv)α

pMT (v, w)
|X (j)

MT0

)
dvdw (2.23)

The SE of the typical MT is usually expressed in bits per second per Hertz (bps/Hz).

It is directly related to the SINR via the Shannon formula SEMT0 = log2 (1 + SINRMT0).
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The ccdf of the SE of the probe MT can be expressed as

F̄SE (ξ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0

)
F̄SINR

(
2ξ − 1|X (j,m)

MT0

)
(2.24)

where we have applied the total probability theorem. Since the SE is a positive RV, the

average SE can be obtained from its ccdf as E [SE] =
∫
ξ>0

F̄SE (ξ) dξ. So, it can be directly

computed from (A.8).

We note that the ccdf of the SINR in (2.23) requires the computation of four nested

integrals, since the Laplace transform of the interference given in (2.17) is formulated in

terms of two nested integrals. Hence tractable approximations for the Laplace transform

of the interference are essential in order to make the proposed approach mathematically

tractable. In the next section, we propose approximations of the form LI
(
s|X (j)

MT0

)
'

LÎ
(
s|X (j)

MT0

)
, where LÎ

(
s|X (j)

MT0

)
has a closed form expression. In addition, asymptotic

analysis is performed in Section 2.5. This latter approach avoids the need of approximating

the interference.

2.4 Approximated Statistical Modeling of the Inter-

ference

In this section two approaches for approximating the Laplace transform of the interference

are proposed and investigated: i) approximations based on a sigmoidal logistic function

whose parameters are obtained by means of logistic regression and ii) approximations

through known distribution functions via the MM approach.

2.4.1 Sigmoidal Approximation

The Laplace transform of the interference in (2.16) has a S-shape, if the s-axis is expressed

in dB. Sigmoidal logistic functions, are aimed to fit data that exhibits a S-shape [81]. This

is because sigmoidal functions emerge if a logit transformation [76] is applied to the data,

which linearizes S-shaped data and allows one to perform linear regression based on the

least mean square criteria [82]. Based on this observation, an approximation based on a
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sigmoidal logistic function is proposed as follows

LI
(
s(dB)|X (j)

MT0

)
' gI

(
s(dB)

)
=

1

1 + e
b0
(
s(dB)−s(dB)

0

) (2.25)

where s(dB) = 10 log10(s) and gI(s
(dB)) is a sigmoidal function of two parameters b0 and

s
(dB)
0 , which satisfies the following properties

lim
s(dB)→−∞

gI
(
s(dB)

)
= 1; lim

s(dB)→+∞
gI
(
s(dB)

)
= 0;

gI

(
s

(dB)
0

)
=

1

2
;
dgI
(
s(dB)

)

ds(dB)

∣∣∣∣∣
s(dB)=s

(dB)
0

= −b0/4 (2.26)

The parameters b0 and s
(dB)
0 , which are related to the inflection point and to the slope

around the inflection point, respectively, can be easily obtained from the properties of the

sigmoidal logistic function and by solving the following equation LI
(
s

(dB)
0 |X (j)

MT0

)
= 1/2 ,

which gives s
(dB)
0 . Then, b0 can be computed as b0 = −4d/ds(dB)LI

(
s(dB)|X (j)

MT0

)
|
s(dB)=s

(dB)
0

.

In particular, these parameters can be efficiently obtained by applying logistic regres-

sion [82]. To this end, it is sufficient to evaluate the Laplace transform of the interference

given in Lemma 1 only at a few sample values {s(dB)
1 , s

(dB)
2 , · · · , s(dB)

nsig } and then to perform

logistic regression, which is a built-in function available in common mathematical software

packages like Mathematica or Matlab. This allows one to obtain the fitting parameters

s
(dB)
0 and b0 without the need of solving the aforementioned equations. In summary, the

numerical evaluation of (2.23) consists of the following steps: i) compute (2.16) for nsig

sample points (good results are obtained with nsig ∼ 8), ii) perform logistic regression

based on the obtained sample points, so as to obtain b0 and s
(dB)
0 and iii) evaluate (2.23).

Finally, expressing s in linear scale, the Laplace transform of the aggregate interference is

approximated as

LÎ
(
s|X (j)

MT0

)
=

1

1 + e
b0
(

10 log10(s)−s(dB)
0

) (2.27)

2.4.2 Transformed Distribution Approach

The second approach that we study for approximating the Laplace transform of the inter-

ference consists of identifying a suitable approximation function f(s, θ(j)), which depends
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on the n approximating parameters θ(j) = {θ(j)
0 , · · · , θ(j)

n−1}. The n parameters of the

approximation are computed with the aid of the MM approach, which consists of enforc-

ing that the exact and the approximated Laplace transforms have the same n moments.

We refer to this method as the Transformed Distribution Approach (TDA). The match-

ing between the proposed function and the exact Laplace transform of the interference

needs to be accurate only for s ∈ R+, since only this range of values is needed to obtain

the ccdf of the SINR. The Laplace transform of the interference satisfies two conditions

LI
(

0|X (j)
MT0

)
= 1 and LI

(
∞|X (j)

MT0

)
= 0. Hence, suitable approximating functions must

satisfy the following conditions

lim
s→0

f
(
s, θ−

(j)
)

= 1; lim
s→∞

f
(
s, θ−

(j)
)

= 0; 0 <

∣∣∣∣∣
dr

dsr
f
(
s, θ−

(j)
) ∣∣∣

s=0

∣∣∣∣∣ <∞, r ∈ [1, n]

(2.28)

where the two limits in (2.28) are necessary in order to obtain the Laplace transform of a

pdf and the inequality is necessary to perform MM over n moments1, since the moments

are obtained from the derivatives of the Laplace transform evaluated at the origin. Hence,

we approximate the interference I|X (j)
MT0

as Î|X (j)
MT0

, where LÎ
(
s|X (j)

MT0

)
= f(s, θ(j)).

Based on this approach, we propose two functions to approximate the Laplace trans-

form of the interference.

Exponential Function

The first option consists of using an exponential function

f
(
s, θ

(j)
0

)
= e−θ

(j)
0 s 1 (s ≥ 0) (2.29)

It satisfies the conditions given in (2.28). Applying the MM approach yields θ
(j)
0 =

−β′(j) (0).

1We have assumed that the n first moments are finite. However, it is sufficient that n moments, not
necessarily the first, are finite to apply MM.
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Algebraic Function

The second option consists of using an algebraic function

f
(
s, θ

(j)
0

)
=

1

1 + sθ
(j)
0

(2.30)

It satisfies the conditions given in (2.28). Applying the MM approach yields θ
(j)
0 =

−β′(j) (0).

Approximating the Laplace transform of the interference with the approaches proposed

in this section allows us to formulate the ccdf of the SINR in terms of two nested integrals

instead of four. Hence, the reduction in computational complexity is considerable. The

sigmoidal approximation needs the evaluation of the equation in (2.16) nsig times, where

nsig is the number of sample points of LI
(
s|X (1)

MT0

)
used to perform logistic regression and

to obtain b0 and s
(dB)
0 . Each evaluation of (2.16) involves two nested integrals. The TDA,

either using an algebraic or an exponential function, requires the evaluation of (2.21) only

once, which is still formulated in terms of a two-fold integral similar to (2.16). Although

the sigmoidal approximation is numerically more complex than the TDA, it allows one to

obtain a better fitting by increasing the number of sample values, nsig, used to perform

logistic regression.

2.5 Asymptotic Analysis

In this section, we study the asymptotic performance of IAFPC in two limiting regimes:

i) when i0 tends to ∞ and ii) when i0 is small. The first case study is interesting since it

corresponds to the non-IA FPC. The second case of study allows us to gain insight into

the average transmitted power and average interference for small values of i0.

2.5.1 Interference Unaware Power Control (i0 →∞)

From the expression of the transmitted power in (2.3), we note that interference aware-

ness is lost if i0 tends to ∞. Hence, studying the performance in the limiting regime

i0 → ∞ provides insight on non-IA FPC setups. In this regime, the transmit power is
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p
(i0→∞)
MT (RMT0) = min (p0 (τRMT0)αε , pmax) . The following corollary provides a mathe-

matical expression for it.

Corollary 2. The average transmitted power with non-IA FPC is as follows

P
(i0→∞)
MT0

= lim
i0→∞

E [PMT0 ] =
∑

j∈K

Pr
(
X (j)

MT0

)
ERMT0

[
pMT (RMT0) |X (j)

MT0

]
(2.31)

fRMT0

(
v|X (j)

MT0

)
=

f
R

(j)
MT0,(1)

(v) · F̄
R

(j̃)
MT0,(1)

((
t(j̃)

t(j)

) 1
α
v

)

Pr
(
X (j)

MT0

) (2.32)

Proof. Taking the limit i0 → ∞, the transmit power does not depend on UMT0 . Hence,

we have

E
[
P

(i0→∞)
MT0

]
=
∑

j∈K

∞∫

v=0

∑

m∈K

Pr
(
X (j,m)

MT0

) ∞∫

w=0

pMT (RMT0) fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
dw

=
∑

j∈K

Pr
(
X (j)

MT0

)
ERMT0

[
pMT (RMT0) |X (j)

MT0

]
(2.33)

which is obtained with the aid of the following identity (total probability theorem)

∑

m∈K

Pr
(
X (j,m)

MT0

) ∞∫

w=0

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
dw = Pr

(
X (j)

MT0

)
fRMT0

(
v|X (j)

MT0

)
(2.34)

The proof follows by integrating over w, which yields the marginal pdf in (2.32).

Lemma 3. The Laplace transform of the interference when i0 →∞ is

L(i0→∞)
I

(
s|X (j)

MT0

)
= exp

(
−
∑

k∈K

2πλ(k) ×
∞∫

r=0

χ(i0→∞) (s, r)fRMTi

(
r|X (k)

MTi

)
dr
)

(2.35)



Chapter 2. Performance Analysis of Interference-Aware Fractional Power Control 72

where

χ(i0→∞) (s, r) =
r2−αsp

(i0→∞)
MT (r) τ−α

α− 2

(
t(j)

t(k)

) 2−α
α

× 2F1

(
1,
α− 2

α
; 2− 2

α
;−sp

(i0→∞)
MT (r) τ−α

r

(
t(j)

t(k)

)−1
)

(2.36)

Proof. The limit of the Laplace transform can be expressed as L(i0→∞)
I

(
s|X (j)

MT0

)
= e(β(i0→∞)(j)(s)).

In particular, the limit of β(j) (s) is

β(i0→∞)(j) (s) = −
∑

k∈K

2πλ(k) ×
∞∫

r=0

χ(i0→∞) (s, r)

·
∑

n∈K

Pr
(
X (k,n)

MTi

)

Pr
(
X (k)

MTi

)
∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)
drdu (2.37)

where the equality in (2.34) is used.

In the non-IA system setup, the ccdf of the SINR can be obtained by directly computing

the limit for i0 → ∞ of the ccdf of the SINR in (2.23). The resulting expression is as

follows

F̄
(i0→∞)
SINR (γ) =

∑

j∈K

∞∫

v=0

e
− γσ

2
n(τv)α

pMT(v) fRMT0

(
v|X (j)

MT0

)
exp

(
−
∑

k∈K

2πλ(k)

∞∫

r=0

fRMTi

(
r|X (k)

MTi

)

χ(i0→∞)

(
γσ2

n (τv)α

pMT (v)
, r

)
dr

)
dv (2.38)

The latter formulas are obtained by taking into account that, for i0 → ∞, the de-

pendence on the distance towards the most interfered BS, which is represented by w,

disappears in both the Laplace transform and in transmit power pMT(v, w). Hence, it is

possible to apply the equality given in (2.34) and to simplify the expression by removing
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the integral over w. In the non-IA setup, it can be observed that the ccdf of the SINR is

formulated in terms of a two-fold integral.

2.5.2 Low i0 regime (i0 ∼ 0)

In this section, we study the asymptotic regime when i0 is small and simplified expres-

sions of key performance indicators are provided. Our approach is based on the observa-

tion that, if i0 is small enough, the transmitted power in (2.3) is well approximated as

pMT (RMT0 , UMT0) ' i0 (τUMT0)α. To understand this approximation, let us recall that

the transmitted power in (3) is expressed as the minimum of three terms: p0 (τRMT0)αε

, i0 (τUMT0)α and pmax. If i0 is small enough, the term i0 (τUMT0)α is smaller than

the others, in statistical sense, and hence the transmitted power tends to be equal to

i0 (τUMT0)α. In mathematical terms, this implies that the two functions pMT (RMT0 , UMT0)

and p
(i0∼0)
MT (UMT0) = i0 (τUMT0)α are asymptotically similar when i0 is small. In other

words, they tend to the same value as i0 tend to 0, i.e. lim
i0→0

pMT(RMT0
,UMT0)

p
(i0∼0)
MT (UMT0)

= 1. It is

important to remark that, despite the fact that in the definition of asymptotically similar

we have used the limit for i0 → 0, the proposed approximation of the transmitted power

is valid for i0 small but not necessarily equal to 0.

Average Transmit Power

The average transmit power in the low i0 regime can be expressed as follows

E
[
P

(i0∼0)
MT0

]
=
∑

m∈K

Pr
(
Q(m)

MT0

)
EUMT0

[
i0 (τUMT0)α |Q(m)

MT0

]
(2.39)

since, in this case, the transmit power only depends on UMT0 . The marginal pdf of UMT0

can be obtained from (2) and it is equal to

fUMT0

(
w|Q(m)

MT0

)
=

∑
j∈K

Pr
(
X (j,m)

MT0

)

Pr
(
Q(m)

MT0

)
∞∫

v=0

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
dv (2.40)

Special case: cell association based on the smallest path loss. If a cell association based
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on the smallest path loss is assumed, the association weights t(j) are all equal to one. Since

we assume the same path loss exponents and slope for every tier, this case study boils

down to a single tier cellular network [26, Corollary 6], where the density of the single

tier of BSs is λ =
∑
j∈K

λ(j). Accordingly, the distance towards the serving BS turns out to

be the distance towards the nearest BS and the distance towards the most interfered BS

is the distance towards the second nearest BS. Hence, the joint pdf of these distances is

fRMT0
,UMT0

(v, w) = 4 (πλ)2 vwe−πλw
2
1(v < w). In this case, the average transmit power

can be further simplified to

E
[
P

(i0∼0)
MT0

]
= i0

(
τ√
πλ

)α
Γ
(

2 +
α

2

)
(2.41)

Laplace Transform of the Interference

The Laplace transform of the interference can be expressed as

L(i0∼0)
I

(
s|X (j)

MT0

)
= exp

(
−
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi

) ∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)
χ(i0∼0) (s, r, u) drdu

)
(2.42)

where χ(i0∼0) (s, r, u) is defined as follows

χ(i0∼0) (s, r, u) =
si0 (τu)α τ−α

α− 2
max2−α

((
t(j)

t(k)

) 1
α

r, u

)

× 2F1


1,

α− 2

α
; 2− 2

α
;
−si0 (τu)α τ−α

maxα
((

t(j)

t(k)

) 1
α
r, u

)


 (2.43)

Special case: cell association based on the smallest path loss. In this case, χ(i0∼0) (s, r, u)
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can be simplified as follows

χ(i0∼0) (s, r, u) =
1 (r ≤ u) si0u

2

α− 2
2F1

(
1,
α− 2

α
; 2− 2

α
;−si0

)
+

1 (r > u) si0u
αr2−α

α− 2

2F1

(
1,
α− 2

α
; 2− 2

α
;−si0

(u
r

)α)
(2.44)

which is obtained by setting the association weights in (2.44) equal to one and by re-

writing the max(·) function as the sum of two indicator functions. From the integration

limits in (2.43), we note that, if the smallest path loss association is used, the second term

is canceled out. Finally, integrating the resulting expression over r and u in (2.43) yields

L(i0∼0)
I (s) = exp

(
− 4si0
α− 22

F1

(
1,
α− 2

α
; 2− 2

α
;−si0

))
(2.45)

which is a closed form expression.

Remark 1. By direct inspection of (2.45), we note that the Laplace transform of the

interference does not depend on the BS density in the low i0 regime. Hence all statistics

of the interference like mean and variance do not depend on λ.

By using (2.45), the ccdf of the SINR, by assuming a minimum path loss cell associa-

tion, can be expressed as follows

F̄
(i0∼0)
SINR (γ) =

∞∫

v=0

∞∫

w=v

fRMT0
,UMT0

(v, w) · e−
γσ2
n

i0
( vw)

α

exp

(
−2 F1

(
1,
α− 2

α
; 2− 2

α
;−γ

( v
w

)α)

4γ

α− 2

( v
w

)α
)

dvdw (2.46)

Remark 2. By inspection of (2.46), we evince that, although the Laplace transform of the

interference does not depend on λ, the ccdf of the SINR does depend on λ. This originates

from the joint pdf of the distances. The dependence on i0, in particular, only appears

in the term e
− γσ

2
n

i0
( vw)

α

. Since this term disappears in the absence of noise (σ2
n = 0), we

conclude that interference-limited HCNs become independent of i0 when such parameter is

small enough (low i0 regime).
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Table 2.1: Simulation Parameters

Parameter Value Parameter Value

fc (MHz) 2× 103 hBS (m) 10

bw (MHz) 9 t(1)/t(2) (dB) 9

λ(1) (points/m2) 2× 10−6 λ(2) (points/m2) 4× 10−6

λMT (points/m2) 80× 10−6 nthermal (dBm/Hz) −174

nF (dB) 9 σs (dB) 4

p0 (dBm) −70 pmax (dBm) {∞, 5}
i0 (dBm) [−120,−60] ε [0, 1]

2.6 Numerical Results

In this section, the proposed mathematical frameworks are evaluated numerically and

compared against Monte Carlo results. The thermal noise power spectral density is set

equal to nthermal = −174 dBm/Hz and the noise figure at the receiver is set equal to

nF = 9 dB. The main simulation parameters are presented in Table 2.1. It is considered

association weights t(1)/t(2) = 9 dB, which accounts for transmission powers of 46 and

30 dBm for MBSs and SBSs respectively, where SBSs use a bias of 7 dB so as to offload

MBSs.

Monte Carlo results are obtained by simulating 104 spatial realizations. In the simu-

lations, first we place the BSs of the two tiers according to two uniform PPPs of densities

λ(1) and λ(2). Then, we distribute the MTs according to another PPP of density λMT.

Finally, we perform cell association for each MT. The probe MT is selected randomly,

and then the interfering set of MTs is obtained by randomly choosing one MT per inter-

fering BS. This method allows one to simulate the exact interference, Iexact, which is not

mathematically tractable.
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Figure 2.2: Average transmitted power versus i0 for IAFPC and non-IA FPC with ε = 1,
pmax →∞ and pmax = 5 dBm.
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Figure 2.3: Mean of the interference versus i0 for IAFPC and non-IA FPC with ε = 1,
pmax →∞ and pmax = 5 dBm.
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Figure 2.4: Variance of the interference versus i0 for IAFPC and non-IA FPC with ε = 1,
pmax →∞ and pmax = 5 dBm.

2.6.1 Average Transmitted Power, Mean and Variance of the

Interference

In this section, the average transmitted power, the average interference and the variance

of the interference are obtained and compared against simulations. It is important to

remark that the locations of the interfering MTs does not follow a PPP [26] and hence the

interference in (2.8) is an approximation that aims to capture some spatial correlations

among the locations of interfering MT and probe BS. Therefore, the performance indicators

related to the interference (the mean and variance of the interference or the ccdf of the

SINR) are approximations. On the other hand, theoretical results that do not involve the

interference (the average transmitted power) are exact. This can be observed from Fig.

2.2 and Fig. 2.3 and Fig. 2.4

In Fig. 2.2, the average transmitted power versus i0 for IAFPC and non-IA FPC

schemes is presented, by assuming pmax →∞ and pmax = 5 dBm. Since i0 plays no role in

non-IA FPC case, the related curve is drawn only to facilitate the comparison. It can be

observed that both IA and non-IA FPC methods provide the same average transmitted

power for i0 = −60 dBm. This is reasonable, since almost all the MTs do not truncate
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Figure 2.5: Laplace transform of the analytic interference I in (2.8) conditioned on X (1)
MT0

and its approximation Î by using different approaches (IAFPC is assumed). As for the
sigmoidal approximation, 8 equally spaced sample points between s(dB) = 80 and s(dB) =
200 dB are used, in order to obtain its related parameters b0 and s

(dB)
0 .

their transmit power due to i0 if i0 is sufficiently high.

Let us consider the asymptotic analysis (red curve). It increases unboundedly with i0,

and hence the proposed approximation of the transmitted power is accurate only for small

values of i0. This is in agreement with the assumption of our analysis, i.e., i0 needs to be

small enough as discussed in Section 2.5. The same holds for the mean and the variance of

the interference that are illustrated in Fig. 2.3 and Fig. 2.4. A high value of the variance of

the interference degrades the estimation of the SINR, which, in turn, negatively affects the

performance of AMC schemes in real implementations [49]. Hence, methods that reduce

the variance of the interference are important. From the figures illustrated in this section,

we evince that IAFPC reduces both the mean and the variance of the interference, as well

as the average transmitted power when it is compared to non-IA FPC methods. This is

the beneficial impact of IA.
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Figure 2.6: ccdf of the SINR for the typical MT (IAFPC is assumed) with ε = 1 and
i0 = {−120,−60} dBm.

2.6.2 Approximations of the Interference

From Sections 2.2 and 2.4, we know that the exact interference is intractable, since the

positions of the interfering MTs do not follow a PPP. Thus, approximations for the inter-

ference are proposed (2.8). Although the proposed approximation of the interference, I,

leads to tractable expressions, the numerical complexity of the obtained expressions require

further approximations if IAFPC schemes are used. Hence, in Section 2.4 two approaches

to approximate the interference I with Î were proposed. The aim of this section is to

compare such approaches in terms of the Laplace transform of its pdf. Fig. 2.5 illustrates

the Laplace transform of Î for the sigmoidal and the TDA approximations, by condition-

ing on the event that the probe MT is associated with tier 1. The s-axis is expressed in

dB and hence it is possible to observe the s-shape of the Laplace transform. The logistic

regression of the sigmoidal approximation is obtained by assuming 8 equally spaced points

that lie in the range s = 60 dB and s = 200 dB. It can be noted that the difference in

the Laplace transform of the interference in the range i0 = −60 dBm and i0 = −120 dBm

is large and such difference tends to increase for values larger than i0 = −60 dBm. All
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Figure 2.7: ccdf of the SINR in the low i0 regime given by (2.46) and by using the minimum
path loss association.

approximations, however, follow the same trend as the Laplace transform of the analytical

interference I and are sufficiently accurate for a large set of parameters.

2.6.3 ccdf of the SINR

In this section, numerical illustrations for the ccdf of the SINR are provided and analytical

and simulation results are compared by considering pmax →∞. Fig. 2.6 illustrates the ccdf

of the SINR, by assuming IAFPC with ε = 1. It can be observed that the sigmoidal and

the TDA approximations based on an algebraic function provides a better approximation

of the ccdf than those provided by the TDA approximation based on the exponential

function. This is especially true if i0 = −120 and i0 = −60 dBm.

Finally, Fig. 2.7 compares the ccdf of the SINR in the low i0 regime, which is avail-

able in (2.46), and that obtained from simulation results. The minimum path loss cell

association and ε = 1 are assumed. As mentioned in Section 2.5, the proposed asymptotic

analysis in the low i0 regime provides performance results that are accurate only if i0
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is small. Hence, it can be observed a good match between simulation and analysis for
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i0 = −120 dBm. The accuracy is, on the other hand, reduced if i0 = −60 dBm as it was

expected, since in this case i0 is not sufficiently small.

2.6.4 Spectral Efficiency

In this section, the average SE of IA and non-IA schemes is studied and compared. Such

metric represents how well a MT exploits the available bandwidth and it is expressed in

terms of bits per second per Hertz (bps/Hz). As far as the IAFPC setup is considered, the

sigmoidal approximation of the interference is considered. In particular, 8 equally spaced

sample points in the range s(dB) = 60 dB and s(dB) = 200 dB are considered.

Fig. 2.8 illustrates the average SE versus i0 for the IAFPC scheme with ε = 1 and

for the non-IA FPC scheme with ε = 1 and ε = 0.67. It is observed that IA outperforms

non-IA, in terms of average SE as well. The reason is that only the transmit power of the

MTs that cause strong interference is truncated by i0, while the rest of the transmissions

of the MTs are not truncated. This keeps under control the interference and the average

SE improves. It is worth noting that there exist an optimal value for i0.

Fig. 2.9 illustrates the average SE versus pmax with ε = 1. It can be observed that re-

ducing pmax causes a performance loss since the MTs cannot compensate for the associated

path losses.

Finally, Fig. 2.10 illustrates the average SE versus ε for IA and non-IA FPC schemes.

As far as the non-IA FPC scheme is concerned, there exists an optimal value (around

ε = 0.67) that maximizes the SE. This is due to the fact that the total compensation

of the path loss and shadowing (ε = 1) causes strong interference to neighboring cells.

Hence, partial compensation provides a better balance between interference and desired

power that maximizes the average SE. As far as the IAFPC scheme is concerned, on the

other hand, the maximum SE is reached by applying the total compensation of the path

loss, i.e. for ε = 1. This is due to the fact that IAFPC reaches a good balance between

interference and desired power by means of the maximum allowed interference level i0.

Hence, it can be observed that IAFPC outperforms non-IA FPC if i0 lies in between −80

and −120 dBm.
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2.7 Discussion

In this chapter, a general framework to analyze IAFPC for the UL of HCNs is presented.

For mathematical tractability, we model the locations of the interfering MTs as a PPP by

enforcing some spatial correlation constraints between the probe BS and the interfering

MTs. By using the proposed approach, we provide mathematical expressions for several

performance metrics, including the average transmitted power, the mean and variance of

the interference and the average SE. With the objective to reduce the computational com-

plexity of the resulting mathematical frameworks, two approximations of the interference

are proposed as well. Finally, asymptotic results are presented which provide further in-

sight into fundamental performance trends in the presence of IAFPC. The accuracy of the

proposed approach is assessed via Monte Carlo simulations, and it is shown that IAFPC

is capable of reducing the transmitted power, of reducing the mean and the variance of

the interference as well as of increasing the average SE.

The contributions mentioned above have been published in [47].
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2.8 Appendix: Proof of Lemma 1

If j 6= m, the probability of X (j,m)
MT0

can be written as

Pr
(
X (j,m)

MT0

)
= E

R
(j)
MT0,(1)

,R
(j)
MT0,(2)

[
1

(
R

(j)
MT0,(2) >

(
t(m)

t(j)

) 1
α

R
(j)
MT0,(1)

)

×
(
F̄
R

(m)
MT0,(1)

((
t(m)

t(j)

) 1
α

R
(j)
MT0,(1)

)
− F̄

R
(m)
MT0,(1)

(
R

(j)
MT0,(2)

))]
(2.47)

In the above expression, we have used the fact that R
(m)
MT0,(1) and the two correlated

RVs {R(j)
MT0,(1), R

(j)
MT0,(2)} are statistically independent. The proof follows by computing

the expectation using the joint pdf of {RMT0,(1), RMT0,(2)} given in (2.14).

Likewise, if j = m we have

Pr
(
X (j,j)

MT0

)
= E

R
(j)
MT0,(1)

,R
(j)
MT0,(2)

[
F̄
R

(j̃)
MT0,(1)


max



(
t(j̃)

t(j)

) 1
α

R
(j)
MT0,(1), R

(j)
MT0,(2)





]

(2.48)

The computation of the expectation with respect to R
(j)
MT0,(1), R

(j)
MT0,(2) completes the proof.

2.9 Appendix: Proof of Lemma 2

If j 6= m, the joint pdf of the distances towards the serving BS and the most interfered

BS can be expressed as

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
=

d2

dvdw

Pr
(
R

(j)
MT0,(1) ≤ v,R

(m)
MT0,(1) ≤ w,X (j,m)

MT0

)

Pr
(
X (j,m)

MT0
,AMT0

) (2.49)
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The numerator of the previous expression can be formulated as

Pr
(
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(2.50)

The above expression can be expressed as the following triple integral

w∫

r
(m)
1 =0

v∫

r
(j)
1 =0

∞∫

r
(j)
2 =
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1 (2.51)

The proof follows by computing the inner integral with respect to r
(j)
2 and then applying

the Leibniz integration rule.

Likewise, if j = m the numerator can be expressed as
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1

(2.52)

The proof follows from the Leibniz integration rule.
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2.10 Appendix: Proof of Lemma 1

The Laplace transform of the interference can be expressed as
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)
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∏
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]
(2.53)

The RVs {RMTi , UMTi} are iid and their joint pdf is given in Lemma 2. Applying the

Probability Generating Function theorem, computing the expectation over the fading and

by conditioning over the event Q(n)
MTi

yields
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MTi
|X (k)

MTi

)
×

∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

) ∞∫

ρ=max

((
t(j)

t(k)

) 1
α
r, 1
τ

(
pMT(r,u)

i0

) 1
α

)
s (τρ)−α pMT (r, u) ρdρdr

1 + s (τρ)−α pMT (r, u)

)

(2.54)

Computing the integration with respect to ρ completes the proof.



Chapter 3

Performance Analysis of

Interference-Aware Muting

We investigate the performance of a scheduling algorithm where the Mobile Terminals

(MTs) may be turned off if they cause a level of interference greater than a given thresh-

old. This approach, which is referred to as Interference Aware Muting (IAM), may be

regarded as an interference-aware scheme that is aimed to reduce the level of interference.

We analyze its performance with the aid of stochastic geometry and compare it against

other interference-unaware and interference-aware schemes, where the level of interference

is kept under control in the power control scheme itself rather than in the scheduling

process. IAM is studied in terms of average transmit power, mean and variance of the

interference, coverage probability, Spectral Efficiency (SE), and Binary Rate (BR), which

accounts for the amount of resources allocated to the typical MT. Simplified expressions

of SE and BR for adaptive modulation and coding schemes are proposed, which better

characterize practical communication systems. Our system-level analysis unveils that IAM

increases the BR and reduces the mean and variance of the interference. It is proved that

an operating regime exists, where the performance of IAM is independent of the cell asso-

ciation criterion, which simplifies the joint design of uplink and downlink transmissions.

88
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3.1 Introduction

Interference awareness can be exploited at both the physical and Medium Access Control

(MAC) layers to boost the performance of mobile networks. It is especially useful in the

Uplink (UL) of Heterogeneous Cellular Networks (HCNs) for interference mitigation and

performance enhancement. In current HCNs, the Mobile Terminals (MTs) are associated

with the same Base Station (BS) in the UL and Downlink (DL) [7]. The cell association

is performed based on DL pilot signals and the serving BS is chosen based on a given

criterion, e.g., the highest average received power in the DL. In the UL, the same BS is

used [7] which leads to a situation where MTs are associated with distant BSs. In this

context, the use of Fractional Power Control (FPC) accentuates the detrimental effect of

the MTs that cause strong interference to neighboring BSs.

3.1.1 UL Analysis: State-of-the-Art

The complex aforementioned interactions between power control and association in the

UL require accurate mathematical frameworks to gain insights about the performance

trends and limits of existing and future networks. Unfortunately, the mathematical

analysis of the UL of HCNs is more involved than the analysis of the DL for two main

reasons: i) due to the use of power control, the transmit power of the MTs depends on the

distance to their serving BSs and ii) even though the locations of BSs and MTs are drawn

from two independent Poisson Point Processes (PPPs), the locations of the interfering

MTs scheduled in a given orthogonal Resource Block (RB) do not follow a PPP. These

two peculiarities as compared to to the DL make the mathematical analysis of the UL

intractable without resorting to approximations [26]. In [29] it is studied the case of

homogeneous cellular networks with FPC. To avoid such a mathematical intractability, it

is assumed that the MTs that are scheduled in a given RB form a Voronoi tessellation

and a single BS is available in each Voronoi cell. However, such an approach does not

consider HCNs. The case of the UL of HCNs is accurately modeled in recent works like

[26, 31, 32, 47], where it is considered the spatial correlation between the location of the

probe BS and those of the interfering MTs. In [31], is studied a framework to model HCNs

with a truncated channel inversion power control under smallest path loss association. In

this work it is considered an homogeneous PPP as a generative process for the locations
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of interfering MTs, but then, the spatial correlation is added by means of an indicator

function that discards interfering MTs’ locations based on their received powers. The case

of UL and DL with decoupled access is considered in [26]. The association is based on

maximum weighted received powers and FPC is considered in the UL. Here, to account

for the spatial correlation a non-homogeneous PPP is considered to model the locations

of interfering MTs. A framework for the UL of HCNs with multi-antena BSs is stuided

in [32]. In this work it is considered FPC under a generalized association criteria and

two extreme detection techniques in terms of complexity and performance: Maximum

Ratio Combining (MRC) and Optimum Combining (OC). It is demonstrated that OC,

which can be regarded as an interference-aware detection technique for multi-antenna

receivers, greatly outperforms MRC when MTs use aggressive power control, i.e., when the

interference is high. The spatial correlation is imposed by means of a conditional thinning

that takes into account the generalized cell association procedure. Interference-awareness

is also studied in [47], which considers HCNs with single-antenna BSs. In this work, it

is studied a power control mechanism [49], which is referred to as Interference Aware

Fractional Power Control (IAFPC). This approach consists of introducing a maximum

interference level, i0, that the transmission of each MT is allowed to cause to its most

interfered BS. In simple terms, the MTs adjust their transmit power in order to cause a

maximum interference level of i0 to their most interfered BS.

In the present chapter, we investigate another option for interference mitigation in the

UL and compare it with previously reported schemes. The approach consists of exploiting

interference-awareness when scheduling the transmission of the MTs, rather than in the

power control scheme itself (IAFPC) or in the detection process of the receiver (OC).

As a result, interference management is conducted at the MAC layer rather than at the

physical layer. The considered approach is referred to as Interference Aware Muting

(IAM) and consists of turning off, i.e., muting, the MTs whose interference towards the

most interfered BS is above a given threshold. The main difference between IAFPC and

IAM can be summarized as follows. In IAFPC, all the MTs are active and adjust their

transmit power for interference mitigation. In IAM, on the other hand, the transmit

power of the MTs does not account for any interference constraints but some MTs may

not be allowed to transmit if they produce too much interference. As a result, IAM has

the potential of reducing the aggregate interference in the UL and of enabling the active



Chapter 3. Performance Analysis of Interference-Aware Muting 91

MTs to better use the available resources, i.e., the transmission bandwidth. On the other

hand, it reduces the fairness of allocating the resources among the MTs, since some of

them may be turned off. Nevertheless, thanks to mobility and shadowing, muted MTs are

only inactive for a given period of time. Hence, from the perspective of MTs the question

to answer is whether this muting increases its achievable Binary Rate (BR), taking into

account both the active and inactive periods. The main objective of the present chapter is

to quantify the advantages and the limitations of IAM and compare it against the IAFPC

scheme.

3.1.2 Technical Contribution

In this chapter, we overcome this mathematical intractability by using an approach sim-

ilar to [32] and [47], which is referred to as conditional thinning. In simple terms, the

locations of the active MTs are assumed to be drawn from a PPP but spatial constraints

(correlations) are introduced, which account for the location of the serving BS, for the

location of the most interfered BS, and for the maximum level of interference allowed.

Based on these modeling assumptions, which are validated against extensive Monte Carlo

simulations, we provide the following contributions.

• We study IAM scheme in terms of average transmit power of the MTs, mean and

variance of the interference. The mathematical analysis reveals that IAM is capa-

ble of reducing the three latter performance metrics compared with IAFPC, which

results in several advantages for practical implementations. Reducing the variance

of the interference, e.g., is beneficial for better estimating the SINR and, thus, for

reducing the error probability of practical decoding schemes, e.g., turbo decoding,

[48], and for making easier the selection of the most appropriate Modulation and

Coding Scheme (MCS) to use in LTE systems [49].

• To make our study and conclusions directly applicable to current communication

systems that are based on Adaptive Modulation and Coding (AMC) transmission,

we provide tractable expressions of SE and BR based on practical MCSs that are

compliant with the LTE standard and whose parameters are obtained from a link-

level simulator [1, 2].
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• With the aid of the proposed mathematical frameworks, we compare IAFPC and

IAM schemes in terms of SE and BR, which provide different information on their

strengths and weaknesses. The SE provides information on how well the MTs exploit

the available resources (e.g., bandwidth) that are shared among the MTs served by

the same BS, whereas the BR accounts for the specific fraction of resources that is

allocated to each MT served by a given BS. While the IAFPC scheme is superior

in terms of SE, the IAM scheme is superior in terms of RB. This implies that IAM

provides service to fewer users, which get better performance compared with IAFPC.

To characterize this trade-off, we investigate the fairness of both schemes, which is

defined as the probability that a randomly chosen MT gets access to the resources,

and provide a tractable frameworks for its analysis.

• In light of the emerging UL-DL decoupling principle, we develop the mathemati-

cal frameworks for a General Cell Association (GCA) criterion, whose association

weights may be appropriately optimized for performance enhancement. By direct

inspection of the mathematical frameworks, we prove that three operating regimes

can be identified as a function of the interference threshold i0: i) the first, where

the performance is independent of i0, ii) the second, where the performance depends

on i0 but it does not depend on the cell association, and iii) the third, where the

performance depends on i0 and the cell association. Of particular interest in this

chapter is the second regime, which highlights that UL-DL decoupling may not be

an issue for some system setups, which in turn simplifies the design of HCNs.

• As for the relevant case study for the UL where the serving BS of the typical MT

is identified based on the Smallest Path-Loss Association (SPLA) criterion with

channel-inversion power control [7], we provide simple and closed-form frameworks

for relevant performance indicators and prove that two operating regimes exist: i) the

first, where the performance depends on i0 (interference-aware) and ii) the second,

where the performance is independent of i0 (interference-unaware). We prove, in

addition, that i) the scaling law of the average transmit power of the MTs, the

mean interference and the probability that a MT gets access to the resources is a

polynomial function of i0 whose exponent depends on the path-loss exponent, ii) the

distance towards the serving BS gets smaller as i0 increases; and iii) the CCDF of

the SINR is independent of the density of BSs.
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To the best of authors knowledge, all these contributions are new in the literature

and are not included in previous works. For instance, the muting mechanism introduces

further correlations that do not exist in [47] and need to be taken into account. This

muting differentiates the whole analysis. New metrics like the BR, which accounts for the

amount of resources allocated by the scheduler, are obtained and it is also introduced a

new framework to compute the SE and BR with AMC, which is closer to real systems

than Shannon formula. Finally, a lot of closed-form expressions and remarks are obtained

which provide important insights about system performance, fairness and cell association.

The remainder of this chapter is organized as follows. Section 3.2 introduces the

system model and the approach for system-level analysis. In Sections 3.3 and 3.4, the

analysis of IAM is presented for GCA and SPLA criteria, respectively. The BR of AMC

schemes is analyzed and discussed in Section 3.5. In Section 3.6, IAM and IAFPC schemes

are compared against each other via numerical simulations and the main findings and

performance trends derived in the chapter are substantiated with the aid of Monte Carlo

simulations. Finally, Section 3.7 concludes this chapter.

Notation: A summary of the main symbols and functions used throughout the present

chapter is provided in Table 3.1 for the convenience of the readers.

3.2 System Model

We consider the UL of a HCN composed of two tiers, j ∈ K = {1, 2}, e.g., macro and

small-cell BSs, which are spatially distributed according to two independent PPPs, Φ(j), of

intensities λ(j). Each transmitted signal goes through an independent multi-path fading

channel with Rayleigh fading and log-normal shadowing. The path-loss is modeled by

using a path-loss slope τ and a path-loss exponent α > 21. The cell association among

MTs and BSs is based on the weighted average received power criterion, similar to [26],

where the association weights are denoted by t(j) for tier j ∈ K. Hence, the ith MT is

associated with the nth BS of tier j if the MT is in the weighted Voronoi cell of BS(j)
n

with respect to Φ =
⋃
j∈K Φ(j). With these assumptions, shadowing can be modeled as a

random displacement [61] of Φ(j) [47, 79].

1 The proposed framework can be generalized to account for a bounded path loss model; however, an
unbounded path loss model has been used for the sake of mathematical tractability.
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Table 3.1: Summary of main symbols and functions used throughout the chapter.

Symbol/function Definition

Γ(z) , Γ(a, z) Euler gamma function and incomplete gamma function
fX(·), F̄X(·),LX(·) PDF, CCDF and Laplace transform of a random variable X
f ′ (x0) , f ′′ (x0) First and second derivatives of f(x) evaluated at x = x0

E [·] ,Pr (·) ,1 (·) Expectation operator, probability measure and
indicator function

2F1(·, ·, ·, ·) Gauss Hypergeometric function
K = {1, 2} Tier set: tier 1 is related to macro BSs and tier 2

is related to small cell BSs

j̃ = {k ∈ K : k 6= j} Complementary tier, i.e. 1̃ = 2 and 2̃ = 1

Φ(j), λ(j) PPP and its density related to the locations of macro (j = 1)
and small cell BSs (j = 2)

λMT Density of the PPP of MTs’ positions
Φ, λ PPP and its density related to the locations of all BSs

t(j) Association weight for tier j
i0, p0, ε, pmax Interference threshold, target receive power, partial

compensation factor, and maximum transmit power
τ, α Path loss slope and path loss exponent
MT0,MTi Position of the probe MT and position of a generic MT,

e.g., an interfering MT

Ψ(k) PPP of interfering MTs’s locations

R
(j)
x,(q) Distance (including shadowing) between location x and the

qth nearest BS from tier j
RMTi

, UMTi
, DMTi

Distances (including shadowing) between MTi and its
serving BS, its most interfered BS and the probe BS

HMTi
Power gain of the fading which is exponentially distributed

pMT (r) = p0 (τr)αε Transmit power, for a given distance r, towards the serving
BS for active MTs. Muted MTs has 0 transmit power

σ2
n, I Noise power and interference according to Assumption 1

X (j)
MTi

Event defined as: MTi is associated with tier j

Q(m)
MTi

Event defined as: the most interfered BS of MTi belongs to tier m

X (j,m)
MTi

Event defined as: MTi is associated with tier j and
the most interfered BS of MTi belongs to tier m

AMTi Event defined as: MTi is active, i.e., non-muted

O(j,k)
MTi

Event defined as: the interfering MTi of tier k receives higher
weighted average power from its serving BS than from
the probe BS that belong to tier j

ZMTi Event defined as: the interfering MTi causes a level of interference
less than i0 to the probe BS
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For ease of writing, we introduce the event X (j)
MTi

as follows.

Definition 1. The event X (j)
MTi

is defined as “MTi is associated with tier j”.

In mathematical terms, therefore, the association criterion can be formulated as fol-

lows:

X (j)
MTi

=

{
t(j)
(
τR

(j)
MTi,(1)

)−α
> t(j̃)

(
τR

(j̃)
MTi,(1)

)−α}
(3.1)

where (τRMT)−α is the path-loss at a distance2 RMT from the transmitter, j̃ = {k ∈ K : k 6= j}
is the complementary tier of j, i.e., 1̃ = 2 and 2̃ = 1, R

(j̃)
x,(q) is the distance from x to the qth

nearest BS of tier j̃, i.e., R
(j̃)
x,(1) is the distance to the nearest BS. The association weights

t(1) and t(2) allow us to model the GCA criterion, which encompasses the SPLA criterion

for t(1) = t(2).

Throughout this chapter, the analysis is performed for the probe or typical MT, i.e.,

for a randomly chosen MT, which is denoted by MT0. Its serving BS is referred to as the

probe BS.

3.2.1 Scheduling

We consider full-frequency reuse, where all the BSs share the same bandwidth. Each BS

has available a bandwidth of bw Hz that is shared among the MTs that are in its Voronoi

cell. In practice, bw is divided in orthogonal RBs and each scheduled MT in each cell

transmits in one (or several) of these RBs. Thus, no intra-cell interference is available.

This implies that a single MT per BS can interfere with the probe MT. The set of active

interfering MTs of tier k that are scheduled for transmission in a given RB is denoted by

Ψ(k). For tractability, we assume that the number of RBs is large enough to be regarded

as a continuous resource by the scheduler.

Based on these assumptions, the scheduling process of every BS consists of two steps:

1. To determine the set of active MTs. The active transmitters are the MTs that,

simultaneously, cause less interference than i0 to any BSs and that transmit with

less power than pmax. The MTs that do not fulfill these two constraints are turned

off (muted).

2Throughout this chapter, all the distances implicitly include shadowing.
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2. Resource allocation. Once the active MTs in each cell are identified, the bandwidth

of each BS is equally divided among the active MTs associated with it. Let NA
BS

(j)
n

be

the number of MTs associated with BS BS(j)
n . Each of them is allocated a bandwidth

bw/N
A
BS

(j)
n

3 Hz.

This scheduling process characterizes the IAM scheme and makes it different from the

IAFPC scheme in [47]. In [47], all the MTs are active and power control is responsible for

controlling the level of interference, by making sure that the interference level at any BS

is less than i0.

To better understand the implications of interference awareness on turning off (muting)

some MTs, we analyze the case study i0 →∞ as well, which is referred to as Interference-

Unaware Muting (IUM)4. For ease of writing, we introduce some definitions that are useful

for mathematical analysis.

Definition 2. The event Q(m)
MTi

is defined as “the most interfered BS of MTi belongs to

tier m”.

Definition 3. The event X (j,m)
MTi

= X (j)
MTi
∩Q(m)

MTi
is defined as “MTi is associated with tier

j and the most interfered BS of MTi belongs to tier m”.

In mathematical terms, X (j,m)
MTi

can be formulated as follows:

X (j,m)
MTi

= X (j)
MTi
∩

Q(m)
MTi︷ ︸︸ ︷{

R
(j)
MTi,(2) > R

(m)
MTi,(1)

}
, ifj 6= m

X (j,m)
MTi

= X (j)
MTi
∩

Q(m)
MTi︷ ︸︸ ︷{

R
(j)
MTi,(2) < R

(j̃)
MTi,(1)

}
, ifj = m (3.2)

According to IAM, the MTs that either cause higher interference than i0 or transmit

with higher power than pmax are kept silent. The set of active MTs is defined as follows.

3Although, in practice, the bandwidth is divided in RBs, we assume that it can be treated as a
continuous resource and hence that it can be equally divided among the active MTs. This is assumed in
[26] as well.

4In the present chapter, IUM and Interference Unaware FPC (IUFPC) schemes are similar but slightly
different. IUM is referred to a setup where i0 → ∞ and pmax < ∞. IUFPC is referred to a setup where
i0 →∞ and pmax →∞. As for IUM, only the constraint on the maximum transmit power exists. As for
IUFPC, there is no constraint on either the maximum transmit power or the maximum interference.
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Definition 4. The event AMTi is defined as “MTi is active”.

In mathematical terms, AMTi can be formulated as follows:

AMTi = {(pMT (RMTi) < i0 (τUMTi)
α) ∩ (pMT (RMTi) < pmax)} (3.3)

where pMT(r), p0 and ε are related to power control and they are described in Table 3.1,

RMTi is the distance between MTi and its serving BS, and UMTi is the distance between

MTi and its most interfered BS. If the probe MT is associated with tier j, i.e., the event

X (j)
MTi

is true, then RMTi = R
(j)
MTi,(1). The distance UMTi depends, on the other hand, on

the event X (j,m)
MTi

. Accordingly, UMTi = R
(m)
MTi,(1) if j 6= m and UMTi = R

(j)
MTi,(2) if j = m.

The aim of event AMTi
is to capture the spatial correlation between the position of a given

MT, its serving BS and it most interfered BS, which follows from the muting process.

As far as IAM is concerned, fractional power control is applied at the physical layer

and is interference-unaware, i.e., the transmit power of the MTs that are not turned off

depends only on path-loss and shadowing and it can be expressed as pMT (RMT0). If the

MTs are muted, on the other hand, their transmit power is equal to zero. This implies

that their associated SINR, BR, etc. are, by definition, equal to zero as well.

3.2.2 SINR

The SINR of the typical active MT that is measured at the probe BS can be formulated

as:

SINRMT0 =
HMT0 (τRMT0)−α pMT (RMT0)

I + σ2
n

(3.4)

where HMT0 is the channel gain, RMT0 is the distance from the serving BS, pMT (RMT0) is

the transmit power, I is the other-cell interference, and σ2
n is the noise power.

In the UL, as discussed in Section 3.1, the set of interfering MTs does not constitute a

PPP, even though the MTs and BSs are distributed according to a PPP. Further details can

be found in [32] and [47]. This makes the mathematical analysis intractable. In the present

chapter, the distinctive scheduling process of IAM negatively affects the mathematical

tractability of the problem at hand even further. To make the analysis tractable, some

approximations for modeling the set of active MTs are needed. In [32] and [47], it is

shown that a tractable approximation consists of assuming that the set of active MTs can
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still be modeled as a PPP, provided that appropriate spatial constraints on the locations

of the MTs are introduced. Stated differently, the set of active MTs is modeled as a

spatially-thinned PPP or equivalently as a non-homogeneous PPP.

Before introducing the approach to model interfering MTs’ locations, the following

events need to be defined:

Definition 5. The event O(j,k)
MTi

is defined as “the interfering MTi of tier k receives higher

weighted average power from its serving BS than from the probe BS that belongs to tier j”.

In mathematical terms, O(j,k)
MTi

can be formulated as follows:

O(j,k)
MTi

=
{
t(k) (τRMTi)

−α > t(j) (τDMTi)
−α} (3.5)

Definition 6. The event ZMTi is defined as “the interfering MTi causes a level of inter-

ference less than i0 to the probe BS”.

In mathematical terms, ZMTi can be formulated as follows:

ZMTi =
{
pMT (RMTi) (τDMTi)

−α < i0
}

(3.6)

Hence, inspired by [32] and [47], our mathematical framework is based on the following

approximation.

Assumption 1. The other-cell interference of the typical active MT is approximated as

[47]:

I ≈
∑

k∈K

∑

MTi∈Ψ(k)

HMTipMT (RMTi)

(τDMTi)
α 1

(
O(j,k)

MTi

)
1 (ZMTi) (3.7)

where Ψ(k) is a PPP of intensity λ(k) whose points constitute the locations of the interfer-

ing MTs that are scheduled for transmission in the same RB as that of the typical MT,

the events O(j,k)
MTi

and ZMTi take into account the necessary spatial constraints imposed by

the cell association criterion and the maximum interference and power constraints, respec-

tively, RMTi and DMTi are the distances from MTi to its own serving BS and to the probe

BS, respectively.

More specifically, i) the event O(j,k)
MTi

is necessary to account for the spatial correlation

that exists between the locations of the probe BS, the interfering MTs and their serving
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BSs, since the interfering MTs must lie outside the Voronoi cell of the probe BS by

definition of cell association, and ii) the event ZMTi is necessary to account for the fact

that the interfering MTs need to cause less interference than i0 according to the IAM

scheduling process.

The next two sections provide mathematical expressions of the CCDF of the SINR and

of the mean and variance of the other-cell interference for GCA and SPLA cell association

criteria respectively.

3.3 General Cell Association Criterion

We start introducing some enabling results for proving the main theorems of this section.

Proposition 2. The probability that the typical MT is active and is associated with tier

j is:

Pr (AMT0) =
∑

j∈K

∫

v>0

1

(
v <

1

τ

(
pmax

p0

) 1
α

)
(
ν(j) (v) + η(j) (v)

)
dv (3.8)

where ν(j)(v) and η(j)(v) are defined in (3.9) and (3.10), respectively.

ν(j)(v) = 2πvλ(j)

(
e−πλ

(j)v2 ×


e
−πλ(j̃)max2

( p0
i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α
v


− e−πλ

(j̃)v2


×

1


v > max



(
p0

i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α

v






+
λ(j̃)

λ(j) + λ(j̃)
e
−π(λ(j)+λ(j̃))max2

( p0
i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α
v,v

)
(3.9)
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η(j)(v) = 2πvλ(j)

(
e
−πλ(j̃)

(
t(j̃)

t(j)

) 2
α
v2

×


e
−πλ(j)max2

((
p0
i0

) 1
α (τv)ε

τ
,v

)
− e

−πλ(j)

(
t(j̃)

t(j)

) 2
α
v2


×

1

(
v >

(
t(j)

t(j̃)

) 1
α

max

((
p0

i0

) 1
α (τv)ε

τ
, v

))

+
λ(j)

λ(j) + λ(j̃)
e
−π(λ(j)+λ(j̃))max2

( p0
i0

) 1
α (τv)ε

τ
,v,

(
t(j̃)

t(j)

) 1
α
v

)
(3.10)

Proof. See Appendix 3.8.

Proposition 2 is useful for understanding and quantifying the fairness of the IAM

scheme. The higher Pr (AMT0) is, in fact, the higher the probability that a randomly

chosen MT is served in a given RB and, thus, the higher the fairness that it gets access

to the available resources is5.

Lemma 4. The Probability Density Function (PDF) of the distance between the typical

MT and its serving BS by conditioning on the event X (j,m)
MT0

∩ AMT0 can be formulated as

follows:

fRMT0

(
v|X (j,m)

MT0
,AMT0

)
=





ν(j)(v)

Pr
(
X (j,m)

MT0
,A(j,m)

MT0

) for 0 < v < 1
τ

(
pmax

p0

) 1
αε

and j 6= m

η(j)(v)

Pr
(
X (j,j)

MT0
,A(j,j)

MT0

) for 0 < v < 1
τ

(
pmax

p0

) 1
αε

and j = m

(3.11)

where ν(j) (v) and η(j) (v) are defined in (3.9) and (3.10), respectively.

Proof. The Cumulative Distribution Function (CDF) of the distance between the typical

MT and its serving BS by conditioning on the MT being active and on X (j,m)
MT0

is obtained

by using steps similar to Appendix 3.8. The PDF is obtained from the CDF by computing

the derivative.

5The system fairness can be defined in different ways. In [83], e.g., it is defined based on the propor-
tionally fair criterion and is obtained by computing the logarithm of the average rate. Our framework
could be generalized for analyzing the system fairness based on this definition, but this study is outside
the scope of the current chapter and is postponed to future research.
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In the UL, an important performance metric to study is the average transmit power

of the typical MT, which is related to its power consumption. Since some MTs may be

turned off in the IAM scheme, this implies that some MTs may transmit zero power,

which results in reducing their power consumption. The following proposition provides

the average transmit power of the typical MT, by taking into account that the typical MT

may be a MT that is turned off as it does not fulfill either the maximum power constraint

or the maximum interference constraint.

Proposition 3. The average transmit power of the typical MT can be formulated as fol-

lows:

E [PMT0 ] =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

) ∞∫

0

p

τp0αε

(
p

p0

) 1
αε
−1

fRMT0

(
1

τ

(
p

p0

) 1
αε

|X (j,m)
MT0

,AMT0

)
dp

(3.12)

where fRMT0

(
v|X (j,m)

MT0
,AMT0

)
is in (3.11) and Pr

(
X (j,m)

MT0
,AMT0

)
is defined in Appendix

A.

Proof. It follows by computing the average transmit power by conditioning on the events

AMT0 and X (j,m)
MT0

. The final result is obtained from the total probability theorem.

Remark 3 (Exact analysis). The previous propositions and lemmas are exact, since they

do not depend on the set of active interfering MTs but depend only on the locations of the

BSs, which constitute a PPP, and on the typical MT. In other words, Assumption 1 is

not applied.

The next lemma provides the Laplace transform of the other-cell interference based on

its mathematical formulation in (3.7), which exploits Assumption 1.

Lemma 5. Assume that the typical MT is associated with a BS of tier j. The Laplace

transform of the (conditional) interference in (3.7) can be formulated as follows:

LI
(
s|X (j)

MT0

)
= exp

(
β(j)(s)

)
(3.13)
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where β(j)(s) is defined as follows:

β(j)(s) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

) ∞∫

0

fRMTi

(
r|X (k,n)

MTi
,AMTi

)
χ (s, r) dr,

(3.14)

fRMTi

(
r|X (k,n)

MTi
,AMTi

)
is the PDF of the distance between the ith interfering MT and its

serving BS, which is provided in Lemma 4, χ(s, r) is defined as follows:

χ(s, r) =
p0s (τr)αε τ−α

α− 2
max2−α

((
t(j)

t(k)

) 1
α

r,

(
p0

i0

) 1
α (τr)ε

τ

)

×2 F1

(
1,
α− 2

α
, 2− 2

α
,−p0s (τr)αε τ−α max−α

((
t(j)

t(k)

) 1
α

r,

(
p0

i0

) 1
α (τr)ε

τ

))

(3.15)

and Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)
is defined as follows:

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)
=

Pr
(
X (k,n)

MTi
,AMTi

)

Pr
(
X (k)

MTi
,AMTi

) =
Pr
(
X (k,n)

MTi
,AMTi

)

∑
q∈K Pr

(
X (k,q)

MTi
,AMTi

) (3.16)

Proof. See Appendix 3.9.

From the Laplace transform in (3.13), the moments of the interference can be obtained

as shown in the next proposition. Of particular interest is the variance of the interference,

since its affects the performance of AMC schemes [49]: the smaller the variance is, the

more robust and accurate the estimation of the SINR is, which makes easier the choice of

the best MCS to use.

Proposition 4. The mean and variance of the interference can be formulated as follows:

E [I] = −
∑

j∈K

Pr
(
X (j)

MT0

)
β′(j) (0); var (I) = −

∑

j∈K

Pr
(
X (j)

MT0

)(
β′′(j) (0) +

(
β′(j) (0)

)2 − (E [I])2
)

(3.17)
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where the following definitions hold:

β′(j) (0) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)

×
∞∫

0

fRMTi

(
r|X (k,n)

MTi
,AMTi

)p0 (τr)αε τ−α

α− 2
max2−α

((
t(j)

t(k)

) 1
α

r,

(
p0

i0

) 1
α (τr)ε

τ

)
dr (3.18)

β′′(j) (0) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)

×
∞∫

0

fRMTi

(
r|X (k,n)

MTi
,AMTi

)p2
0 (τr)2αε τ−2α

1− α max2(1−α)

((
t(j)

t(k)

) 1
α

r,

(
p0

i0

) 1
α (τr)ε

τ

)
dr

(3.19)

Proof. It directly follows from the first and second derivative of (3.13) evaluated at s =

0.

Remark 4 (Impact of i0). By inspection of Propositions 3 and 4, we evince that the

average transmit power, the mean and variance of the interference decrease by decreasing

i0. Since the interference-unaware setup is obtained by setting i0 → ∞, this implies

that IAM is beneficial in terms of reducing the power consumption of the MTs and of

implementing AMC schemes. The system fairness may, however, be negatively affected if

i0 decreases, as more MTs are muted.

The next theorem provides a tractable expression of the coverage probability of HCNs.

Theorem 1. The CCDF of the SINR of the typical MT can be formulated as follows:

F̄SINR (γ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)

×
∫ ∞

0

fRMT0

(
v|X (j,m)

MT0
,AMT0

)
e−γσ

2
n(τv)α(1−ε)p−1

0 LI
(
γ (τv)α(1−ε) p−1

0 |X (j)
MT0

)
dv

(3.20)
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Proof. With the aid of the total probability theorem, we have:

F̄SINR (γ) = F̄SINR (γ|AMT0) Pr (AMT0) + 0× Pr
(
AMT0

)

=
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)
F̄SINR

(
γ|X (j,m)

MT0
,AMT0

)
=
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)

× ERMT0
EI
[
Pr

(
HMT0 >

γ

p0

(
I + σ2

n

)
(τRMT0)α(1−ε) |X (j,m)

MT0
,AMT0

)]
(3.21)

The proof follows by computing the two remaining expectations.

Corollary 3. Assume ε = 1, i.e., the active MTs apply a power control scheme based on

full channel inversion. The CCDF in Theorem 1 simplifies as follows:

F̄SINR (γ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)
e−γσ

2
n/p0LI

(
γ/p0|X (j)

MT0

)
(3.22)

Proof. It follows from (3.20) by setting ε = 1 and some algebra.

Remark 5 (Operating regimes as a function of i0). By direct inspection of Corollary

3, three operating regimes as a function of i0 can be identified: i) interference-unaware,

where the CCDF of the SINR is independent of i0. This occurs if i0 > p0 and p0/i0 <

min
(
t1/t(2), t(2)/t(1)

)
, ii) interference-aware and cell association independent, where the

CCDF of the SINR depends on i0 but does not depend on the cell association weights

t(1) and t(2). This occurs if i0 < p0 and p0/i0 > max
(
t(1)/t(2), t(2)/t(1)

)
, iii) interference-

aware and cell association dependent, where the CCDF of the SINR depends on i0 and

t(j̃)/t(j), ∀j ∈ K. This occurs if the conditions above are not satisfied. The same operating

regimes can be identified from Propositions 4 and 3.

Proof. It follows by direct inspection of Pr
(
X (j,m)

MT0
,AMT0

)
, ν(j)(v) and η(j)(v).

The second operating regime, i.e., the performance is independent of the cell association

weights, is of particular interest for making the design of HCNs easier: it implies that, for

some system parameters, optimizing the DL results in optimizing the UL as well.

It is worth mentioning, in addition, that the conditions that identify the three operating

regimes in Remark 5 can be conveniently formulated in dB as well, which provides

further information for system design. More precisely, regime i) emerges if i0 > p0 dB
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and t(1)/t(2) ∈ [−i0/p0, i0/p0] dB and regime ii) emerges if i0 < p0 dB and t(1)/t(2) ∈
[−p0/i0, p0/i0] dB.

3.4 Smallest Path-Loss Association

In this section, tractable mathematical frameworks under the SPLA scheme are provided.

In this case, the condition t(1) = t(2) holds and simplified formulas can be obtained.

Under the assumption that the path-loss exponents of all the tiers of BSs are the same,

in fact, multi-tier HCNs reduce to an equivalent single-tier cellular network of intensity

λ =
∑

j∈K λ
(j) [26].

Proposition 5. The probability that the typical MT is active can be formulated as follows:

Pr (AMT0) =

∫ 1
τ

(
pmax
p0

) 1
α

r1=0

2πλr1e
−πλmax2

(
r1,
(
p0
i0

) 1
α (τr1)ε

τ

)
dr1 (3.23)

Proof. The proof is similar to that of Proposition 2. The difference is that only the joint

PDF of the distance of nearest and second nearest BSs needs to be used (see Appendix

A).

Corollary 4. If ε = 1, Pr (AMT0) in (3.23) simplifies as follows:

Pr (AMT0) =


1− e

− π
τ2

(
pmax
p0

) 2
α
λmax

(
1,
(
p0
i0

) 2
α

)

/

max

(
1,

(
p0

i0

) 2
α

)
(3.24)

Proof. It directly follows from (3.23) by setting ε = 1 and computing the integral.

Remark 6 (Operating regimes as a function of i0). From (3.24), two operating regimes can

be identified: i) interference-unaware, i.e., Pr (AMT0) is independent of i0, which occurs if

i0 > p0 and ii) interference-aware, i.e., Pr (AMT0) depends on i0, which occurs if i0 < p0.

Remark 7 (Unlimited transmit power of the MTs). Assume pmax → ∞, i.e., the MTs

have no maximum transmit power constraint. From (3.24), the following holds: i) under
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the interference-unaware regime (i0 > p0), Pr (AMT0)→ 1, and ii) under the interference-

aware regime (i0 < p0), Pr (AMT0) = (i0/p0)
2
α . In both regimes, Pr (AMT0) is independent

of the density of BSs λ.

Lemma 6. The PDF of the distance between the typical MT and its serving BS is as

follows:

fRMT0
(v|AMT0) =

2πλve
−πλmax2

(
v,
(
p0
i0

) 1
α (τv)ε

τ

)

Pr (AMT0)
1

(
0 < v <

1

τ

(
pmax

p0

) 1
α

)
(3.25)

Proof. The proof is similar to that of Lemma 4. The difference is that only the joint

PDF of the distance of nearest and second nearest BSs needs to be used (see Appendix

A).

Remark 8 (Interference-awareness is equivalent to network densification if pmax → ∞).

If the system operates in the interference-aware regime (i0 < p0) and pmax → ∞, (3.25)

reduces to:

fRMT0
(v|AMT0) = 2πλ

(
p0

i0

) 2
α

ve
−πλ

(
p0
i0

) 2
α
v2

(3.26)

This implies that IAM’s impact is equivalent to increasing the density of BSs from λ to

λ(p0/i0)
2
α , since the PDF of the distance from the nearest BS in Poisson cellular networks

is 2πλve−πλv
2
. Hence, the distance between probe MT and probe BS is reduced, resulting

in better performance.

Proposition 6. If ε = 1, the average transmit power of the typical MT is as follows:

E [pMT (RMT0)] =

p0τ
α

(
Γ
(
1 + α

2

)
− Γ

(
2+α

2
, λπ
τ2

(
pmax

p0

) 2
α

max

(
1,
(
p0

i0

) 2
α

)))

(πλ)
α
2 max

(
1,
(
p0

i0

) 2
α

+1
) (3.27)

Proof. If follows from Proposition 3, by setting ε = 1 and computing the integral.

Remark 9 (Impact of interference-awareness). If pmax → ∞ and i0 < p0 (interference-
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aware regime), (3.27) simplifies as follows:

E [pMT (RMT0)] =
ταΓ

(
1 + α

2

)

(πλ)
α
2 p0

2
α

i0
2
α+1

(3.28)

which implies that the average power consumption of the MTs scales polynomially with

exponent 2/α + 1, as a function of the maximum interference constraint i0.

Lemma 7. Assume ε = 1. The Laplace transform of the aggregate interference can be

formulated as LI (s) = exp (β(s)), where β(s) = −2πλθµ (s) and the following holds:

θ =

(
1−

(
1 +

π

τ 2
λ

(
pmax

p0

) 2
α

)
e
− π
τ2 λ

(
pmax
p0

) 2
α

max

(
1,
(
p0
i0

) 2
α

))(
πλmax

(
1,

(
p0

i0

) 2
α

))−1

(3.29)

µ (s) =
p0s

α− 2
max2−α

(
1,

(
p0

i0

) 1
α

)
2F1

(
1,
α− 2

α
, 2− 2

α
,−p0s max−α

(
1,

(
p0

i0

) 1
α

))

(3.30)

Proof. The proof follows from χ(s, r) in (3.15), by setting t(1) = t(2) and formulating it as

χ(s, r) = r2µ(s). Hence, β(s) = −2πλµ (s) θ, where θ = E
[
R2

MTi
|AMT0

]
.

Proposition 7. Assume ε = 1. The mean and variance of the interference can be ex-

pressed as:

E [I] = 2πλθ

p0max2−α
(

1,
(
p0

i0

) 1
α

)

α− 2
; var (I) = 2πλθ

p2
0max2−2α

(
1,
(
p0

i0

) 1
α

)

α− 1
(3.31)

Proof. It follows from Lemma 7 evaluating the derivatives of the Laplace transform at

zero.

Remark 10 (Trends of mean and variance of the interference as a function of i0). Assume

pmax →∞ and consider the interference-aware regime, i.e., i0 < p0. Then, (3.29) simpli-

fies to θ = 1
πλ

(
i0
p0

) 4
α

and the mean and variance of the interference can be formulated as
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follows:

E [I] =
2

α− 2
(p0)−

2
α (i0)

α+2
α ; var (I) =

2

α− 1
(p0)−

2
α (i0)

2(α+1)
α (3.32)

which implies that the mean and variance of the interference scale polynomially with ex-

ponents α+ 2/α and 2 (α + 1) /α as a function of i0, respectively, and they do not depend

on the BSs’ density.

Finally, the following theorem provides the coverage probability under the SPLA cri-

terion.

Theorem 2. Assume ε = 1, pmax →∞ and that the system operates in the interference-

aware regime (i0 < p0). The CCDF of the SINR can be formulated as follows:

F̄SINR (γ|AMT0) = exp

(
−γσ

2
n

p0

− 2
γ

α− 2

(
i0
p0

)α+2
α

2F1

(
1,
α− 2

α
, 2− 2

α
,−γ

(
i0
p0

)))

(3.33)

Proof. The proof follows from Theorem 1 by setting t(1) = t(2) and ε = 1, and from

Lemma 7 by letting pmax →∞ and considering i0 < p0.

Remark 11 (SINR invariance as a function of λ). From (3.33), we evince that the CCDF

of the SINR is independent of λ, but it depends on the ratio i0/p0 and the path-loss exponent

α.

Interestingly the SINR in such a setup is invariant with the BSs’ density. Intuitively,

this means that both the desired received power and the interference does not vary with

the BSs’ density. On the one hand, the desired power does not vary thanks to full channel

inversion power control (ε = 1, pmax → ∞). On the other hand, although the distances

towards nearest interfering MTs decrease with λ, their transmit power also decrease with

λ, making received interference invariant with λ, as it can be observed from its moments

in eq. (3.32). This density invariance has been also reported in [21, 26] for the case of the

SIR.
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3.5 Spectral Efficiency and Binary Rate

This section is focused on the analysis of SE and BR. Unlike the vast majority of papers

on stochastic geometry modeling of HCNs that evaluate these key performance indicators

based on the Shannon formula, we provide a mathematical formulation that is more useful

for current cellular deployments based on practical AMC schemes and, thus, provides

estimates of SE and BR that can be achieved at a finite target value of the Block Error Rate

(BLER) rather than their theoretically achievable counterparts under the assumptions of

unlimited decoding complexity and arbitrarily small BLER. We show, remarkably, that

more tractable expressions of SE and BR can be provided, compared to those that can be

obtained based on the Shannon definition. As mentioned in Section I, the BR accounts

for the amount of bandwidth allocated to the typical MT by the scheduler and, thus,

accounts for the BS’s load, i.e., the number of MTs that need to be simultaneously served

in the cell to which the typical MT belongs to. Accordingly, SE and BR provide different

information on the advantages and limitations of transmission schemes and, as such, are

both employed for assessing the performance of practical LTE systems [84].

SE and BR, however, are related to each other and, in mathematical terms, we have:

BRMT0 =
bw

NABMT0

SEMT0 (bps) (3.34)

where bw is the available bandwidth per BS and NABMT0
denotes the number of active MTs

associated with the probe BS, which is commonly referred to as the cell load [85].

As extensively discussed in, e.g., [85], [27] [86], the distribution of NABMT0
is not avail-

able for cell association criteria that are not based on the shortest distance, and, thus

approximations need to be used. For mathematical tractability, but without loosing in

accuracy, we exploit the approximation in [27] which, for the convenience of the readers,

is reported in what follows.

Assumption 2. The Probability Mass Function (PMF) of the number of active MTs,
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NABMT0
, associated with a BS of tier j is approximated as follows:

Pr
(
NABMT0

= n|X (j)
MT0

,AMT0

)
≈ 3.53.5

(n− 1)!

Γ (n+ 3.5)

Γ (3.5)

(
λMT · p
λ(j)

)n−1(
3.5 +

λMT · p
λ(j)

)

(3.35)

where, for notational simplicity, the short-hand p = Pr(X (j)
MT0

,AMT0) is used.

3.5.1 Adaptive Modulation and Coding

In modern cellular systems [84], AMC is aimed to adapt the MCS to be used to the

channel conditions. This is needed for maximizing the BR while providing a BLER below

a desired threshold BLERT . In practice, AMC is implemented as follows. In the UL,

the MTs transmit sounding reference signals that are used by the BSs for estimating the

SINR. Based on these estimates, the BSs choose the MCS to use (usually identified by an

index), which corresponds to a given Channel Quality Indicator (CQI), iCQI ∈ [1, nCQI],

that maximizes the SE while maintaining the BLER below BLERT . The choice of the

best MCS to use is made based on lookup tables that provide the SINR thresholds, γiCQI
,

associated to each value of CQI. Finally, the BSs inform each scheduled MT of the MCS

index to use for its subsequent transmission. To reduce the reporting overhead associated

with the CQIs, the LTE standard assumes that the number of bits used for reporting the

CQI is equal to 4, which implies nCQI = 15.

Based on this working principle, the BR can be obtained from (3.34) and the SE is as

follows:

SEMT0 =

nCQI∑

iCQI=1

SEiCQI
1
(
SINRMT0 ∈ [γiCQI

, γiCQI+1
)
)

(3.36)

where γ1 < · · · < γnCQI
, iCQI = 0 if no transmission,

⋂nCQI

iCQI=1 [γiCQI
, γiCQI+1

) = ∅, γnCQI+1
→

∞.

Based on (A.11), the spatially-average SE can be obtained from the CCDF of the SINR

provided in Sections III and IV for GCA and SPLA criteria, respectively. More precisely,
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we have:

E [SEMT0 ] =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)

×
nCQI∑

iCQI=1

SEiCQI

(
F̄SINR

(
γiCQI
|X (j,m)

MT0
,AMT0

)
− F̄SINR

(
γiCQI+1|X (j,m)

MT0
,AMT0

))

(3.37)

With similar arguments, the average BR of the probe MT can be written as follows:

E [BRMT0 ] =
∑

j∈K

∑

m∈K

∑

n>0

Pr
(
X (j,m)

MT0
,AMT0

)
Pr
(
NABMT0

= n|X (j)
MT0

,AMT0

)

×
nCQI∑

iCQI=1

bw
n

SEiCQI

(
F̄SINR

(
γiCQI
|X (j,m)

MT0
,AMT0

)
− F̄SINR

(
γiCQI+1|X (j,m)

MT0
,AMT0

))

(a)
=
∑

j∈K

∑

m∈K

nCQI∑

iCQI=1

Pr
(
X (j,m)

MT0
,AMT0

)
SEiCQI

3.53.5bw
(
3.5λ(j) + λMTp

) (
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)
− F̄SINR

(
γiCQI+1|X (j,m)

MT0
,AMT0

))
(3.38)

where (a) is obtained by computing the summation over n = NABMT0
in closed-form with

the aid of the PMF in (3.35).

The mathematical expressions of SE and BR of AMC schemes are easier to compute

than the corresponding formulas obtained from the Shannon definition of SE, since the

latter definition requires an extra integral to be computed [85]. This is remarkable, since

the SE and BR in (3.37) and (3.38) account for feedback’s overhead and limited-complexity

receivers.

In the present chapter, as a sensible case study, we consider the range of CQI values

and a target BLER equal to 10%, as recommended by LTE specifications [84]. The

SINR thresholds γiCQI
are obtained from link-level simulations conducted with an accurate

LTE simulator [1, 2]. More precisely, the considered simulator assumes MTs of limited

computational complexity, where decoding is performed by using a 1-tap zero forcing

equalizer and a turbo decoder based on the soft output Viterbi algorithm. Numerical

illustrations are reported in Section 3.6. For completeness, Table 3.2 reports the input
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Table 3.2: SINR thresholds and SE values obtained from the LTE link-level simulator in
[1, 2].

iCQI 1 2 3 4 5 6 7 8 9 10

SEiCQI
[bps/Hz] 0.15 0.23 0.38 0.60 0.88 1.18 1.48 1.91 2.41 2.73

γiCQI
[dB] -3.65 -1.60 0.00 2.25 3.75 4.75 9.00 10.50 12.35 15.40

iCQI 11 12 13 14 15

SEiCQI
[bps/Hz] 3.32 3.90 4.52 5.11 5.55

γiCQI
[dB] 17.18 18.85 20.70 24.0 25.0

Table 3.3: Simulation parameters.

Parameter Value Parameter Value

{τ, α} (MHz) {2.6, 3.8} nthermal (dBm/Hz) −174
i0 (dBm) [−120,−60] ε [0, 1]

bw (MHz) 9 t(1)/t(2) (dB) {9, 0}
p0 (dBm) −70 pmax (dBm) {∞, 5}

{λ(1), λ(2)} (points/km2) {2, 4} λMT (points/km2) 80
nF (dB) 9 σs (dB) 4

parameters that are needed for computing the SE and BR in (3.37) and (3.38). It is

worth emphasizing, however, that (3.37) and (3.38) are general enough for being used for

analyzing different wireless standards and receiver implementations.

3.6 Numerical Results

In this section, we validate the mathematical frameworks and findings derived in the

previous sections with the aid of Monte Carlo simulations, as well as compare the IAM

scheme against IAFPC and IUFPC schemes. The following setup compliant with LTE

specifications is considered. The bandwidth is equal to 10 MHz, which implies bw = 9

MHz by excluding the guard bands. The noise power spectral density is nthermal = −174

dBm/Hz and the noise figure of the receiver is nF = 9 dB. Both GCA and SPLA criteria

are studied, and the association weights are, unless otherwise stated, t(1)/t(2) = 9 dB and

t(1)/t(2) = 0 dB, respectively. The case study t(1)/t(2) = 9 dB is related to a cell association
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Figure 3.1: Average transmit power versus i0 for IAM and IAFPC methods with ε = 1,
pmax →∞ and pmax = 5 dBm.

based on the average DL received power criterion, where the first tier of BSs (macro) has

transmit power equal to 46 dBm and the second tier of BSs (small-cell) has transmit power

equal to 37 dBm, which agrees with [87, Annex A: Simulation Model]. Other simulation

parameters are provided in Table 3.3. As far as Monte Carlo simulations are concerned,

they are obtained by considering 104 realizations of channels and network topologies. In

all the figures, analytical and Monte Carlo simulation results are represented with solid

lines and markers, respectively.

3.6.1 Average Transmit Power, Probability of Being Active, Mean

& Variance of the Interference

In this section, we analyze the average transmit power of the MTs, the probability that

the typical MT is active, which provides information on the system fairness, and the mean

and variance of the interference. As reported in [49], [48], reducing the variance of the

interference is beneficial for reducing the error probability of practical decoding schemes,

e.g., turbo decoding, and improving the selection of the most appropriate Modulation and
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Figure 3.2: Probability of being active of the typical MT for IAM with ε = 1, pmax →∞,
pmax = 30 dBm and pmax = 5 dBm.

Coding Scheme (MCS) to use in LTE systems.

Figures 3.1-3.4 confirm the conclusions drawn in Remark 3, i.e., the mathematical

frameworks of average transmit power and probability of being active are exact while those

of mean and variance of the interference are approximations that exploit Assumption

1. Such an assumption considers that the position of interfering MTs can be modeled

as a conditionally thinned (i.e., non-homogeneous) PPP. The difference between such a

non-homogeneous PPP, and the actual point process, which is on the other hand not

tractable, explains also the difference between simulation and analytical results in all the

metrics that depend on the interference (SINR, SE, BR).

The conclusions drawn in Remark 4 are confirmed as well: the mean and variance

of the interference decrease by decreasing i0, which provide important advantages for

implementing AMC schemes. The price to pay is, however, a decrease of the probability

that a MT is active. The proposed mathematical frameworks can be used to find a suitable

trade-off that provides an acceptable user fairness while simplifying the implementation

of AMC schemes.

In the figures, IAM and IAFPC are compared as well. We observe that IAM reduces
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Figure 3.3: Mean of the interference versus i0 for IAM and IAFPC methods with ε = 1,
pmax →∞ and pmax = 5 dBm.

the average transmit power and the mean and variance of the interference. Consider, for

example, the case study pmax →∞. IAM and IAFPC converge to the same performance

for i0 ≥ −60 dBm. This behavior is expected, since both schemes tend to be equivalent if

pmax and i0 are large enough. This occurs, in particular, if all the MTs can apply power

control without causing more interference than i0 and without necessitating a transmit

power higher than pmax. In this case, both IAM and IAFPC provide the same performance

as the IUFPC scheme.

Consider the SPLA criterion, which is illustrated with dashed lines in the figures. We

observe that the findings in Remark 6 are confirmed: the system is interference-aware

and interference-unaware if i0 < p0 and i0 > p0, respectively. As expected, the crossing

point occurs at p0 = −70 dBm based on the simulation parameters used. In addition, the

scaling laws of average transmit power and average interference are in agreement with the

findings in Remark 9, Remark 10.

All in all, the numerical illustrations reported in Figs. 3.1-3.4 confirm all the conclu-

sions and performance trends discussed in the previous sections and highlight the advan-

tages of IAM.
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Figure 3.4: Variance of the interference versus i0 for IAM and IAFPC schemes with ε = 1,
pmax →∞ and pmax = 5 dBm.

With SPLA, MTs associate with their nearest BS whereas for the case of GA with

t(1)/t(2) 6= 0 dB, MTs associate with the BS that provides more received weighted power

in the DL, and hence such BS is not necessary the closest BS. This involves that in the

interference unaware case the transmit power with SPLA is smaller than in the coupled

case as it can be observed in Fig. 3.1. In the GA case with t(1)/t(2) 6= 0 dB, MTs are not

associated with their closest BS, and hence they tend to cause higher interference than in

case of SPLA, where t(1)/t(2) = 0 dB. This can be also observed from Fig. 3.2 where it is

shown that the probability to be active is higher in case of SPLA.

3.6.2 Complementary Cumulative Distribution Function of the

SINR

In this section, we analyze the coverage probability (CCDF of the SINR) of the active

MTs. The results are illustrated in Figs. 3.5 and 3.6 for ε = 1 and ε = 0.75, respectively,

and by assuming pmax →∞.

In both figures, we observe a good agreement between mathematical frameworks and
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Figure 3.5: CCDF of the SINR for the typical MT conditioned on being active for IAM
with ε = 1, t(1)/t(2) = 9 dB, pmax →∞ and i0 = {−120,−90,−60} dBm.

Monte Carlo simulations. In particular, the figures confirm, once again, that the coverage

probability of IAM increases as i0 decreases. In Fig. 3.5, for example, almost all the active

MTs have a SINR greater than 20 dB if i0 = −120 dBm. This good SINR is obtained

because IAM keeps under control the interference by muting the MTs that create more

interference. Based on Fig. 3.2, in fact, we note that only a small fraction of the MTs

are allowed to be active for i0 = −120 dBm. The active MTs, however, better exploit

the available bandwidth. Similar conclusions can be drawn for ε = 0.75 shown in Fig.

3.6. The main difference is that, in this latter figure, IAM provides almost the same

coverage probability for i0 = −60 dBm and i0 = −90 dBm. The reason is that the MTs

transmit with less power if ε = 0.75 and, thus, there is almost no difference between

the two interference constraints. This brings to our attention that the design of the UL

of HCNs requires to jointly optimize i0, p0, pmax and ε, in order to identify the desired

operating regime that fulfills the requirements in terms of system fairness and interference

mitigation. The proposed mathematical frameworks can be used to this end.
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Figure 3.6: CCDF of the SINR for the typical MT conditioned on being active for IAM
with ε = 0.75, t(1)/t(2) = 9 dB, pmax →∞ and i0 = {−120,−90,−60} dBm.

3.6.3 Spectral Efficiency and Binary Rate

In this section, the average SE and average BR are analyzed, as well as the IAFPC6 and

IAM schemes are compared against each other for several system setups.

In Fig. 3.7, the average SE of IAFPC and IAM schemes is analyzed and three con-

clusions can be drawn. By comparing the average SE of the IAPFC scheme based on the

definition given in Section VI (i.e., for AMC schemes) and on the Shannon formula, we

note, as expected, that the latter formula provides optimistic estimates of the average SE.

By comparing the average SE of the IAM scheme for typical (active and muted) MTs and

active (only) MTs, we note a different performance trend as a function of i0. As for the

active MTs, the average SE increases as i0 decreases. As for the typical MTs, on the other

hand, the average SE decreases as i0 decreases. This is because the lower i0 is the more

MTs are turned off, which on average, contributes to reduce the SE of the typical MT. By

comparing the average SE of IAPFC and IAM schemes, we evince that IAFPC outper-

6It is worth noting that the average SE of the IAFPC scheme based on the Shannon formula was
analyzed in [47]. In the present chapter, we focus our attention of the more practical definition provided
in Section VI.
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Figure 3.7: Comparison of average SE of IAFPC and IAM for ε = 1, t(1)/t(2) = 9 dB and
pmax → ∞. As for IAFPC, the average SE based on the Shannon formula is shown as
well.

forms IAM for all relevant values of the maximum interference constraint i0, since all the

MTs are active under the IAFPC scheme. The average SE of the active MTs under the

IAM scheme is, however, much better than that of the IAFPC scheme, since the other-cell

interference is reduced.

As discussed in Section I, however, the SE does not provide information on the amount

of bandwidth that the scheduler allocates to each active MT.

This trade-off is captured by the average BR, which is shown Fig. 3.8. As far as the

average BR is concerned, in particular, we note that IAFPC and IAM schemes provide

opposite trends compared to those evinced from the analysis of the average SE of the

typical MT. More precisely, IAM provides a better average BR than IAFPC and there

exists an optimal value of i0 that maximizes it. This optimal value of i0 emerges if the

typical MT is considered, i.e., the MT may be either active or inactive. The figure,

however, shows the average BR achieved only by the active MTs as well. In this case,

we note that the MTs that satisfy both power and interference constraints achieve a very

high throughput due to the reduce level of interference that is generated in this case. In a
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MT.

nutshell, IAM outperforms IAFPC in terms of average BR because the available bandwidth

is shared among fewer MTs (only those active), which results in a higher throughput for

each of them. Even though some MTs may be turned off in IAM, this may not necessarily

be considered as a downside from the user’s perspective: in high-mobility scenarios, for

example, some MTs may prefer to be muted for some periods of time if their reward is

achieving a higher throughput once they are allowed to transmit. In Fig. 3.9, we study

the impact of pmax for a given maximum interference constraint i0. We observe that pmax

plays a critical role as well and highly affects the average BR. This figure confirms, once

again, that both pmax and i0 constraints need to be appropriately optimized in order for

IAM to outperform IAFPC. In Fig. 3.10, we illustrate the potential of IAM of reducing

the variance of the interference compared with IUM, while still guaranteeing the same

average BR. As discussed in the previous sections, this is beneficial for implementing

AMC schemes. The figure shows a four-order magnitude reduction of the variance of the

interference for the considered setup of parameters.
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Figure 3.9: Comparison of average BR of IAFPC and IAM for ε = 1, t(1)/t(2) = 9 dB and
i0 = −90 dBm.

3.6.4 Impact of the Association Weights: On UL-DL Decoupling

As shown in [26] and [32], optimizing the performance of HCNs for DL transmission does

not necessarily results in optimizing their performance in the UL. Based on the GCA

criterion studied in Section IV, this implies that different cell association weights (i.e.,

a different ratio t(1)/t(2) for two-tier HCNs) may be needed in the DL and in the UL.

However, this approach, which is referred to as UL-DL decoupling, introduces additional

implementation challenges, which require the modification of the existing network archi-

tecture and control plane.

In this section, motivated by these considerations, we analyze and compare IAM,

IAFPC and IUFPC schemes as a function of t(1)/t(2). The setup t(1)/t(2) = 0 dB corre-

sponds to the SPLA criterion. Some numerical illustrations are provided in Figs. 3.11 and

3.12, where the probability that the typical MT is active and the average BR are shown,

respectively.

In Fig. 3.12, in particular, we compare the average BR of IUFPC and IAM schemes.

The figure highlights important differences between these two interference management
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dBm) and IUM (i0 →∞) schemes with pmax = 5 dBm and t(1)/t(2) = 9 dB.

schemes for improving the performance of the UL of HCNs. First of all, we note that

the average BR of the IUFPC scheme decreases as the ratio t(1)/t(2) increases. More

specifically, the best average BR is obtained if the SPLA criterion is used, which is in

agreement with previously published papers [27]. This originates from the fact that the

larger t(1)/t(2) is, the more MTs are associated with more distance BSs, which, due to the

use of power control, results in increasing the interference in the UL. The performance

trend is, on the other hand, different if the IAM scheme is used. In this case, there are

several values of i0 that provide a better average BR compared with IUFPC. In addition,

the average BR increases as t(1)/t(2) increases, since the excess interference that is generated

under the IUFPC scheme is now kept under control by imposing the maximum interference

constraint i0. As observed in previous figures, Fig. 3.11 confirms that this gain is obtained

since more MTs are turned off.

Figures 3.11 and 3.12 confirm the findings in Remark 5 and, in particular, the ex-

istence of an operating regime where the performance of IAM is independent of the as-

sociation weights. Let us consider, for example, the setup for i0 = −60 dBm. In this
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Figure 3.11: Probability the typical MT is active as a function of t(1)/t(2) for IUFPC
(i0 →∞) and IAM with i0 = {−90,−80,−70,−60} dBm. pmax →∞ for both schemes.

case, i0 > p0 and hence, according to Remark 5, the system is interference-unaware if

t(1)/t(2) ∈ [−10,+10] dB. Figure 3.12, more specifically, confirms that IAM is interference-

unaware since it provides the same average BR as IUFPC for t(1)/t(2) ∈ [−10,+10] dB7.

Similar conclusions can be drawn for other values of i0, where different operating regimes

can be identified as predicted in Remark 5. If i0 = −90 dBm, in particular, then i0 < p0

and the system is independent of the cell association criterion for t(1)/t(2) ∈ [−20,+20],

which is confirmed in Figs. 3.11 and 3.12. It is worth mentioning that the values of t(1)/t(2)

for which the considered system model is cell association independent are usually adopted

in practical engineering applications. In particular, the authors of [26, 88] have shown

that the optimal cell association ratio that optimizes the DL is usually less than 20 dB.

This is in agreement and compatible with the findings in Figs. 3.11 and 3.12. In view of

the numerical results and theoretical insights derived in this work, it is possible to state

the following arguments in favor of such Interference-Aware Muting procedure:

1. Taking into account the periods where the typical MT is active and those where it

7Only positive values (in dB) of the association weights t(1)/t(2) are shown in Figs. 3.11 and 3.12.
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Figure 3.12: Average BR as a function of t(1)/t(2) for IUFPC (i0 → ∞) and IAM with
i0 = {−90,−80,−70,−60} dBm. pmax →∞ for both schemes.

is muted, the average BR is increased with IAM compared to IAFPC and IUFPC.

2. Thanks to mobility and shadowing, MTs are only muted for a given period of time.

3. Since muted MTs do not transmit, its average transmitted power is reduced com-

pared to IAFPC and IUFPC. This has been studied with Fig. 3.1.

4. With IAM, there is a regime where the UL performance is independent of cell associ-

ation, which eases joint design of UL and DL transmissions as it have been discussed

above.

5. It is straightforward to extend the developed model to consider other approaches

where IAM take place only in a portion of the resources (e.g., bandwidth), leading

to a higher system fairness. Let us consider, for instance, that the system bandwidth

is split in two orthogonal sub-bands, e.g., BA and BM . BA is restricted to active MTs,

i.e., those whose interference is smaller than i0, whereas the other sub-band is used

to the rest of MTs8.

8Although it is possible to study more general frameworks for IAM, we have focused on the case
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3.7 Discussion

In this chapter, we have studied the performance of IAM: an interference management

scheme for enhancing the throughput of HCNs. With the aid of stochastic geometry, we

have developed a general mathematical approach for analyzing and optimizing its perfor-

mance as a function of several system parameters. Simplified and insightful expressions of

the throughput and other relevant performance indicators have been proposed for simpli-

fied but relevant case studies, such as in the presence of channel inversion power control

and equal cell association weights. Among the many performance trends that have been

identified, we have proved that, while optimizing the DL and the UL of HCNs neces-

sitates, in general, to use different cell association weights, there exist some operating

regimes where IAM is cell association independent. This is shown to simplify the design

of HCNs, since no changes in their control plane is needed compared with conventional

cellular networks. The mathematical frameworks and findings have been substantiated

against Monte Carlo simulations, as well as the achievable performance of IAM has been

compared against other IAFPC and IUFPC schemes, by highlighting several important

trade-offs in terms of system fairness and system throughput. Our analysis has unveiled

that the design of HCNs based on IAM necessitates the optimization of several param-

eters, among which the maximum transmit power constraint of the MTs, the maximum

interference constraint at the BSs, and the fractional power control compensation factor.

These aforementioned contributions appear in [50], which has been accepted for pub-

lication, and [51], which is a work under review.

3.8 Appendix: Proof of Proposition 2

The probability that a MT is active is by definition as follows:

Pr (AMT0) =
∑

j∈K

∑
m∈K

Pr
(
X (j,m)

MT0
,AMT0

)
(3.39)

considered in this chapter due to space limitations and to study deeper the effect of MTs muting.
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where Pr
(
X (j,m)

MT0
,AMT0

)
is the probability that the MT is active, is associated to tier j

and that the most interfered BS belongs to tier m. If j 6= m, it can be written as follows:
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(3.40)

where (a) is obtained by definition of expectation formulated with the aid of indicator

functions.

To compute this expectation, the PDF of the distance of the nearest BS and of the

joint PDF of the distances of the nearest and second nearest BSs are needed. By definition

of PPP, they are equal to f
R

(j)
MT0,(1)

(r) = 2πλ(j)re−πλ
(j)r2

and f
R

(j)
MT0,(1)

,R
(j)
MT0,(2)

(r1, r2) =

4
(
πλ(j)

)2
r1r2e−πλ

(j)r2
2 for r1 < r2, respectively, [52]. With the aid of these PDFs, we

obtain:
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∞∫
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∞∫

r
(j)
2 =max

(
r
(j)
1 ,r
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,R
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(r
(j)
1 , r

(j)
2 )dr

(j)
2 dr

(m)
1 dr

(j)
1 (3.41)

The computation of the two-fold integral leads to the function ν(j)(v) that is provided

in (3.9).

The case j = m can be solved by using an approach similar to the previous case. The

final result corresponds to the function η(j)(v) available in (3.10).

By combining both cases j = m and j 6= m, Pr
(
X (j,m)

MT0
,AMT0

)
can be written as
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follows:

Pr
(
X (j,m)

MT0
,AMT0

)
=

∫ 1
τ

(
pmax
p0

) 1
αε

0

(
1 (j 6= m) ν(j,m)(v)+ 1 (j = m) η(j)(v)

)
dv (3.42)

The proof follows by computing the summation over m ∈ K in (3.39).

3.9 Appendix: Proof of Lemma 5

The Laplace transform of the interference can be expressed as follows:

LI
(
s|X (j)

MT0

)
= EI

[
e−sI |X (j)

MT0

]
=
∏

k∈K

EΨ(k)

∏

MTi∈Ψ(k)

ERMTi

[
EHMTi

exp
(
−sHMTi (τDMTi)

−α (τRMTi)
αε p0 1

(
O(j,k)

MTi

)
1 (ZMTi)

)
|X (k)

MTi
,AMTi

]

(3.43)

By applying the Probability Generating Functional (PGF) theorem in [61] and com-

puting the expectation with respect to the channel fading, LI
(
s|X (j)

MT0

)
is as follows:

exp


−

∑

k∈K

2πλ(k)

∞∫

ρ=0

ERMTi

[
1
(
O(j,k)

MTi

)
1 (ZMTi)

s (τρ)−α (τRMTi)
αε p0

1 + s (τρ)−α (τRMTi)
αε p0

ρ|X (k)
MTi

,AMTi

]
dρ




(3.44)

By conditioning on the event Q(n)
MTi

defined in (3.2) and by using the total probability

theorem, LI
(
s|X (j)

MT0

)
can be written as follows:

exp

(
−
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)
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ρ=0

ERMTi

[
1
(
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MTi

)
1 (ZMTi)

s (τρ)−α (τRMTi)
αε p0

1 + s (τρ)−α (τRMTi)
αε p0

ρ| X (k,n)
MTi

,AMTi

]
dρ

)
(3.45)

The next step is the computation of the expectation with respect to RMTi by condi-
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tioning on X (k,n)
MTi

∩ AMTi and by applying the definition of the event O(j,k)
MTi

in (3.5) and

of ZMTi in (3.6). In particular, by conditioning on X (k,n)
MTi

∩ AMTi for MTi ∈ Ψ(k), the

distances RMTi are independent and identically distributed random variables whose PDF

is in (3.11). With some algebra, LI
(
s|X (j)

MT0

)
can be written as follows:
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−
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2πλ(k)
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Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

)

∞∫

r=0

fRMTi

(
r|X (k,n)

MTi
,AMTi

) ∞∫
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) 1
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)
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1 + s (τρ)−α (τr)αε p0

ρdρdr

)

(3.46)

The proof follows by computing the inner integral.



Chapter 4

Multi-User Coverage Probability in

the Uplink of Cellular Systems

We analyze the coverage probability of multi-user uplink cellular networks with fractional

power control. We use a stochastic geometry approach where the mobile users are dis-

tributed as a Poisson Point Process (PPP), whereas the serving base station (BS) is placed

at the origin. Using conditional thinning, we are able to calculate the coverage probability

of k users which are allocated a set of orthogonal resources in the cell of interest, ob-

taining analytical expressions for this probability considering their respective distances to

the serving BS. These expressions give useful insights on the interplay between the power

control policy, the interference level and the degree of fairness among different users in the

system.

4.1 Introduction

Aiming to satisfy the ever-increasing demand for higher data rates, modern cellular tech-

nologies like Long Term Evolution (LTE) use aggressive frequency reuse policies, which

have accentuated the problem of inter-cell interference compared to previous standards

[89]. This interference is highly dependent on the transmitted power of the different users,

whose random positions and mobility affects the ability of the base stations (BS) to miti-

gate this problem. This causes huge differences on the received Signal to Interference plus

Noise Ratio (SINR) due to path loss, being specially critical for cell-edge users, that tend

129
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to have a poorer performance compared to users located closer to the BS.

Each BS must also ensure a certain Quality of Service (QoS) for every user; hence,

power control becomes a fundamental mechanism in the uplink (UL), as it impacts on the

fairness among the users in the serving cell as well as on the level of interference caused to

neighbor cells. Compared to the downlink (DL), the UL poses additional challenges since:

(1) users positions are coupled with its serving BS, and (2) when power control is used,

the interference level coming from a certain user depends not only on the distance of the

BS to this user, but also on the distance between this interfering user and its serving BS.

Additionally, even without power control, the interference behavior in the UL and DL is

rather dissimilar. In the DL, those transmissions intended for cell-edge users tend to have

stronger interference than for cell-interior ones, whereas in the UL all transmissions from

the users inside the cell experience an interference with the same statistics.

Stochastic geometry has emerged as a promising tool to analyze the performance of

cellular systems, being an alternative to traditional approaches based on Wyner-type

interference and hexagonal grid models, whose accuracy is known to be limited in different

circumstances [25]. This approach typically considers the positions of transmitting nodes

as a Poisson Point Process (PPP) where the receiver is placed at the origin [19] of a 2-D

spatial grid. Despite being originally considered for ad-hoc and sensor networks due to

the arbitrary positions of the nodes in such networks, the irregular cell patterns in modern

cellular networks makes it the perfect technique to analyze their performance [21].

While most works based on random spatial models have focused on DL scenarios, their

adequacy for modeling UL cellular networks has recently been addressed in [29]. In this

work, the authors provided the first known analytical results for the coverage probability

of a typical user in a UL set-up, where fractional power control was implemented. As

main assumptions, validated with realistic simulation models, they considered that the

distances between interfering users and its serving BS are independent and identically

distributed (i.i.d.), and that the BS falls in the Voronoi tessellation of each user. Based

on this new approach, new analyses have been conducted in other UL scenarios involving

fractional frequency reuse [90] or multi-tier cellular networks [31].

Previous works in the literature are usually focused on only one active link between

the transmitter and receiver nodes. Specifically, in [29] their analysis considers the link

between the serving BS of interest (placed at the origin) and a typical user. Since this
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randomly selected user can be located anywhere in the cell (cell interior, cell-edge, etc.),

results are averaged over all spatial positions inside the cell. Although these results yield

interesting insights on the performance of a typical user, they do not provide a clear

understanding about the fairness among the users, or the performance of cell-edge users.

Results concerning the coverage probability of UL cellular networks with multiple users

are not available in the literature to the best of our knowledge.

In this chapter, we present an analytical framework for the analysis of multi-user UL

cellular systems with fractional power control, based on conditional thinning [91, 92].

This technique has been used to model non-uniform user location distributions in DL

transmissions [91] and different traffic load of each tier in heterogeneous networks [92]. In

our work, conditional thinning is used to obtain the set of interfering users for an arbitrary

UL transmission allocated over one out of k orthogonal resource blocks (RBs).

Using this new approach, the coverage probability of the lth user is obtained and

ordered according to the distance from the user to the serving BS, which allocates k RBs

to k scheduled users (1 ≤ l ≤ k). The joint distribution of the distances between the lth

and kth users to the serving BS is also derived. Results give useful insights on the relation

between power control and fairness among users.

The rest of the chapter is structured as follows. In Section 4.2, we describe the system

model and introduce our analytical framework based on conditional thinning. The main

mathematical results are presented in Section 4.3, namely the joint distribution of the

distances between the lth and kth users to the serving BS, and the multi-user coverage

probability. Numerical results are given in Section 4.4, whereas main conclusions are

drawn in section 4.5.

Notation: Throughout this chapter, | · | stands for the Lebesgue measure, E[·] for

the expectation operator and P[·] for a probability measure. Random Variables (RVs)

are represented with capital letters X whereas deterministic variables are associated with

lower case letters x. The conditional expectation of X conditioned on Y = y is denoted

as EX|y[X|y]. B(o, r) represents the closed ball centered at the origin o being r = ‖x‖ the

distance from x ∈ R2 to o.
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4.2 System Model

4.2.1 System Model Description

In this chapter we propose a system model that allows for a tractable analysis of multi-user

UL scenarios with fractional power control, assuming one antenna at both transmitter and

receiver sides. This model is illustrated in Fig. 4.1.
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Figure 4.1: System model of multi-user UL cellular system. BSs are represented by tri-
angles (blue: serving BS), scheduled users inside the serving cell are represented by blue
dots, interfering users for the lth user transmission are depicted with a red cross. The
distance from one interfering user to its serving BS (Rx) and to the target BS (Dx) are
represented as an example. Only scheduled users are represented.

The target BS is considered to be placed at the origin allocating k RBs among users.

Each BS perform round robin scheduling for each RB, i.e. a user is selected randomly

without repetition for each RB. Each user is allocated at most a single RB at each time

and all users have the same probability of being selected. We consider that the density of

users is much greater than the density of BSs so all RBs are allocated (fully loaded cells),

i.e. all cells have more than k users and k of them are scheduled. The scheduled users,

which are represented with blue dots, are ordered according to their distance to its serving
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BS, i.e. the origin. We focus on the lth scheduled user placed at distance Rl from the

origin with 0 ≤ R1 ≤ · · · ≤ Rl ≤ · · · ≤ Rk. The BS positions of the interfering cells are

indicated by red triangles, whereas the interfering users for the lth user data transmission

are represented by red crosses.

Since fractional power control is considered, the transmitted power depends on the

distance between the user and its serving BS. This distance is represented as Rx for an

interfering user placed at x ∈ Φi,l, where Φi,l denotes the random set of interfering user

locations for lth user data transmission. Similarly, the distance between the interfering

user located at x and the target BS (i.e. the origin) is represented as Dx.

Power loss due to propagation is modeled using a standard path loss model with α > 2,

whereas a Rayleigh model is assumed for small-scale fading. Fractional power control with

parameter ε is assumed, hence the received signal power at distance Dx from a user placed

at distance Rx from its BS is given by GxR
αε
x D

−α
x , where Gx is the fading coefficient that

follows an exponential distribution with mean 1/µ. Thus, the SINR for the lth user data

transmission follows the next expression

SINRl =
GlR

α(ε−1)
l

Il + σ2
(4.1)

where σ2 is the AWGN noise power and Il accounts for the interference experienced by

the lth user transmission, given by

Il =
∑

x∈Φi,l

GxR
αε
x D

−α
x (4.2)

It is important to note that in the UL, the interference suffered by all k users transmission

has the same statistics since interfering users positions scheduled at each RB are expected

to have the same distribution. Hence, from now on we will omit the sub-index l in Φi for

notation simplicity.

4.2.2 Proposed Analytical Model

The proposed model for multi-user uplink analysis is illustrated in Fig. 4.2. This model

uses conditional thinning in order to deal with multiple active links within the cell of

interest. Let us consider the target BS to be placed at the origin and an uniform PPP
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Rk
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λuλi=pλu

Figure 4.2: Multi-User UL set-up based on conditional thinning for k = 11. Interfering
users for the lth user transmission are represented with red crosses.

Φ of intensity λ over R2 that represents the set of scheduled users. We use conditional

thinning as follows:

First, the k nearest points of Φ to the origin are selected. These points represent the

locations of k users scheduled in k RBs. Then, thinning with probability p is performed

to all points except those k inside the closed ball B(o, rk), being rk the distance to the kth

point.

The resulting set of points outside the ball B(o, rk) is a non-uniform PPP Φi of intensity

measure Λi(A) = pλ|A\B(o, rk)| [93]. Such random set of points represents the interfering

user locations for the lth user data transmission. Since these interfering users are using

one of k available RBs, we choose the thinning probability to be p = 1/k. As the model

considers that there is only one user scheduled per RB per cell, the intensity of BSs

is exactly the same as the intensity of interfering users. The random set of k nearest

points around the origin Φd represents the scheduled users and it has an intensity measure

Λd(A) = λ|A ∩B(o, rk)|.
As in [29] distances {Rx} from each interfering user to its serving BS are assumed to

be i.i.d. RVs following Rayleigh distributions with

fRx(rx) = 2πpλrxe
−pλπr2

x , rx ≥ 0 (4.3)

Hence, notice that the proposed model is equivalent to the model presented in [29] for
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p = 1, and k = l = 1.

4.2.3 Simulation Model

In order to asses the validity of the proposed analysis model, we also introduce a more

realistic model for simulation. A uniform PPP Φb of intensity λb representing the BS

locations is first considered. Since in the analysis model the intensity of BSs is the same

as that of interfering users, we use λb = λ/k aiming to compare the results of both models.

The association between user and BS is based on distance, hence the Voronoi tessel-

lation is performed over Φb where one randomly chosen point is the target BS. Then,

k points representing the k scheduled users are placed randomly inside the target cell,

whereas only one user is placed in each interfering cell. Notice that both sets of points,

scheduled users inside the target cell and interfering users, are not a PPP. To explain that,

recall that the number of points falling in a Voronoi cell tends to be higher as the cell is

bigger; in our case, one interfering user falls in any cell independently of its size. Since

there is an interfering user in each interfering cell we model the case of a fully loaded

network where the density of users is much greater than the density of BSs and there are

not empty cells.

4.3 Mathematical Results

After presenting the analytical framework for the analysis of multi-user UL cellular net-

works, we now present the main mathematical contributions of this chapter. First, we

derive the joint distribution of the distances between the lth and kth users and the serving

BS. Then, we use this result to calculate the coverage probability of the lth user in the

investigated scenario.

4.3.1 Joint Distribution of Distances

In the analytical model, the k users of interest are ordered according to their distances

to the serving BS (i.e., the origin), and the interfering users are located at a distance

greater than Rk. This interdependence affects the distribution of the SINR for the lth user
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transmission, due to the inherent correlation between Rl and Rk. In the next lemma, we

calculate their joint pdf.

Lemma 8. The joint pdf of Rl and Rk with 0 < l < k is

fRl,Rk(rl, rk) =
4e−πr

2
kλ(λπ)krkr

2l−1
l (r2

k − r2
l )
k−l−1

(k − l − 1)!(l − 1)!
(4.4)

where 0 ≤ rl ≤ rk.

Proof. The calculation of the joint pdf follows a similar procedure as in [91]. Hence, we

define disjoint sets in order to use the independence property of the PPP. Let us consider

the next disjoint sets

Ψ1 = {x ∈ R2 : ‖x‖ ≤ rl}
Ψ2 = {x ∈ R2 : rl < ‖x‖ ≤ rl + drl}
Ψ3 = {x ∈ R2 : rl + drl < ‖x‖ ≤ rk}
Ψ4 = {x ∈ R2 : rk < ‖x‖ ≤ rk + drk} (4.5)

The joint pdf of Rl and Rk with 0 < l < k is by definition

fRl,Rk(rl, rk) = lim
drl→0

drk→0

P{Rl ∈ Ψ2, Rk ∈ Ψ4}
drldrk

(4.6)

Notice that the numerator can be expressed as follows:

P{Rl ∈ Ψ2, Rk ∈ Ψ4} =

P{Φ(Ψ1) = l − 1} · P{Φ(Ψ2) = 1} · P{Φ(Ψ3) = k − l − 1} · P{Φ(Ψ4) = 1} (4.7)

being Φ(Ψ) a random counting measure of a Borel set Ψ. Since Φ is a uniform PPP, Φ(Ψ)

follows Poisson distribution with mean λ|Ψ| [93]. Substituting the probability of each

event in (4.7) and calculating the limits in (4.6) yields the desired pdf.

Figs. 4.3 and 4.4 illustrate the joint pdf of the distances for the second and the kth

user, when k = 4 and k = 50, respectively. The correlation is more noticeable when l and

k have similar values.
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Figure 4.3: Joint pdf for l = 2 and k = 4 with λ = 0.24

4.3.2 Multi-User Coverage Probability

The coverage probability represents the probability for a user to have a SINR higher than

certain threshold t. The main result is stated in Theorem 3, which corresponds to the

coverage probability of the the lth user.

Theorem 3 (Multi-user coverage probability). The coverage probability of the lth user

considering a system with k RBs that are distributed among k active users with l < k is

given by:

pc(l, k, t, λ,p, α, ε, µ, σ
2) = ERl,Rk [ξ(rl, rk)] =

∫ ∞

0

∫ ∞

rl

ξ(rl, rk)fRl,Rk(rl, rk)drkdrl (4.8)

where fRl,Rk(rl, rk) is the joint pdf of distances and

ξ(rl, rk) = e−µtσ
2r
α(1−ε)
l LIl|rl,rk(µtr

α(1−ε)
l ) (4.9)

being LIl|rl,rk(s) the Laplace transform of the interference conditioned on rl and rk. This
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Figure 4.4: Joint pdf for l = 2 and k = 50 with λ = 0.24

term evaluated at s = µtr
α(1−ε)
l has the following expression

LIl|rl,rk(µtr
α(1−ε)
l ) = exp

(
−2πpλ

∫ ∞

rk

(
1−

∫ ∞

0

πpλe−pλπq

1 + tr
α(1−ε)
l qαε/2v−α

dq

)
vdv

)
(4.10)

Proof. The coverage probability for the lth user can be expressed as

pc(l, k, t, λ, p, α, ε, µ, σ
2) = P [SINRl > t]

(a)
=

∫ ∞

0

P [SINRl > t|rl] fRl(rl)drl

=

∫ ∞

0

P
[
Gl > t(Il + σ2)r

α(1−ε)
l |rl

]
fRl(rl)drl

(b)
=

∫ ∞

0

EIl
[
P
[
Gl > t(il + σ2)r

α(1−ε)
l |rl, il

]]
fRl(rl)drl

(c)
=

∫ ∞

0

e−µtσ
2r
α(1−ε)
l EIl|rl

[
e−µtIlr

α(1−ε)
l |rl

]
fRl(rl)drl (4.11)

where (a) and (b) follow from the total probability theorem, while (c) follows from the

fact that Gl has an exponential distribution with mean 1/µ.

The term LIl|rl(s) = EIl|rl
[
e−sIl |rl

]
represents the Laplace transform of the interference
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conditioned on rl. The RV Rl and Rk are correlated as Rl ≤ Rk. Since Il depends on

Rk due to the fact that the interfering users are placed farther than Rk, the RV Il also

depends on Rl. Hence we have to deal with such dependence as follows

LIl|rl(s) = EIl|rl
[
ERk

[
e−sIl |rl, rk

]]

= EIl|rl

[∫ ∞

rl

e−sIlfRk|rl(rk)drk|rl
]

=

∫ ∞

rl

EIl|rl,rk
[
e−sIl |rl, rk

]
fRk|rl(rk)drk (4.12)

where the total probability theorem and linearity of expectation operator have been used.

The term LIl|rl,rk(s) = EIl|rl,rk
[
e−sIl |rl, rk

]
stands for the Laplace transform of the

interference conditioned on rl and rk and can be expressed as

LIl|rl,rk(s) = EΦi,{Gx}

[
e−s

∑
x∈Φi

GxRαεx D−αx
]

(a)
= ERx,Dx

[∏

x∈Φi

EGx
[
e−sGxR

αε
x D−αx

]]

(b)
= EDx

[∏

x∈Φi

ERx
[

µ

µ+ sRαε
x D

−α
x

]]

(c)
= exp

(
−2πλp

∫ ∞

rk

(
1−

∫ ∞

0

µπλpe−pλπqdq

µ+ sq
αε
2 v−α

)
vdv

)
(4.13)

where the dependence with Rl and Rk resides in the non-uniform PPP Φi since its intensity

is Λi(A) = pλ|A\B(o, rk)|. Step (a) comes from the fact that the fading is independent of

the PPP, (b) comes from the independence assumption between Rx and Dx and (c) from

the Probability Generating Functional (PGFL) [93] and the assumption of Rx following a

Rayleigh distribution as in [29].

Substituting (4.13) and (4.12) with s = µtr
α(1−ε)
l in (4.11) and taking into account that

the conditional pdf fRk|rl(rk) can be obtained from the joint pdf and the marginal pdf of

Rl as fRk|rl(rk) = fRl,Rk(rl, rk)/fRl(rl), the proof is completed.

Theorem 3 provides the coverage probability of the lth user with l < k. The following

lemma gives the coverage probability for the cell-edge user.
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Lemma 9. The coverage probability of the kth user follows the next expression

pc(k, t, λ, p, α, ε, µ, σ
2) =

∫ ∞

0

ξ(rk)fRk(rk)drk (4.14)

where fRk(rk) is the marginal pdf distribution of the kth nearest point [94] given by

fRk(rk) = 2
(λπ)k

(k − 1)!
r2k−1
k e−λπr

2
k (4.15)

and

ξ(rk) = e−µtσ
2r
α(1−ε)
k LIk|rk(µtr

α(1−ε)
k ) (4.16)

where LIk|rk(µtr
α(1−ε)
k ) the Laplace transform of the interference affecting the kth user

transmission conditioned on rk, given by

LIk|rk(µtr
α(1−ε)
k ) =

exp

(
−2πpλ

∫ ∞

rk

(
1−

∫ ∞

0

πpλe−pλπq

1 + tr
α(1−ε)
k qαε/2v−α

dq

)
vdv

)
(4.17)

Proof. The proof is analogous to Theorem 3 except from the fact that the SINR of the kth

user transmission only depends on the distance to the origin of one particular user; note

that when l < k the SINR depends both on Rl and Rk. Hence, the Laplace transform of

the interference only depends on Rk and only the marginal pdf of Rk is necessary.

4.4 Numerical Results

4.4.1 Coverage probability

We now evaluate the expressions for the coverage probability previously derived, and

compare these results with our simulation model. Different values of the power control

factor ε are used so as to provide a clear understanding of the relation between power

control and fairness among users.

Fig. 4.5 shows the coverage probability considering different numbers of RBs per cell,

i.e. k = {10, 25, 50}, assuming a full power control policy (ε = 1). We see how the coverage
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Figure 4.5: Coverage probability for k = {10, 25, 50} with full power control (ε = 1),
without noise, α = 2.5, λb = 0.24
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Figure 4.6: Coverage probability for cell-interior l = 1 and cell-edge l = k with k = 25,
ε = 0.75, without noise, α = 2.5, λb = 0.24
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probability is the same for all k scheduled users, i.e. it does not depend on l for both

analytical and simulation models. This is coherent with the fact that full compensation

of path loss makes all user transmissions to have the same average received power. Since

the interference experienced by all user transmissions is the same, the coverage is also the

same. Hence, in this case the fairness between users is maximal. We also observe how the

analytical model provides slightly more pessimistic results than the simulation model.
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Figure 4.7: Coverage probability for cell-interior l = 1 and cell-edge l = k with k = 25,
without power control ε = 0, without noise, α = 2.5, λb = 0.24

Fig. 4.6 illustrates the coverage probability for cell-interior (l = 1) and cell-edge (l = k)

users with k = 25 and a power control factor ε = 0.75. We observe how both analytical

and simulation models still behave quite close to each other. In both models, since the

compensation of path loss is not total, transmissions from users closer to the BS are

associated to higher SINR values than those in the cell-edge, so there exists a difference

in coverage between users.

Fig. 4.7 shows the coverage probability in the absence of power control, which corre-

sponds to the worse case in terms of fairness. Hence, we observe that the difference in

coverage between cell-interior l = 1 and cell-edge l = k users is maximal. We also see how

for the cell-edge user the analytical model yields a coverage significantly greater than the

simulation model. The reason behind that is related to the different distribution of points
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used to model scheduled user locations in both models. As mentioned in section 4.2, in

the analytical model user locations form a PPP, whereas in the simulation model this does

not hold. This issue has a significant impact on the pdf of the distances Rl specially for

cell-edge users, and is addressed in detail in the next subsection.

4.4.2 Marginal distributions of distances

One of the assumptions of the proposed model follows from [29] and states that Rx with

x ∈ Φi are i.i.d. Rayleigh distributed RVs. Fig. 4.8 shows the theoretical (Rayleigh)

distribution used in the analytical model and the empirical distribution obtained from the

simulation model. We observed that both pdfs are quite similar, so it is expected that the

statistics of the transmitted power of the interfering users are also close to each other.
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Figure 4.8: Empirical and theoretical pdf of Rx.

Fig. 4.9 shows the marginal pdfs of Rl for the closest and the farthest user to the

target BS. For the cell-interior user (l = 1) we see that both the empirical and theoretical

pdfs are rather similar; hence, we may expect that coverage results from both models

are also similar (as illustrated in the previous figures). However, for cell-edge users both

pdfs have different shapes. Specifically, we notice that the distances of cell-edge users in

the analytical model tend to be lower than the distances in the simulation model. This
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Figure 4.9: Empirical and theoretical pdfs of Rl, (l = 1, k = 11) and (l = k = 11)

explains the difference in coverage probability, specially in the absence of power control

as exhibited in Fig. 4.7. Since the distance for the cell-edge user tends to be lower in the

analytical model when power control is not used, the desired signal tends to be higher

and so the coverage probability grows. This is mitigated by using power control, since

this technique aims to obtain equal received power from all users independently of their

positions.

4.5 Discussion

We proposed a tractable analysis model for multi-user uplink cellular networks based on

conditional thinning. Assuming that there are k active users scheduled on k orthogonal

resources, the joint distribution of the distances from the target BS to the lth user and to

the farthest kth user have been obtained. Thinning outside the target cell with probability

1/k is used to obtain the actual set of interfering users. A more realistic model with BSs

distributed as PPP and one interfering user within its Voronoi cell has been simulated

as well. Results show that fractional power control permits to increase fairness among

users, at the expense of reducing the coverage probability of cell-interior users as ε grows.

The coverage results provided by the analysis model are close to the simulation models

when power control is used; the difference of behavior in the absence of power control is
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also discussed by studying the marginal distributions of the distances of the users to the

serving BS.

These aforementioned contributions have been published in [52].



Chapter 5

Coverage of Cellular Systems Under

Hoyt fading

In this section, we provide a closed-from approximation for the coverage probability of

cellular systems under Hoyt (Nakagami-q) fading. The proposed framework express the

fading as conditional functions with exponential distribution. Then, the expectation over

the distance towards the serving Base Stations (BS) is split in two finite range integrals

that can be accurately approximated by means of Gauss-Chebyshev rule. The accuracy

of the proposed framework is validated thought extensive Monte Carlo simulations.

5.1 Introduction

Due to the irregular nature of 4G deployments, stochastic geometry has appeared recently

as a promising and accurate tool for performance analysis of cellular networks [20]. In the

pioneering work from [21] it is derived the coverage probability of a cellular networks under

Rayleigh fading (for the desired link) as a single improper integral. Closed-from expressions

are only obtained for some special cases, e.g., for a path loss exponent, α = 4. Afterwards,

such an approach has been successfully used to study the performance of different scenarios

and techniques like enhanced Inter-Cell Interference Coordination (eICIC) [88], advanced

interference-aware power control [47], fractional frequency Reuse [90] or uplink/downlink

decoupling [26].

For tractability, in those papers it is assumed Rayleigh distribution for the desired link.

146
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Nevertheless, Rayleigh fading is not an appropriate distribution to small scale fading in

many scenarios. In this context, Hoyt (Nakagami-q) distribution appears has an interesting

tool, since it models fading conditions more severe than Rayleigh, and it includes both

Rayleigh fading and one-sided Gaussian fading as special cases [39]. There are some

approaches to deal with general fading distributions. In [20] it is proposed to use the

Plancherel-Parseval theorem. Gil-Pealez inversion theorem is used in [40] to derive the

coverage probability and rate of a cellular network. However, these approaches generally

add a single improper integral compared to the case of Rayleigh fading.

In this chapter, we derive a closed-from expression for the coverage probability under

Hoyt fading. Such a results also simplifies the coverage probability as given in [21], which

is expressed as a single improper integral.

5.2 System Model

We consider the downlink of a cellular network where BSs are distributed according to a

uniform Poisson Point Process (PPP), ΦBS = {BS1,BS2, ..}, whose density is λBS. Mobile

Terminals (MTs), are also located according to a uniform PPP and they are associated to

the nearest BS. Transmitted signals undergoes independent fading for different locations

according to a Hoyt distribution with scale parameter q ∈ [0, 1] and unitary mean. The

Probability Density Function (PDF) of the square envelope of the fading can be expressed

as a conditional exponential distribution as follows [95]

fH (h) = EΘ

[
fH|θ (h) |Θ = θ

]
= Eθ

[
1

γ (θ, q)
e−h/γ(θ,q)|Θ = θ

]
, (5.1)

where γ (θ, q) =
(

1− 1−q2

1+q2 cos (θ)
)

and Θ is uniformly distributed between 0 and π. It is

considered a path loss law with a path loss slope, τ , and a path loss exponent, α > 2. The

Signal to Interference plus Noise Ration (SINR) of the typical MT, which can be assumed

to be placed at the origin without loss of generality, is expressed as

SINRMT0 =
HBS0 (τRBS0)−α ρBS

I + σ2
n

, (5.2)

being HBS0 and RBS0 the fading and distance with the serving BS, ρBS is the transmit

power per Hertz, I is the interference term and σ2
n is the noise spectral efficiency. The
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interference term can be expressed as

I =
∑

BSi∈ΦBS

HBSi (τRBSi)
−α ρBS1 (RBSi > RBS0) , (5.3)

being 1(A), the indicator function, which is 1 when the conditionA is true and 0 otherwise.

Finally, the coverage probability, or equivalently, the Complementary Cumulative Dis-

tribution (CCDF) of the SINR, is written as Pc = Pr(SINRMT0 > γ).

5.3 Performance Analysis

The first result that is derived is the Laplace transform of the interference, which is given

with the following lemma.

Lemma 10. The Laplace transform of the interference of the typical MT under Hoyt

fading can be expressed as

LI (s) ≈ exp

(
− λBSr

2π2ρBSs

nθ (α− 2) (τr)α

nθ∑

j2=1

γ (θj2 , q)

∣∣∣∣sin
(

2j2 − 1

2nθ
π

)∣∣∣∣

2F1

(
1,
α− 2

α
, 2− 2

α
,− sρBS

(τr)α
γ (θj2 , q)

))
, (5.4)

where nθ represent the number of terms in the Gauss-Chebyshev approximation and

θj =
π

2

[
cos

(
2j − 1

2nθ
π

)
+ 1

]
. (5.5)

Proof. The Laplace transform of the interference can be written as

LI (s)
(a)
= exp


−2πλBS

∞∫

v=r

(
1− EΘEH|Θ

[
exp

(−sHρBS

(τv)α

)])
vdv




(b)
= exp


−2λBS

π∫

θ2=0

∞∫

v=r

s (τv)−α ρBSγ (θ2, q)

1 + s (τv)−α ρBSγ (θ2, q)
vdvdθ2


 , (5.6)
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where (a) comes after applying the Probability Generating Functional (PGFL) of the PPP

over the BS locations [20], applying the indicator function in (A.28) over the integration

limits and expressing the expectation over the Hoyt fading as an conditional exponential

distribution according to (A.26); and (b) comes after performing expectation over the

fading and reordering the resulting terms. Finally, applying Gauss-Chebyshev integration

rule completes the proof.

The Laplace transform of the interference can be used as a moment generating func-

tional for the moments of the interference, [47]. Additionally, it is necessary to obtain the

coverage probability, which is given with the next theorem.

Theorem 4. The coverage probability of the typical MT can be expressed in closed-from

as follows

Pc =
π

2nr

nr∑

i=1

(
µ (ri) +

µ
(
r−1
i

)

t2

)∣∣∣∣sin
(

2i− 1

2nr
π

)∣∣∣∣, (5.7)

where

µ (r) =

nθ∑

j1=1

∣∣∣∣sin
(

2j1 − 1

2nθ
π

)∣∣∣∣
λBSrπ

2

nθ
exp

(
− πλBSr

2

− tσ2
n (τr)α

ρBSγ (θ1, q)
− λtr2π2

(α− 2)nθ

nθ∑

j2=1

γ (θj2 , q)

γ (θj1 , q)

2F1

(
1,
α− 2

α
, 2− 2

α
,
−tγ (θj2 , q)

γ (θj1 , q)

) ∣∣∣∣sin
(

2j2 − 1

2nθ
π

)∣∣∣∣

)
(5.8)

and ri = 1
2

[
cos
(

2i−1
2nr

π
)

+ 1
]
.

Proof. The coverage probability can be written as

Pc
(a)
= ERBS0

EIEΘ

[
F̄H|θ1

(
t
(
I + σ2

n

)
(τRBS0)α ρ−1

BS

)
|Θ = θ1

]

(b)
= ERBS0

EΘ


e
−
tσ2
n

(
τRBMT0

)α

γ(θ1,q)ρBS LI
(
t
γ (τRBS0)α

γ (θ1, q) ρBS

)
|Θ = θ1


 , (5.9)
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where (a) comes after reordering the expression of the SINR, applying the total probability

theorem over RBS0 and I and expressing the Hoyt fading as a conditional exponential

distribution; and (b) comes after performing expectation over the conditioned fading,

which as exponential distribution, and performed expectation over the interference term.

Then, performing expectation over RBS0 and Θ and substituting the Laplace transform of

Lemma 10 on the above expression, yields

Pc =

1∫

r=0

µ (r) dr +

∞∫

r=1

µ (r) dr (5.10)

The left hand side finite range integral can be approximated with nr terms by Gauss-

Chebyshev. For the right hand side improper integral, it is performed the change of

variables r → 1/v, which transform the integral into a finite range integral that can be

approximated by means of Gauss-Chebyshev rule.

5.4 Numerical Results

In this section the proposed framework is validated with simulation. It is considered a

path loss slope and a path loss exponent as τ = 2.6 and α = 3.8 respectively. The BS

density is λBS = 2 × 10−6. It is considered a transmit power of ρBS = 0 dBm/Hz and a

noise spectral density of σ2
n = −174 dBm/Hz.

The next figure represents the coverage probability, or equivalently the ccdf of the

SINR, for the case of Rayleigh fading, i.e., q = 1 and for severe fading q = 0.05. Neverthe-

less, the coverage probability for high values of the SINR threshold is roughly the same as

for the Rayleigh fading case. The obtained expressions are evaluated with nr = 100 and

nθ = 5 terms.

It is observed a good match between simulation and analytical results. It is observed

that severe fading degrades the coverage probability especially, for small SINR threshold

values.
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Figure 5.1: Coverage probability versus the SINR threshold, t, for q = 1 and q = 0.05.

5.5 Discussion

We have derived a closed-form expression for the coverage probability of Hoyt (Nakagami-

q) fading. The proposed framework, relies on expressing the fading as a conditional

exponential distribution and on splitting the integral over the distance towards the serving

BS as a two finite range integrals that can be approximated with Gauss-Chebyshev rule.

It is observed that, with severe fading, the coverage probability for small SINR threshold

values degrades dramatically, whereas the coverage for high SINR values remains the same

as for the Rayleigh case.

These contributions appear in [53], which is under review.



Chapter 6

Performance Analysis of

Cloud-Radio Access Networks

In this section, a novel non-orthogonal multiple access (NOMA)-enabled framework for

cloud-radio access networks (CRANs) is proposed. In this framework, two users are sched-

uled in the same resources according to NOMA; however the performance of cell-edge users

is enhanced by means of coordinating beamforming. Stochastic geometry is invoked for

modeling the proposed framework, where the positions of BSs follow a cluster point pro-

cess. In an effort to characterize the performance of the proposed framework, simple

expressions in terms of outage probability are derived for both nearby users and the cell-

edge users. It is analytically demonstrated that the average beamforming gain is a liner

function with respect to the number of cooperating base stations. Numerical results verify

the accuracy of analysis and reveal that the proposed framework is capable of greatly

enhancing the performance of cell-edge users.

6.1 Introduction

Cloud radio access networks (CRANs) are envisioned as one of the key ingredients of

future 5G networks [12]. This approach consists on centralizing functionalities by means

of a pool of computational resources, which is known as central unit (CU). The CU is

connected through high speed links with several radio remote heads (RRH) that acts as

BSs from the user’s perspective [12]. In [33] and [34] it is considered CRANs where the

152
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analysis focuses on a single cluster of cooperating BSs. In [33] it is obtained an exact

expression for the outage probability under dynamic cell selection and an approximated

expression in the high SNR regime for coordinated beamforming. [34] focus on the case of

coordinated beamforming and provides an accurate expression for the outage probability,

which is valid for any value of SNR.

Non-orthogonal multiple access (NOMA) has recently attracted much attention, due

to its potential to increase spectrum efficiency in 5G networks [16] [96]. In [35] it is

proposed a scheme where b BSs transmits jointly to k users according to NOMA based

access. To improve the performance it is proposed an opportunistic algorithm to select

the set of cooperating BSs. A NOMA-based scheme with coordinated multi-point (CoMP)

transmission is proposed in [36]. Nevertheless, since the scheme is based on Alamuti codes,

the number of cooperating BSs is smaller than 3. A comon factor of the aforementioned

works in [33–36] is that the interference from other clusters, which is the main limiting

factor, is not considered.

In this work a novel NOMA-based scheme for CRANs with coordinated beamforming

is proposed and analyzed. On the one hand, this scheme benefits from NOMA in order

to increase the spectral efficiency, since two mobile terminals (MTs) are scheduled per

BS. On the other hand, it benefits from cooperation, since each cluster of BSs performs

coordinated beamforming to improve the performance of cell-edge MTs. To model the

locations of BSs in CRANs, it has been considered a cluster point process (CPP), where a

minimum distance over the cluster centers is imposed to avoid spatial overlapping between

different clusters. This model involves two sources of spatial correlation: one from the

cluster process and another from the minimum distance, that complicate the problem at

hand. Besides this, to assess the performance of the system in realistic conditions, both

the intra-cluster interference due to NOMA and the inter-cluster interference from other

clusters are considered.

Our main contributions can be summarized as follows: 1) we demonstrate that the

beamforming gain can be expressed as a mixture Erlang distribution; 2) we prove that

the moments of the beamforming gain are linear functions with respect to the number

of BS per cluster; 3) we derive simple expressions for the outage probability of cell-edge

MTs with the aid of the k−th derivative of the Lapalce transform of the inter-cluster

interference; and 4) we show that the proposed scheme greatly improves the performance
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of the cell-edge MT.

6.2 System Model

6.2.1 Spatial and Propagation Modeling

We focus on the downlink (DL) of CRANs where BSs are organized in different clusters

that can share information. BSs’ locations are modeled according to a homogeneous inde-

pendent CPP [61]. The parent point process, which models cluster centers, is represented

as ΦC ⊂ R2 and follows a Matérn hard core point process (HCPP) of type II whose density

is λC and minimum distance between points is dmin. For a cluster centered at x ∈ ΦC ,

the daughter point process is represented as Φ
(x)
BS = Φ

(o)
BS + x, where o = (0, 0) represents

the origin and Φ
(o)
BS follows a binomial point process (BPP) of nBS points inside a ring

whose inner radius is re and outer radius is rc. The outer radius represent the cluster

size, whereas the inner radius represents a guard zone where BSs are not allowed. This

is because the center of each cluster is the region which suffers from more intra-cluster

interference. It is considered that the worst MT in terms of SINR of each cluster is placed

at the cluster center whereas a single MT (i.e., near MT) is associated with each BS. Cells

are modeled as disks whose radius are rBS.

The fading between locations x and y is expressed as Hx,y ∼ CN (0, 1), which follows a

complex normal distribution. Independent fading is considered for different locations. A

bounden path loss model is assumed and thus the path loss between x and y is expressed

as (1 +Rα
x,y). We represent the instantaneous link gain as Gx,y = Hx,y/

√
1 +Rα

x,y.

6.2.2 Proposed CRAN-NOMA Scheme

BSs of the same cluster transmit jointly to cell-edge MTs to boost their performance. To

increase the spectrum efficiency, BSs schedule in the same resource block (RB) the data

intended for its near MT and cell-edge MT. Hence, near MTs performs successive inter-

ference cancellation (SIC) to cancel-out the intra-cluster interference from data intended

for the cell-edge MT. Fig. 6.1, illustrates the proposed scheme.

More formally, the transmitted signal for the i-th BS that belongs to the q-th cluster

expressed as follows
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Figure 6.1: Illustration of the proposed NOMA-based scheme with coordinated beamform-
ing for CRANs. The probe near MT and probe cell-edge MT are represented as MT

(n)
0

and MT
(e)
0 , respectively. It is drawn a single interfering cluster, which is centered at x.

XBSi,q =
√
pBSan · SMT

(n)
i,q

+
√
pBSae ·WBSi,q ,MT

(e)
q
· S

MT
(e)
q
, (6.1)

where S
MT

(e)
q
∈ C and S

MT
(n)
i,q
∈ C are the symbols intended for the cell-edge and near

MTs respectively, pBS is the nominal transmit power per BS, an ∈ R and ae ∈ R with

an + ae = 1 are the power allocations coefficients for near and cell-edge MTs respectively.

The q-th cluster is centered at Cq ∈ ΦC , hence, the location of the i-th BS is written

as BSi,q ∈ Φ
(Cq)
BS . The beamforming weight for the transmission intended towards the

cell-edge MT, which is placed at MT(e)
q = Cq, is represented as W

BSi,q ,MT
(e)
q

.

Following the same approach as in [34] the beamforming weight are expressed as

W
BSk,0,MT

(e)
0

= G∗
BSk,0,MT

(e)
0

Ξ
− 1

2

MT
(e)
0

, (6.2)

being Ξ
MT

(e)
0

the beamforming gain for the cell-edge MT, MT
(e)
0 , which can be formulated

as appears below
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Ξ
MT

(e)
0

=
∑

BSk,0∈Φ
(C0)
BS

∣∣∣G
BSk,0,MT

(e)
0

∣∣∣
2

(6.3)

6.2.3 Signal Model

The intra-cluster interference for cell-edge MTs can be expressed as Ξ
MT

(e)
0
anpBS. There-

fore, the SINR for the cell-edge MTs is written as

SINR
MT

(e)
0

=
Ξ

MT
(e)
0
aeρBS

Ξ
MT

(e)
0
anρBS + IinterρBS + 1

, (6.4)

where ρBS = pBS/σ
2
n is the transmit SNR and Iinter appears below

Iinter =
∑

Cq∈ΦC\{C0}

∑

BSk,q∈Φ
(Cq)
BS

∣∣∣G
BSk,q ,MT

(e)
0

∣∣∣
2
(
an + ae

∣∣∣W
BSk,q ,MT

(e)
q

∣∣∣
2
)
. (6.5)

The message intended for cell-edge MTs is transmitted with an Spectral Efficiency (SE)

of SEe bps/Hz. Hence, it is assumed that the user is not capable of correctly receiving a

message if its SINR is smaller that 2SEe − 1, which means that the MT is in outage.

As for the near MTs, they first try to decode the message intended for the cell-edge

MT, which is normally transmitted with a higher power since ae > an. Then, if such a

message is correctly received, they cancel-out the intra-cell interference and try to decode

their own message.

The SINR to decode the symbol intended for the cell-edge MT is given below

SINR
(e)

MT
(n)
0,0

=

∣∣∣G
BS0,0,MT

(n)
0,0

∣∣∣
2 ∣∣∣W

BS0,0,MT
(e)
0

∣∣∣
2

aeρBS

∣∣∣G
BS0,0,MT

(n)
0,0

∣∣∣
2

anρBS + IintraρBS + IinterρBS + 1
, (6.6)

where the term Iinter is given in (6.5), and Iintra, which represents the intra-cluster inter-

ference, appears next
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Iintra =
∑

BSk,0∈Φ
(C0)
BS \{BS0,0}

∣∣∣G
BSk,0,MT

(n)
0,0

∣∣∣
2
(
an + ae

∣∣∣W
BSk,0,MT

(e)
k

∣∣∣
2
)
. (6.7)

Once the interference from the transmission towards the cell-edge MT has been can-

celed, the near MT decode its own symbol. The SINR to decode such a symbol can be

written as

SINR
(n)

MT
(n)
0,0

=

∣∣∣G
BSk,0,MT

(n)
0,0

∣∣∣
2

anρBS

IintraρBS + IinterρBS + 1
. (6.8)

In (6.5), ΦC follows a Matérn HCPP of type II. Such a point process complicates the

analysis because its probability generating functionals do not exist, [55]. For the sake of

tractability, it is proposed the following assumption over the interference.

Assumption 3. Let us consider a probe MT, which can be either a near or cell-edge

MT, it is placed at the origin and belongs to the probe cluster, C0. In such setting, the

inter-cluster interference can be approximated as appears below

Iinter =
∑

Cq∈ΦC\{C0}

∑

BSk,q∈Φ
(Cq)
BS

∣∣HBSk,q ,x

∣∣2

1 +Rα
BSk,q ,x

(
an + ae

∣∣∣W
BSk,q ,MT

(e)
q

∣∣∣
2
)

1 (‖Cq‖ > dmin) , (6.9)

where now ΦC is a homogeneous Poisson Point Process (PPP) whose density is λC.

Finally, the normalized transmit power of a given BS, BSi,q, is defined as PBSi,q =(
an + ae

∣∣∣G
BSi,q ,MT

(e)
q

∣∣∣
2

/Ξ
MT

(e)
q

)
.

6.3 Performance Analysis

The analysis of the proposed scheme is presented through this section. To this end, the

first result that is provided, is the Probability Density Function (PDF) of the distance

towards a given BS, that belongs to the q-th cluster. Such a result is given with the

following lemma.
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Lemma 11. The PDF of the distance, U , between a point placed at the origin and a

randomly chosen BS from the q-th cluster, which is centered around Cq, only depends on

the distance towards it, r = ‖Cq‖, and it can be expressed as appears below

fU (u|r) =
g (u, rc, r)− g (u, re, r)

π (r2
c − r2

e)
, (6.10)

being

g (u, rd, d) =





2πu, if u ≤ rd − d
(d2−r2

d−u
2)·d·u+r·(d2−u2+r2

d)√
(d+u−rd)(d−u+rd)(−d+u+rd)(d+rd+u)

+ rdu

d

√
1−

(d2−u2+r2
d

)2

4d2r2
d

+ 2r · arcsec
(

2du
d2+u2−r2

d

)
,

if |rd − d| < u < d+ rd

0, otherwise

. (6.11)

Proof. The proof consist on deriving the Cumulative Density Function (CDF) of U as the

quotient of the area of the intersection between the disk centered at the origin and a ring

centered at Cq and the area of such a ring. The radius of the disk is r whereas the inner

and outer radius of the ring are re and rc respectively.

Lemma 12. The PDF of the beamforming gain for the cell-edge MT can be expressed as

a finite mixture of Erlang distributions as follows

fΞ (ξ) ≈
nM∑

q=1

nGC∑

i=1

tq,i∑

k=1

ωq,i,kfEr (ξ; k, 1 + rαi ), (6.12)

being fEr (x; k, λ) the Erlang distribution with shape parameter, k, and rate parameter,

λ; nGC is a parameter related to the accuracy of the approximation; nM the number of

permutations of nGC elements whose sum is nBS and

ri =
1

2

(
cos

(
2i− 1

nGC

π

)
+ 1

)
(rc − re) + re, (6.13)
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ωq,i,k =

βk
λk(tq,1!···tq,nGC

!)
nM∑
p=1

nGC∑
j=1

tp,j∑
`=1

β`
λ`(tp,1!···tp,nGC

!)

, (6.14)

βk =
1

(ti − k)!

d(ti−k)

ds(ti−k)
(1 + rαi + s)ti

nGC∏

i=1

(
ri (1 + rαi )

1 + rαi + s

∣∣∣∣sin
(

2i− 1

2nGC

π

)∣∣∣∣
)ti∣∣∣∣∣

s=−1−rαi

. (6.15)

Proof. The proof follows the same procedure as in [34] which consist on the next steps:

i) it is derived the Laplace transform of Ξ
MT

(e)
0

, which is expressed as a finite integral to

the nBS; ii) it is applied Gauss-Chebyshev integration rule to write the integral as a finite

sum of nGC terms; iii) it is applied the multinomial theorem to write the sum to the nBS

as a sum of polynomials ; iv) it is applied partial fraction expansion to have the sum of

terms of the form βk(1+rαi +s)−k whose inverse Laplace transform exist. Then, obtaining

the inverse Laplace transform yields a finite sum for the PDF of Ξ
MT

(e)
0

as in [34]. Finally,

identifying in the inner terms as the Erlang distribution and applying
nM∑
q=1

nGC∑
i=1

tq,i∑
k=1

ωq,i,k = 1

to have a finite mixture distribution completes the proof.

Since it has been used Gauss-Chebyshev integration rule to derive Lemma 12, such

a result is an approximation. Nevertheless, an exact expression for the moments of the

beamforming gain are given below

Lemma 13. The exact expression of the mean and variance of the beamforming gain are

give below

E [Ξx] = −nBSµ
(1)
Ξ (0)

var (Ξx) = nBS

(
µ

(2)
Ξ (0)−

(
µ

(1)
Ξ (0)

)2
)
, (6.16)

where
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µ
(1)
Ξ (0) =

2 (rcre)
−α

(α− 2) (r2
c − r2

e)

(
rαe r

2
cχ (α, rαc )− rαc r2

eχ (α, rαe )
)

µ
(2)
Ξ (0) =

4rαc r
α
e (rcre)

−2α

α2 (rc − re) (rc + re)

[
rαc r

2
eα

1 + rαe
− rαe r

2
cα

1 + rαc
+

α− 2

(rcre)
−α

(
B

(
−rαe , 2−

2

α
, 0

)
− B

(
−rαc , 2−

2

α
, 0

))]
, (6.17)

being χ (α, x) the Gauss Hypergeometric function as χ (α, x) = 1F2

(
1, α+2

α
; 2 + 2

α
;−x

)
and

B (z, a, b) the incomplete Beta function.

Proof. The Laplace transform of Ξ
MT

(e)
0

can be written as

LΞ (s) =




∫

re≤r≤rc

2r

r2
c − r2

e

1 + rα

1 + s+ rα
dr



nBS

, (6.18)

where it has applied the independence of the distribution of the fading and distance

towards the cell-edge MT for different BSs within the same cluster, C0. Then, it has

been performed expectation over the distribution of {Rk,0}. Finally, Using the Laplace

transform as a moment generating function completes the proof.

Remark 12. In view of Lemma 13, it can be stated that both, the mean and the variance,

of the beamforming gain are linear functions with respect to nBS. Additionally, its slope is

always positive and only depends on rc, re and α. Hence, both metrics are monotonically

increasing functions with respect to nBS.

Proposition 8. The beamforming gain for a cell-edge MT, can be accurately approximated

by an Inverse Gamma distribution whose parameters can be obtained by Moment Matching

(MM) as follows:

kΞ =
(E [Ξ])2

var (Ξ)
+ 2; λΞ =

(
(E [Ξ])2

var (Ξ)
+ 1

)
E [Ξ] , (6.19)

hence, the Laplace transform can be written as
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LΞ (s; kΞ, λΞ) ≈ 2 (λΞs)
kΞ
2

Γ (kΞ)
KkΞ

(
2
√
λΞs
)
, (6.20)

where Γ (x) is the Gamma function and Kz (x) is the modified Bessel function of the 2nd

kind.

Proof. The proof comes after implying the equivalence between the mean and variance of

Ξ
MT

(e)
0

with those of an Inverse Gamma distribution. Then, solving the system of equations

to obtain the shape, kΞ, and rate, λΞ, parameters completes the proof.

Lemma 14. The Laplace transform of the normalized transmit power, PBSi,q , for a ran-

domly chosen BS can be written as follows

LPBS
(s) ≈ e−san

rc∫

v=re

2v

r2
c − r2

e

(
1 +

aes

(1 + vα)λΞ

)−kΞ

dv. (6.21)

Proof. Approximating the fading as
∣∣∣H

BSi,0,MT
(e)
0

∣∣∣
2

≈ 1 and performing expectation over

R
BSi,0,MT

(e)
0

yields to an expression where it appears the Laplace transform of Ξ−1

MT
(e)
0

. In

Proposition 8 the Laplace transform of Ξ
MT

(e)
0

is approximated as an Inverse Gamma

distribution, and thus LΞ−1(s) can be expressed as LΞ−1 (s) =
(
1 + sλ−1

Ξ

)−kΞ , which com-

pletes the proof.

The next Lemma provides the Laplace transform of the inter-cluster interference.

Lemma 15. Let us assume a given MT, which can be either a near MT or a cell-edge

MT. The Laplace transform of the inter-cluster interference can be written as

LIinter
(s) ≈

exp


−2πλc

∫

r>dmin

(
1− LPBS

(
s

(1 + rα)

)nBS
)
rdr


 . (6.22)

Proof. Thanks to Assumption 3, it can be applyied the Probability Generating Func-

tional (PGFL) of the PPP [61] to obtain the Laplace transform of the interference. Then,
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it is applied the indicator 1(‖Cq‖ > dmin) to the integration limits of the resulting expres-

sion. Finally, approximating the fading by its mean value, i.e.,
∣∣∣H

BSk,q ,MT
(e)
0

∣∣∣
2

≈ 1 and the

distance towards the i-th BS of the q-th cluster as the distance towards its cluster center,

r = ‖Cq‖ completes the proof.

Theorem 5. If the condition ae− γean < 0 holds, then, the outage probability for a given

cell-edge MT can be expressed as follows

P
MT

(e)
0

out ≈ 1−
nM∑

q=1

nGC∑

i=1

ti∑

k=1

k−1∑

n=0

ωq,i,k
(1 + rαi )n

n!

× νn1 (−1)n
dn

dsn

[
e−sρ

−1
BSLIinter

(s)
]∣∣∣∣
s=ν1(1+rαi )

, (6.23)

where LIinter
(s) is given with Lemma 15, ν1 = γe

ae−γean and being γe = 2SEe − 1 the SINR

threshold to achieve a SE of SEe bps/Hz. If ae − γean < 0, then, the outage probability is

1.

Proof. If ae < γean the outage probability is 1. In the case ae − γean > 0, the outage

probability can be written as

P
MT

(e)
0

out = EI
[
FΞ

MT
(e)
0

(
ν1

(
I +

1

ρBS

))]

≈ 1−
nM∑

q=1

nGC∑

i=1

ti∑

k=1

k−1∑

n=0

ωq,i,k
(1 + rαi )n

n!

νn1 EI
[(
I + ρ−1

BS

)n
e−(1+rαi )ν1(I+ρ−1

BS)
]
, (6.24)

where it has been used the fact that ΞMTe
0

can be expressed as a finite mixture of Erlang

distributions. Finally, applying the derivative property in the s domain of the Laplace

transform completes the proof.

Lemma 16. The Laplace transform of the intra-cluster interference, conditioned on being

placed at a distance, v, towards its cluster center is given below
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LIintra|r (s) =

(
π (r + rc − |r − rc|)

2nGC

)nBS−1

×
(
nGC∑

i=1

fU |r (ui|r)LPBS

(
s

1 + uαi

) ∣∣∣∣sin
(

2i− 1

2nGC

π

)∣∣∣∣

)nBS−1

, (6.25)

where LPBS
(s) is given with Lemma 14, fU |rz (u|r) is given with Lemma 11 and

ui =
1

2

[
cos

(
2i− 1

nGC

π

)
+ 1

]
(r + rc − |r − rc|) + |r − rc| . (6.26)

Proof. It has been approximated the fading by its average value, i.e.,
∣∣∣H

BSk,0,MT
(n)
0,0

∣∣∣
2

≈ 1

and it has been assumed statistical independence between R
BSk,0,MT

(n)
0,0

= Uk and PBSk,0
.

Finally, expressing the expectation over Uk as a finite integral, and applying Gauss-

Chebyshev completes the proof.

The following lemma, provides the CDF of Q
MT

(n)
0,0

, which is defined as Q
MT

(n)
0,0

=
∣∣∣G

BS0,0,MT
(n)
0

∣∣∣
2

/ (IρBS + 1).

Lemma 17. The CDF of Q
MT

(n)
0,0

, conditioned on being the distance between the near MT

and its cluster center, r, can be written as

FQ (q|r) = 1− πrBS

2nGC

nGC∑

i=1

2vi
r2

BS

e−q(1+vαi )
∣∣∣∣sin

(
2i− 1

nGC

π

)∣∣∣∣

× LIintra|r (q (1 + vαi ) ρBS)LIinter
(q (1 + vαi ) ρBS) , (6.27)

where LIintra|r (s) and LIinter
(s) are given in Lemma 16 and Lemma 15 respectively, and

vi =
1

2

[
cos

(
2i− 1

nGC

π

)
+ 1

]
rBS. (6.28)

Proof. The proof comes after conditioning over the aggregate interference and R
BS

(0)
0 ,MT

(n)
0

and then applying Gauss-Chebyshev rule over the resulting expression.
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Lemma 18. The CDF of |W
BSk,0,MT

(e)
0
|2 is given below

F|W |2 (x) ≈ 1− π (rc − re)
2nGC

nGC∑

i=1

2ri
r2
c − r2

e

× LΞ (x (1 + rαi ))

∣∣∣∣sin
(

2i− 1

nGC

π

)∣∣∣∣ , (6.29)

where ri is given in (6.13)

Proof. The proof comes after performing expectation over the fading, identifying the

Laplace transform of Ξ in the resulting expression and finally applying Gauss-Chebyshev

rule.

Theorem 6. The outage probability of a randomly chosen near MT can be expressed as

PMT
(n)
o

out ≈ F|W |2

(
γ1an
ae

)
+
π (rc − re)

2nGC

nGC∑

i=1

2ri
r2
c − r2

e

× LΞ

(
γ1an
ae

(1 + rαi )

) ∣∣∣∣sin
(

2i− 1

nGC

π

)∣∣∣∣

× FQ


max


 γe(

ae
1+rαi

− γean
)
ρBS

,
γn

aeρBS



∣∣∣∣∣∣
ri


 , (6.30)

where LΞ(s) is given with Proposition 8 and FQ(q|r) with Lemma 17.

Proof. An outage occurs if the near MT is not capable to decode the symbol intended for

him or for the cell-edge MT. We have an outage related to the symbol intended for the

cell-edge MT if SINR
(e)

MT
(n)
0

< γe. Reordering the above expression, yields to the conclusion

that there is an outage if
∣∣∣W

BS
(0)
0 ,MT

(e)
0

∣∣∣
2

< γean
ae

. If
∣∣∣W

BS
(0)
0 ,MT

(e)
0

∣∣∣
2

> γean
ae

, an outage occurs

when Q
MT

(n)
0

< Ee, with Ee = γe/

[
ρBS

(∣∣∣W
BS

(0)
0 ,MT

(e)
0

∣∣∣
2

ae − γean
)]

. Analogously, an

outage when decoding the symbol intended for the near MT occurs if Q
MT

(n)
0
< En, with

En = γn/anρBS. Obtaining the probability of the events Q
MT

(n)
0

< Ee and Q
MT

(n)
0

< En
completes the proof.
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Table 6.1: Simulation setup.

Parameter Value Parameter Value

ρBS (dB) 65 nBS 5

rc (m) 500 re (m) 50

rBS (m) 10 α 3

SE(e) = SE(n) (bps/Hz) 0.1 ae 0.9

nGC 10 Realizations 104

λC (points/m2) 3× 10−7 dmin (m) 103
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Figure 6.2: Comparison of the Laplace transform the normalized transmit power for nBS =
{2, 5, 8}.

6.4 Numerical Results

In this section, the mathematical frameworks and findings derived in the previous sections

are validated with the aid of Monte Carlo simulations. Simulations do not consider any

approximation, e.g., the underlying point process for cluster centers is a Martérn HCPP of

type II, and the exact beamforming gain and transmit power is computed. The simulation

parameters are summarized in Table 6.1
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Figure 6.3: Comparison of the outage probability for near and cell-edge MTs versus the
transmit SNR, ρBS. The case ae = 0.9 is represented with blue color and circles and the
case an = 0.5 with red color and squares.

With Fig. 6.2, it is illustrated the accuracy of the analytical expression given with

Lemma 14 for nBS = {2, 5, 8}. It is observed a tight match between simulation and

analytical results. The outage probability for cell-edge and near MTs is illustrated with

Fig. 6.3 and Fig. A.11. Fig. 6.3 shows the outage probability as a function of the transmit

SNR, ρBS for an = {0.5, 0.9}. Results reveals the following trends: 1) the performance

of near MTs becomes interference-limited for a smaller transmit power than the cell-edge

MTs and 2) a power allocation factor of ae = 0.9 leads to a better performance than

ae = 0.5 for both cell-edge and near MT. The reason behind 1) is related to the fact that

intra-cluster interference is the dominant factor for near MTs, when they try to decode

their own symbol. Cell-edge MTs also suffer from intra-cluster interference because of

NOMA, nevertheless, thanks to the beamforming strategy, the desired signal is greater

than the intra-cluster interference. 2) is due to the fact that near MTs needs to decode

successfully the symbol intended for cell-edge MTs in order to perform SIC. Fig. A.11

illustrates the outage probability versus the number of cooperating BSs per cluster. As

it can be observed, cell-edge MTs greatly increases their performance with nBS, whereas
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Figure 6.4: Comparison of the outage probability for near and cell-edge MTs versus the
number of BSs per cluster, nBS for ae = 0.9. The special case nBS = 1 is added as a
reference value for comparison.

the performance of near MTs is sightly worsen. In particular, for near MTs, the outage

probability is roughly 0.1 and 0.2 for nBS = 2 and nBS = 6 respectively. However, the

outage probability for cell-edge MTs decreases 3 orders of magnitude for the same number

of BSs. The special case nBS = 1 is also considered. In this case, there is not intra-cluster

interference for near MTs. Hence, near MTs exhibit a small outage probability; however

the price to pay is that the outage probability of cell-edge is very high.

6.5 Discussion

In this chapter a novel scheme for Cloud-Radio Access Networks has been proposed. Such

an scheme considers that two users are scheduled for transmission at the same BS according

to NOMA. Nevertheless, worst users, in terms of SINR, benefits from cooperation between

a cluster of BSs that are connected through high speed links. The mathematical analysis

has demonstrated that the beamforming gain can be modeled as a mixture of Erlang

distributions, and the average beamforming gain is a linear function with respect to the
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number of cooperating BSs. Simple expressions for the outage probability of the near

and cell-edge users has been obtained. Results has revealed that BS cooperation greatly

improves the performance of cell-edge users, which increases with the number of BSs.

These contributions appear in [54], which is under review.



Chapter 7

Performance Analysis of

Geo-Location Based Access for

Vehicular Communications

LTE V2X is the response of the 3GPP standardization body to the high market ex-

pectations related to vehicular communications for safety and infotainment services. To

fulfill the stringent requirements in terms of reliability associated with safety applications,

geo-location based access (GLOC) has been proposed for direct Vehicle-to-Vehicle (V2V)

communication. Such a scheme aims at maximizing the distance of co-channel transmit-

ters (i.e. transmitter that use the same resources) while preserving a low latency when

accessing the resources and a low overhead. In this chapter we analyze, with the aid of

stochastic geometry, the delivery of periodic and non-periodic broadcast messages with

GLOC, taking into account path loss and fading as well as the random locations of trans-

mitting vehicles. Analytical results include the average interference, average Binary Rate

(BR), capture probability, i.e., the probability of successful message transmission, and En-

ergy Efficiency (EE). Mathematical analysis reveals interesting insights about the system

performance, which are validated thought extensive Monte Carlo simulations. In partic-

ular, it is shown that the capture probability is an increasing function with exponential

dependence with respect to the transmit power and it is demonstrated that an arbitrary

high capture probability can be achieved, as long as the number of access resources is

high enough. Finally, to facilitate the system-level design of GLOC, it is obtained the

169
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optimum transmit power, which fulfill a given minimum capture probability constraint

while maximizing the EE of the system.

7.1 Introduction

Intelligent Transportation Systems (ITS) require direct Vehicle-to-Vehicle (V2V) commu-

nication to provide safety and infotainment services. Within the safety applications two

types of broadcast messages can be identified: periodic and non-periodic messages [97].

Periodic messages aim at achieving vehicle awareness and consist on the periodic transmis-

sion of broadcast status messages, informing nearby vehicles of their position, velocity and

direction. On the other hand, non-periodic, e.g. event-driven messages, are transmitted to

respond to specific hazardous situations. There have been several standardization activi-

ties aiming at offering a reliable communications with low latency and cost. On the one

hand, Dedicated Short-Range Communications (DSRC) has been developed using IEEE

802.11p, which is based on Carrier Sense Multiple Access (CSMA). Nevertheless, 802.11p

suffers from the main limitations related to 802.xx standards, such as poor scalability to

high traffic density and poor support of high mobility [17]. Hence, solutions based on 4G

and 5G cellular networks come to the fore [98]. LTE V2X is the response of the 3GPP

standardization body to the high market expectations and will use the same principles

as those that are envisioned for Device-to-Device (D2D) communications. The 3GPP

specifies two phases for both D2D and V2V communications: 1) neighbours discovery,

where vehicles announce their presence and status periodically to the surrounding nodes;

and 2) direct communication, where asynchronous events are reported [99]. Additionally,

there are two mechanisms to access the resources in V2V communications: scheduled and

autonomous mode. The scheduled mode involves the exchange of transmission requests

and grants with the Base Stations (BSs), and it may suffer from long delays. Hence, the

autonomous mode is normally preferred where it is possible for the devices to select the

transmission resources without network involvement. Yet, the network has a key role in

providing synchronization.

For autonomous mode the 3GPP propose the use of Geo-Location based access (GLOC)

[98, Sect. 23.14.1.1. (support for V2X sidelink)], [100]. With this technique, vehicles access

the channel based on its position. The road is divided into segments, where each segment
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is associated with a single orthogonal Access Resource (AR).

The mapping between ARs and segments is made to maximize the co-channel distance,

which is the minimum distance between two segments that use the same set of ARs. In

[100], it is proposed GLOC for the discovery and communication phase in V2V commu-

nications. It is shown through simulation that the benefits of this technique are: (i) high

reliability, since the distance to interfering vehicles can be increased with the number of

ARs and (ii) MAC layer does not add any delay on accessing the channel, i.e., vehicles

start their transmission once they have data to transmit.

7.1.1 Stochastic Geometry Analysis of Vehicular Networks

Besides simulation based studies like [100], analytical models can provide further insights

about the inter-plays among reliability and binary rate as well as the number of ARs

for medium access, or the transmit power. Additionally, mathematical analysis leads to

expressions that can be evaluated quickly and allows to perform optimization of the most

relevant performance metrics. Here is where stochastic geometry [61] appears as a promis-

ing tool, since it allows tractable and realistic analysis due to the random nature of the

location of transmitting nodes in Vehicular Ad Hoc Networks (VANETs). For instance, [42]

analyzes, with the aid of stochastic geometry, the capture probability, average throughput

and mean density progress of transmitted packets for the case of unicast transmissions with

ALOHA. In [43], CSMA for unicast multi-hop communications is considered with several

routing strategies. It also considers multi-lane abstraction model which is more accurate

than single-lane models for wide roads. The case of a head vehicle that broadcasts info and

control messages to a sectorized cluster of client vehicles is considered in [44]. This work

models the positions of vehicles as a Cox process whose density follows a Fox distribution;

however, the interference caused by other transmitting vehicles is not taken into account.

The performance of IEEE 802.11p is assessed with the aid of stochastic geometry and

queuing theories in [46]. Here it is modelled the temporal characteristics CSMA, which

adds a delay on the transmission because of the back-off counter. To account for the

spatial dependence, which is derived from the carrier sensing, and also for the temporal

behavior, which is derived from the back-off counter, a discrete Matérn Hard Core Point

Process (HCPP) is proposed to model the locations of concurrent transmitters.



Chapter 7. Performance Analysis of Geo-Location Based Access for Vehicular
Communications 172

7.1.2 Main Contributions

In this work, GLOC access technique is analyzed taking into account the velocity-dependent

safe distance, dsafe, between vehicles of the same lane. Such a safe distance imposes some

correlation between locations of the vehicles, since there are no neighboring vehicles closer

than dsafe. Due to this minimum distance, we have chosen the Matérn HCPP of type

II to model the locations of vehicles within the same lane. This point process considers

initially that points are drawn according to a PPP whose density is λb. Then, a random

mark, which is uniformly distributed between 0 and 1, is given to each point. Those points

that have a neighbor closer than the minimum distance with a smaller mark are removed

[61]. After the thinning process the resulting density is λL = (1 − e−2λbdsafe)/(2dsafe).

However, such a point process is generally intractable, and only some moments of the

interference can be obtained without resorting to approximations [55]. To overcome such

an intractability, we will use conditional thinning as in [47]. In simple terms, the locations

of vehicles are first assumed to be placed according to a PPP whose density is λL. Then,

spatial constrains (correlation) in the form of a minimum distance between points, dsafe,

are imposed by means of an indicator function, but only in the proximity of the transmit-

ter and the receiver. Hence, the main difference between Matérn HCPP of type II and the

proposed approximation based on conditional thinning is that with the latter approach,

it is not imposed the minimum distance between each point. Instead, it is only applied to

those points that are near to the receiver and the transmitter; however the spatial densities

are the same in both point process, i.e. λL. Additionally, it is considered that the length

of the road is much higher than its width, and hence it is assumed that locations of the

vehicles in each lane can be modeled as points in the real line. Based on these modeling

assumptions we provide the following contributions:

1) Mathematical framework for analysis of geo-location based access : We propose a

mathematical framework for the analysis of GLOC considering a minimum distance be-

tween vehicles of the same lane. Two kinds of resource allocation schemes are considered:

Single-Lane Partition (SLP) and Multi-Lane Partition (MLP), which have different trade-

offs and mainly differ on whether lane-finding is required or not. With SLP, the road is

divided in different segments, whereas with MLP, each lane is divided in segments. Both

broadcast messages, i.e., periodic and non-periodic, are modeled to obtain a complete

understanding about the capabilities of GLOC as a MAC for ITS. Additionally, system-
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level parameters like message size, reporting rate, broadcast distance, etc. are taken from

recommentations of the 3GPP Work Items [56] and [57] to study the support of LTE for

V2V services. The path loss slope and path loss exponent is taken from [58]. Interest-

ingly, the path loss exponent in V2V channels, α, is normally smaller than 2 [58–60]. This

fact has implications on the spatial modeling, because the Probability Generating Func-

tional (PGFL) of the PPP in Rd, with d ∈ N+, only exists for a path loss exponent, α > d

[61]. If α < 2, this means that only PPPs in the real line (d = 1) can be considered to

conduct the analysis. Finally, mathematical expressions for a wide variety of performance

indicators have been obtained, leading to a deep understanding of the studied techniques.

In particular, the capture probability, the average interference, the average Binary Rate

(BR) and the average Energy Efficiency (EE) are derived.

2) Theoretical insights : Many useful insights have been obtained from the derived

expressions. Interestingly, it has been shown that: (i) the capture probability is an in-

creasing function with respect to the transmit power with exponential dependence; (ii)

the system is noise-limited for MLP when the number of ARs is high enough whereas it is

interference-limited in case of SLP; (iii) the average interference diverges when it is evalu-

ated in co-channel segments (i.e. segments related to the same AR) with SLP, whereas it

always converges for the case of MLP. The fact that with MLP the system is noise-limited

for a given number of ARs means that it is possible to achieve an arbitrary high capture

probability by increasing the transmit power.

3) Optimization: The optimum transmit power that achieves a capture probability

greater or equal than a given threshold while maximizing the EE is obtained. Such mini-

mum capture probability is expressed as a percentage, δ, of the maximum capture prob-

ability that can be achieved. Interestingly, the same optimal transmit power is obtained

under SLP and MLP allocation schemes.

7.2 Related Work

7.2.1 MAC schemes for Vehicular Communications

Depending on the location of resource allocation process, MAC schemes can be classified

on centralized or distributed. In centralized schemes, a central unit, e.g. a Road Side

Unit (RSU) or a BS, allocates transmission resources to the vehicles. An advantage of
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centralized approaches is that they can avoid collisions; however, they have three main

drawbacks: (i) they are complex as they require an association procedure and infrastruc-

ture; (ii) they add an overhead due to control channels; and (iii) they add a delay. For

these reasons distributed solutions are normally preferred. These solutions can be classified

as: 1) contention-based; 2) resource reservation; 3) hybrid schemes; and 4) Geo-location

based access.

1) Contention-based : These schemes rely on carrier sensing and back-off windows

to reduce collisions [101, 102]. Optionally, 802.11p includes the and Request to Send

(RTS)/Clear to Send (CTS) exchange to mitigate the hidden node problem. Most of

the studies about contention-based schemes that can be easily adapted to 802.11p, focus

on controlling the rate or obtaining an adequate contention window for a given setting.

In particular, an adaptive mobility-based algorithm is proposed in [101]. This algorithm

selects an appropriate pair of contention window size and communication range based on

the average vehicle density and speed. In [102] it is proposed a congestion control method

that estimates the number of collisions to adjust the reporting rate of status broadcast

messages. Nevertheless, those schemes do not solve 802.11p drawbacks as high number of

collisions with high traffic densities and poor support of high mobility [17].

2) Resource reservation: These methods aim at ensuring that each resource is used

at most by a given vehicle among the one-hop neighbors [103, 104]. Here, it is assumed

that only one-hop neighbors can either establish a direct communications and/or produce

a collision. In [104] it is proposed a Time Division Multiple Access (TDMA) scheme with

resource reservation. With the proposed scheme, each vehicle periodically sends the list

of active one-hop neighbours, and their associated reserved slots. Nevertheless, such an

approach do not resolve completely collisions when trying to reserve an idle slot, or when

two vehicles with the same reserved slot enters in the same one-hop set. Additionally,

those methods are associated with a high overhead, since every vehicle has to broadcast

the list of neighbours and reserved slots.

3) Hybrid access : These methods combines different technologies with CSMA [105,

106]. In [105] it is selected a head vehicle per cluster, which deliver and collect safety

messages, using contention-free TDMA whereas inter-cluster communication between head

vehicles is performed with CSMA. In [106] it is considered a multi-channel structure, where

CSMA is used for delivery of safety messages on a common channel and token ring is used
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in different channels for different clusters of vehicles. Nevertheless, these approaches are

generally complex since they consider different technologies and still have reliability issues

that are inherited from CSMA.

4) Geo-location based access : These schemes, which are also known as Spatial Division

Multiple Access (SDMA), consists on a discretization procedure where the road is divided

in segments, and a mapping function that allocates orthogonal ARs or slots1 to different

segments [107, 108]. Then, vehicles determine the segment where they belong, based on

their geo-location information and use the associated AR. In [109] it is proposed a GLOC

based access to improve reliability and security. To avoid bandwidth inefficiency, vehicles

use slots associated with empty segments.

Compared with existing approaches, GLOC offer potentially the following benefits: 1)

high reliability, 2) low overhead, 3) low latency and 4) it represents a simple protocol

which facilitates its implementation. 1) is because increasing the number of ARs increases

the co-channel distance, and hence reduce collisions. 2) and 3) are due to the fact that it

is not needed any reservation nor information exchange to access the resources, i.e., the

vehicles estimate their position and transmit in the corresponding AR as soon as they

have data to transmit. These aforementioned potential benefits and the fact that such a

scheme has not been analysed mathematically ([100, 107–109] focus on simulation results)

motivated us to study in deep such an scheme. The main weakness of GLOC might be

bandwidth inefficiency, specially at low vehicle densities, which is due to the fact that

any time instant it could be many empty segments and hence unused ARs. Nevertheless,

this issue can be mitigated by using techniques like [109]. Additionally, an appropriate

choice of segment size and number of ARs according to the vehicle density mitigate such

problem.

7.2.2 Energy Efficiency in Vehicular Communications

Although reliability, latency and throughput are normally the main performance indicators

in vehicular communications, EE, has also recently received important attention for the

financial and environmental considerations [110]. Energy efficiency is even more relevant

1Some works ([107–109]) use TDMA to define ARs as slots for Geo-location based access. In our
work, which is focused on 3GPP LTE V2X technology, it is considered Single-Carrier Frequency Division
Multiple Access (SC-FDMA), and hence ARs are defined in the frequency domain.
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Figure 7.1: Sketch of GLOC based access with SLP for a two-lane road and 3 ARs.
Different colors are associated to different ARs. On the bottom it is shown the abstraction
model for the study of the road where positions of vehicles are treated as points in the
real line.

if electric cars are considered as a widely used means of transportation in the future [111].

Additionally, minimizing the energy consumption in VANETs is benefitial to reduce the

greenhouse gas emission (CO2) [112, 113]. In this context, a game theoretic model is

proposed in [114] to decide whether to disseminate the information or not, based on the

current energy situation of the vehicular network. The proposed algorithm minimizes the

energy consumption, overhead and time. In [112], it is considered three routing strategies

that determine the set of relying vehicles and communication range that maximizes the EE.

In [113], an hybrid spectrum access scheme in V2I uplink scenario in cognitive VANETs

is proposed to increase the EE. In [115], it is proposed a method for cluster head selection

that maximizes the EE in heterogeneous vehicular networks.

7.3 System Model

A straight road with nL lanes is considered as appears in figures 7.1 and 7.2 (nL = 2),

where the length of the road is much greater than its width and thus the z coordinate can

be neglected. As pointed out in [56], there is a velocity-dependent safe distance between

vehicles of the same lane, referred to dsafe. Hence, positions of vehicles within the same

lane are assumed to follow a Matérn HCPP of type II, ΦL = {V0,V1, · · · } ⊂ R, whose
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density is λL and its minimum distance between points is dsafe. The assumption of a

minimum distance between vehicles leads to a maximum vehicle density per lane, which

is λL,max = 1/ (2dsafe). It is assumed that at a given time instant a vehicle has data to

transmit with probability pa; hence the set of active vehicles Φ
(a)
L = {VT0,VT1, · · · } is

obtained through independent thinning from ΦL with density λLpa. A summary of main

symbols and functions is provided in Table 7.1.

7.3.1 Resource Partition Schemes

With GLOC, the road is divided into segments of length dA meters, and each segment

is associated with a given orthogonal AR. The useful system bandwidth, bw, is divided

between the ARs. At a given time instant, each vehicle with data to transmit determines

its current segment based on its position and then, it transmits with the mapped AR.

The mapping between segments and ARs is made to maximize the co-channel distance.

Modeling the location of the vehicles randomly in terms of point processes allow us to treats

the VANET as a snapshot of a stationary random field of communicating vehicles, where

realizations of such point process are associated with different vehicle locations. Hence, it

is assumed that the segment does not change during the transmission of a single message.

Besides, it is considered that the vehicles are aware of the mapping between segments and

ARs, and the position and size of the segments. This can be achieved following the same

process as specified in [98, Sect. 23.14.1.1. (support for V2X sidelink)]. We propose two

resource partition schemes, identified as SLP and MLP, that mainly differ on whether lane-

finding is required or not. With SLP, the road is divided in different segments, whereas

with MLP, each lane is divided in segments.

The frequency allocation process of SLP is depicted as appears next:

1. The road is divided into segments of dA meters. Each segment consists of nL lanes.

2. A bandwidth of bw/nAR is allocated to each AR, where nAR is the number of ARs.

3. The segments are grouped into consecutive clusters of nAR segments. A single or-

thogonal AR is allocated to every segment within a given cluster. The mapping

between segments and ARs is made with maximum co-channel distance criterion,

aiming at minimizing the interference.
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Figure 7.2: Sketch of GLOC based access with MLP for a two-lane road and 6 ARs.
Different colors are associated to different ARs. On the bottom it is shown the abstraction
model for the study of each lane where positions of vehicles are treated as points in the
real line.

A sample of SLP scheme for nAR = 3 and nL = 2 is shown in the top of Fig. 7.1, whereas

the mathematical abstraction model as a one-dimensional point process is illustrated at

the bottom of the figure. In this case, each color (blue, green and red) represents a different

AR whereas segments are represented as A(j)
c , where j identifies the AR, and c identifies

the cluster.

On the other hand, MLP considers that each segment only contains a single lane. The

process to allocate frequencies with MLP is described as follows:

1. The system bandwidth is equally divided among lanes. Therefore, there is bw/nL Hz

available for each lane and there is no interference among different lanes.

2. Each lane is divided into segments of dA meters.

3. A bandwidth of bw/(nAR · nL) is allocated to each AR, where nAR is the number of

ARs per lane. Thus, the overall number of ARs is nL · nAR.

4. The segments of each lane are grouped in consecutive clusters of nAR segments.

A single orthogonal AR is allocated to every segment within a given cluster. The

mapping among segments of the same lane and ARs is made with maximum co-

channel distance criterion, aiming at minimizing the interference.
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Fig. 7.2 illustrates a sample of MLP for nAR = 3 and nL = 2. In this case A(j)
c represents

segments that belong to lane 1 whereas A∗(j)c represents segments related to lane 2. The

abstraction model for each lane is represented at the bottom of the figure.

Each scheme has different pros and cons. With SLP it is not required to identify the

lane in which the vehicle is traveling, which relaxes the requirement imposed to position

estimation. On the other hand, MLP considers that vehicles are capable of estimating their

position and also their current lane; however, this can be achieved using similar techniques

as proposed in [116]. Additionally, the requisites imposed over position estimation for

5G are around 30 cm, which assures lane-awareness [99]. On the negative side, it can

be noticed that SLP leads to a higher density of co-channel interfering vehicles, since

each segment has several lanes. Additionally, the minimum distance towards the nearest

interfering vehicle is reduced, since in this case an interfering vehicle could be located in

the same location as the receiver in a different lane. This does not happen in case of MLP

thanks to the minimum (inter-vehicle) safe distance. Nevertheless the bandwidth for each

AR is lower in MLP, since the bandwidth is also divided among lanes.

These differences have also implications on the mathematical modeling of SLP and

MLP. In particular, with SLP there is not a minimum distance between vehicles, and

hence the position of interfering vehicles can be modeled as a PPP. The bandwidth per

AR and vehicle densities are also different, as summarized in Table 7.2.

The analysis is performed for a typical transmitter, i.e., a randomly selected Vehicle

Transmitter (VT). This transmitter is named the probe VT, and it is represented with

symbol VT0. In this chapter we made an abuse of notation since VT0 is used to represent

the probe VT as well as its position in the real line. Analogously, its associated AR is the

probe AR, which is denoted by AR0. Symbol A(j)
c identifies the segment associated with

j-th AR within cluster c. The set that represents all the segments associated with AR j is

represented as A(j) =
∞⋃

c=−∞
A(j)
c . Fig. 7.3 shows a sketch of the abstraction model, either

for SLP or MLP. In case of SLP, this abstraction model is related to a given road, whereas

in case of MLP it is related to a given lane. Without loss of generality, it is considered that

the probe segment, A(AR0)
0 , is centered at the origin. Being the probe segment centered at

the origin, the c-th co-channel segment, A(AR0)
c , can be expressed as
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Table 7.1: Summary of main symbols and functions used throughout the chapter.

Symbol Definition

b·c, d·e Floor and ceil functions

2F1(·, ·, ·, ·) Gauss hypergeometric function defined in [77] (Ch. 15).
E [·] Expectation operator
Pr (·) Probability measure
1 (·) Indicator function
bx(r) Ball centered at x with radius r
nL Number of lanes
dsafe Safe distance between vehicles
dmax Maximum communication distance
ΦL, λL HCPP that models locations of vehicles within the

same lane and its density

Φ
(a)
L , λ

(a)
L Thinned HCPP that models locations of active vehicles

within the same lane and its density
dA Segment’s length
bw Useful system’s bandwidth
nAR With SLP it is the number of orthogonal resources. With

MLP it is the number of orthogonal resources per lane

A(j)
c Segment associated with the j-th AR within cluster c

A(j) Union of all the segments associated with the j-th AR
τ, α Slope and exponent of the path loss function
ρVT Transmit power per Hz
bAR Bandwidth of a single AR
Φ, λ Point process that models the location of vehicles in the

abstraction model for SLP and MLP

Φ(a), λ(a) Thinned point process that model the location of active
vehicles in the abstraction model for SLP and MLP

VT0,AR0 Probe vehicle transmitter and its related AR
VTi, HVTi

Generic active vehicle and its fading towards the
probe receiver

σ2
n, I Noise power and aggregate interference
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Table 7.2: Modeling Differences between SLP and MLP

Scheme λ bAR Minimum dist. Type of Φ

SLP λL · nL bw/nAR 0 PPP

MLP λL bw/ (nARnL) dsafe HCPP2

AR· ·c n d
A AR· ·c n d

A
0

( )0AR
0A

0VT

d
A

VTi

bcr

x

Figure 7.3: Illustration of co-channel segments in the abstraction model. The probe trans-
mitter is represented as VT0, the probe AR and segment as AR0 and A(AR0)

0 respectively,
the probe receiver as a blue x and a single interfering vehicle as VTi. The length of each
segment is represented as dA and thus nAR · dA is the minimum co-channel distance.

A(AR0)
c =

{
y ∈ R : cnARdA −

dA
2
≤ y < cnARdA +

dA
2

}
(7.1)

The c-th co-channel segment is centered around c · nAR · dA, with c ∈ Z.

7.3.2 Signal Modeling

Transmitted signals suffer from Rayleigh fading, hence the channel power gain is expo-

nentially distributed with unitary mean. Path loss is modeled through a path loss slope

τ and a path loss exponent α. Having a receiver placed at location x, the SINR can be

expressed as follows

SINR (x) =
HVT0 (τ |VT0 − x|)−α ρVT

I (x) + σ2
n

(7.2)
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where | · | the Euclidean distance, HVT0 is the fading power gain between VT0 and the test

receiver, ρVT is the transmit power per Hz, σ2
n is the noise power and I(x) the received

interference at x. It is assumed that there is a maximum communication range given by

dmax, hence a receiver cannot detect signals from transmitters farther than dmax. Thus the

interference term can be expressed as follows

I (x) =
∑

VTi∈Φ(a)\{VT0}

HVTi (τ |VTi − x|)−α

× ρVT1
(
VTi ∈ A(AR0)

)
1 (VTi ∈ bx (dmax)) (7.3)

being Φ(a) the set of active vehicles in the abstraction model; 1(·) the indicator function

and bx(dmax) the ball centered at x with radius dmax. HVTi is the fading between VTi

and x. As it has been justified before, in case of SLP, Φ(a) is a PPP obtained through

independent thinning, with probability pa, from Φ. However, in case of MLP, Φ(a) is

obtained through independent thinning over Φ, which is now a Matérn HCPP of type II.

Such point process is difficult to analyze because its probability generating functionals do

not exist, [55]. Hence, the following assumption over the interference is proposed for the

sake of tractability.

Assumption 4. The interference term in case of MLP can be approximated as appears

below

I (x) =
∑

VTi∈Φ(a)

HVTi (τ |VTi − x|)−α ρVT1
(
VTi ∈ A(RB0)

)

× 1 (|VTi − x| > dsafe) 1 (|VTi − VT0| > dsafe) (7.4)

where Φ(a) is a PPP with density λLpa.

The reasoning behind Assumption 4 is explained below. For tractability, it is assumed

that Φ(a) follows a PPP, instead of a thinned version of a HCPP that represents the

locations of active vehicles within the same lane. The correlations in the actual point

process are captured in the form of spatial constraints by means of a dependent thinning

with two indicator functions. These constrains guarantee that there are no vehicles nearer

than dsafe to the probe transmitter nor to the test receiver, which is placed at x. It
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should be noticed that this dependent thinning leads to a point process which is not a

homogeneous PPP.

Remark 13 (Exact analysis). In the forthcoming analysis: (i) the results for the SLP case

are exact, since there is PPP as the generative process of the locations of active vehicles;

and (ii) the results for the MLP case are approximations due to Assumption 4.

7.3.3 Key Performance Indicators

The capture probability represents the probability that a message is correctly received.

Having a receiver placed at location x, it is expressed as the probability of the SINR being

higher than a given threshold, γ, which is the CCDF of the SINR.

We consider that each transmitter uses a fixed Modulation and Coding Scheme (MCS).

Here, we use the same abtraction as in [83, 117] to represent the goodput, or equivalently

the BR of correctly received bits as

BR (x) = 1 (SINR (x) > γ) · bAR · log2 (1 + γ) (7.5)

where bAR represents the bandwidth associated with a given AR and it is given in Table

7.2 for SLP and MLP. On the other hand, γ, which is a system-level parameter, represents

the SINR threshold associated with the considered MCS, where log2(1 + γ) is its spectral

efficiency in terms of bps/Hz.

The EE is defined as the quotient between the BR and the transmit power in a given

AR, which can be written in terms of b/J as follows

EE (x) =
log2 (1 + γ)

ρVT

1 (SINR(x) > γ) (7.6)

where the bandwidth term, bw, is canceled out since it appears in the definition of BR and

also in the expression of the transmit power in a given AR.

7.3.4 Broadcast Message Types

As it is mentioned in the introduction, there are two types of broadcast messages: non-

periodic and periodic. For non-periodic messages, it is assumed that the probability of

being active, i.e., with data to transmit, depends on traffic conditions and other related
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human issues and thus it is a fixed parameter. The case of periodic messages is different,

since in this case, the probability of being active depends on the periodic rate and the time

needed to transmit the message. This latter metric depends on the spectral efficiency of

the MCS and also of the AR bandwidth, bAR. Hence, for the case of periodic messages,

the probability of being active is expressed as follows

pa =
mbc

bARtrep log2 (1 + γ)
(7.7)

where trep is the reporting latency, i.e., the time between two consecutive messages and

mbc is the message size in bits. It should be noticed that the time required to transmit the

message, which is mbc/ (bAR log2(1 + γ)), cannot be higher than trep. This imposes the fol-

lowing inequality over the above parameters that must be fulfilledmbc/ (bAR log2 (1 + γ)) <

trep.

Remark 14 (Density of active vehicles). In view of (7.7) and Table 7.2 it should be noticed

that the density of active vehicles transmitting periodic messages, λ · pa, is the same for

SLP and MLP schemes for the same nAR.

7.4 Analysis of the Interference and Capture Proba-

bility

In this section, main performance metrics related to Single-Lane Partition and Multi-Lane

Partition are derived. Given the broadcast nature of the considered transmissions, a probe

receiver placed at a distance rbc from the probe transmitter, VT0, is considered. Hence,

the metrics of interest - capture probability, average BR and average EE - are evaluated

at x = VT0 + rbc.

7.4.1 Single-Lane Partition (SLP)

To obtain the capture probability, we first compute the Laplace transform the interference,

which is given with the following lemma.
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Lemma 19. With SLP, the Laplace transform of the interference evaluated at x ∈ R can

be written as

LI(x) (s) = exp


−λ · pa

ddmax/(nARdA)e∑

c=−bdmax/(nARdA)c

κ (c, s, x)


 (7.8)

where the function κ (c, s, x)3 appears in (7.9)

κ (c, s, x) =
∑

j∈{1,2}

1
(
µ

(j)
L < µ

(j)
U

)(
µ

(j)
U 2F1


1,

1

α
, 1 +

1

α
,

(
τµ

(j)
U

)α

−s · ρVT




− µ(j)
L 2F1


1,

1

α
, 1 +

1

α
,

(
τµ

(j)
L

)α

−s · ρVT



)

(7.9)

and

µ
(1)
U = min

(
c · nAR · dA +

dA
2
− x, dmax

)

µ
(2)
L = −max

(
c · nAR · dA −

dA
2
− x,−dmax

)

µ
(1)
L = max

(
µ

(2)
L , 0

)
; µ

(2)
U = −min

(
µ

(1)
U , 0

)
(7.10)

Proof. The proof is given in Appendix 7.8.

Theorem 7. With SLP, the CCDF of the SINR, or equivalently the capture probability,

at a distance rbc from the typical vehicle transmitter, VT0, appears below

F̄SINR(VT0+rbc) (γ) =
e
− γσ2

n
ρVT

(τrbc)α

dA

dA
2∫

v=− dA
2

LI(v+rbc)

(
γ (τrbc)

α

ρVT

)
dv (7.11)

3The dependence of functions µ
(j)
L (c, x) and µ

(j)
U (c, x) with c and x has not been written in (7.9),

(7.10) and (7.29) for convenience.
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where LI(x) (s) is the Laplace transform of the interference, which is given in Lemma 19,

with s = γ
ρVT

(τrbc)
α and x = VT0 + rbc.

Proof. Since the probe transmitter is chosen at random from the set of active vehicles,

its position inside the probe cluster, which is represented as VT0, is uniformly distributed

within the interval [−dA/2, dA/2). Hence, the CCDF of the SINR at x = VT0 + rbc can

be written as

F̄SINR(VT0+rbc) (γ) = Pr (SINR (VT0 + rbc) > γ)

(a)
= EVT0

[
Pr

(
HVT0 >

γ (τrbc)
α

ρVT

(
I (VT0 + rbc) + σ2

n

))]

(b)
= EVT0EI

[
e
− γ
ρVT

(I(VT0+rbc)+σ2
n)(τrbc)α

]

(c)
=

e
− γ
ρVT

σ2
n(τrbc)α

dA

dA/2∫

v=−dA/2

LI(v+rbc)

(
γ

ρVT

(τrbc)
α

)
· dv (7.12)

where (a) comes after reordering the expression of the SINR and applying the total prob-

ability theorem over position VT0; (b) after performing expectation over the fading and

conditioning over the interference term and (c) after expressing the expectation over VT0

in integral form and identifying the Laplace transform of the interference.

Corollary 5. The capture probability with SLP in the limiting case where nAR → ∞ is

given as follows

lim
nAR→∞

F̄SINR(VT0+rbc) (γ) =
e
− γσ2

n
ρVT

(τrbc)α

dA

dA
2∫

v=− dA
2

exp

(
−λpaκ

(
0,
γσ2

n

ρVT

(τrbc)
α , v + rbc

))
dv

(7.13)

Proof. The proof follows the fact that when nAR → ∞ the indicator function given in

(7.29), 1 (y ∈ bx (dmax)), is non zero only for c = 0.

Remark 15 (Intra-segment interference limited regime). In view of Corollary 5 it can be

observed that the capture probability when nAR tends to infinity is limited by the interference
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of the probe segment (c = 0), which is related to those cases where an interfering vehicle

is transmitting in the same segment as the probe vehicle transmitter.

It has been necessary to obtain the Laplace transform of the interference to compute

the CCDF of the SINR. Besides, the Laplace transform of the interference is useful to

obtain the average interference, which provides further insights. The following Lemma

gives such result.

Lemma 20. The average received interference at x, being the probe segment centered at

the origin can be expressed as

E [I (x)] =
λpaρVT

α− 1

ddmax/(nARdA)e∑

c=−bdmax/(nARdA)c

∑

j∈{1,2}

(
µ

(j)
L (c, x)

(
µ

(j)
U (c, x)

)α
− τ−α

(
µ

(j)
U (c, x)

)1−α

× 1
(
µ

(j)
L (c, x) < µ

(j)
U (c, x)

)
(7.14)

Proof. Using the fact that the Laplace transform can be used as a moment generating

function, the average interference can be written as E [I(x)] = −
∣∣ d

ds
LI(x) (s)

∣∣
s=0

. Hence

the proof consists on obtaining the derivative of (7.8) and then particularizing for s = 0.

Remark 16 (Convergence of the interference). In view of (7.14) it can be stated that the

average interference is only finite for x /∈ bc·nAR·dA(dA/2), since for x ∈ bc·nAR·dA(dA/2) we

have µ
(2)
U (c, x) = 0 which makes the average interference tends to infinity.

7.4.2 Multi-Lane Partition (MLP)

The Laplace transform of the interference for the case of MLP is given by the following

lemma.

Lemma 21. In case of MLP, the Laplace transform of the interference evaluated at the

probe receiver, placed at x is given by

LI(x) (s) = exp


−λ · pa

ddmax/(nRBdA)e∑

c=−bdmax/(nRBdA)c

ζ (c, s, x)


 (7.15)
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where ζ (c, s, x) is written in (7.16)

ζ (c, s, x) =
∑

i∈{1,2}

∑

j∈{1,2}

1
(
µ

(i,j)
L < µ

(i,j)
U

)(
µ

(i,j)
U 2F1


1,

1

α
, 1 +

1

α
,

(
τµ

(i,j)
U

)α

−s · ρVT




− µ(i,j)
L 2F1


1,

1

α
, 1 +

1

α
,

(
τµ

(i,j)
L

)α

−s · ρVT



)

(7.16)

and

µ
(1,1)
U = min

(
c · nRB · dA +

dA
2
− x, dmax

)

µ
(2,2)
L = −max

(
c · nRB · dA −

dA
2
− x,−dmax

)

µ
(1,1)
L = max

(
µ

(2,2)
L , dsafe, dsafe − x+ v

)

µ
(2,1)
U = min

(
µ

(1,1)
U , v − x− dsafe

)

µ
(2,1)
L = max

(
µ

(2,2)
L , dsafe

)

µ
(2,1)
L = max

(
µ

(2,2)
L , dsafe

)

µ
(1,2)
U = −min

(
µ

(1,1)
U ,−dsafe

)

µ
(1,2)
L = −max

(
µ

(2,2)
L , dsafe − x+ v

)

µ
(2,2)
U = −min

(
µ

(1,1)
U ,−dsafe, v − x− dsafe

)
(7.17)

Proof. The proof is given in Appendix 7.9.

Corollary 6. In the special case, dA < dsafe < (nAR − 1)dA and |x| < nARdA/2, the

Laplace transform of the interference can be simplified into the following expression

LI(x) (s) = exp


−λ · pa

⌈
dmax
nRBdA

⌉
∑

c=−
⌊
dmax
nARdA

⌋κ (c, s, x)1 (c 6= 0)


 (7.18)
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where λ = λL for the MLP case (Table 7.2).

Proof. The proof consists on noticing that in the case where dA < dsafe < (nAR−1)dA holds,

then, the indicator function 1(|VTi − VT0| > dsafe) is equal to 0 if VTi ∈ [−dA/2, dA/2)

and 1 otherwise. This means that there is no interfering vehicles inside the probe segment.

Additionally, if |x| < nARdA/2, then 1(|VTi−x| > dsafe) = 1. Hence, in view of Assump-

tion 4, the analysis is analogous to the case of SLP, but taking into account that there is

no intra-segment interference, which is captured in the indicator function 1(c 6= 0).

The next theorem gives the capture probability with MLP.

Theorem 8. The capture probability of a probe receiver placed at a distance rbc from the

transmitter with MLP is

F̄SINR(VT0+rbc) (γ) = e
− γ
pVT

σ2
n(τrbc)α

dA/2∫

v=−dA/2

1 (v /∈ bv+rbc
(dsafe))

|D (v + rbc)|
LI(v+rbc)

(
γ

pVT

(τrbc)
α

)
· dv

(7.19)

where LI(x)(s) is given in Lemma 21 and |D (x)|, which represents the Lebesgue measure

of the relative complement of the interval [−dA/2, dA/2) with respect to the set bx (dsafe),

and it is written as

|D (x)| =
dA/2∫

w=−dA/2

1 (v /∈ bx (dsafe)) · dw (7.20)

Proof. The proof follows from having the probe vehicle uniformly distributed inside the

region D (x) = [−dA/2, dA/2) \ bx (dsafe), and hence the pdf of its position is given as

fVT0 (v) = 1 (v ∈ D (x)) / |D (x)|. Then, conditioning over the position of the probe vehicle

and over interference, and reordering completes the proof.

Remark 17 (Exponential dependence). In view of Theorems 7 and 8, it can be ob-

served that the capture probability for both, SLP and MLP, only depends on ρVT as

c
(k)
1 exp(−c2/ρVT), with the label k being either equal to SLP or MLP, i.e., k = {SLP,MLP}.

Such an expression is an increasing function with respect to ρVT, where c
(k)
1 and c2 depend
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on other system parameters, and thus, they are constants with respect to ρVT. Analo-

gously, the capture probability depends on the noise power, σ2
n, as c

(k)
1 exp(−c42 σ2

n), which

is a decreasing function with respect to σ2
n. Therefore, the maximum capture probability,

for a given set of system parameters, is equal to c
(k)
1 , and it is achieved either in the limit,

ρVT →∞, or in the no-noise case (σ2
n = 0).

Remark 18 (Noise-limited regime). The system is noise limited, and thus, there is no

interference if dsafe > dA and nAR > (2dmax + dA) /dA.

Proof. With MLP, if dsafe > dA there is no intra-segment interference. Hence, in this

case it is possible to determine the number of ARs, nAR, that leads to a system without

interference. This is guaranteed if the distance between the probe receiver, which is placed

at x = VT0 + rbc, and the nearest interfering vehicle in the nearest co-channel segment is

higher than dmax (worst case scenario). Such an scenario involves that the probe vehicle is

placed at VT0 = dA/2 and the probe receiver is placed at the maximum communication

range, with rbc = dmax. Therefore, in this case, the nearest interfering vehicle must be

placed at a distance towards the probe receiver greater than dmax. This requires that

nARdA − dA > 2dmax. Reordering the above inequality completes the proof.

As it can be noticed from Remark 18, by augmenting nAR it is possible to assure

no interference, which allows to greatly increase the capture probability by increasing the

transmit power.

Corollary 7. In the special case of rbc > dA, the capture probability is given as

F̄SINR(VT0+rbc) (γ) =
e
− γ
pVT

σ2
n(τrbc)α

dA

dA/2∫

v=−dA/2

LI(v+rbc)

(
γ

pVT

(τrbc)
α

)
· dv (7.21)

where the Laplace transform of the interference is now given in Lemma 21.

Proof. The proof comes after realizing that, in case of rbc > dA, then |D(v + rbc)| is dA

and 1 (v /∈ bv+rbc
(dsafe))=1.

The average interference is given in the following lemma.
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Table 7.3: Summary of mathematical results as functions of ρVT

Metric F̄SINR(γ) E [BR] E [EE]

SLP c
(SLP)
1 e

− c2
ρVT

bw
nRB
· log2 (1 + γ) · c(SLP)

1 e
− c2
ρVT

log2(1+γ)
ρVT

· c(SLP)
1 e

− c2
ρVT

MLP c
(MLP)
1 e

− c2
ρVT

bw
nRB·nL

· log2 (1 + γ) · c(MLP)
1 e

− c2
ρVT

log2(1+γ)
ρVT

· c(MLP)
1 e

− c2
ρVT

c2 = γσ2
n (τrbc)

α c
(SLP)
1 = 1

dA

dA
2∫

v=− dA
2

LI(v+rbc)

(
γ(τrbc)α

ρVT

)
dv

c
(MLP)
1 =

dA/2∫
v=−dA/2

1(v/∈bv+rbc
(dsafe))

|D(v+rbc)| LI(v+rbc)

(
γ
pVT

(τrbc)
α
)
· dv

Lemma 22. With MLP, the average received interference at x, being the probe segment

centered at the origin, can be expressed as

E [I (x)] =
λpaρVT

α− 1

⌈
dmax
nARdA

⌉
∑

c=−
⌊
dmax
nARdA

⌋
∑

i∈{1,2}

∑

j∈{1,2}

(
µ

(i,j)
L (c, x)

(
µ

(i,j)
U (c, x)

)α
− τ−α

(
µ

(i,j)
U (c, x)

)1−α

× 1
(
µ

(i,j)
L (c, x) < µ

(i,j)
U (c, x)

)
(7.22)

Proof. The proof is analogous to Lemma 20. Hence, it has been obtained the derivative of

the Laplace transform of the interference, which is given in Lemma 21, and the resulting

expression has then been particularized for s = 0.

7.5 Binary Rate, Energy Efficiency and Optimal Trans-

mit Power

7.5.1 Binary Rate and Energy Efficiency

Besides the capture probability, another key performance indicator for system design is

the average BR. This result is given in the following Lemma.
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Lemma 23. The average BR at a distance rbc from the typical vehicle transmitter, VT0,

appears below

E [BR (VT0 + rbc)] = bAR · log2 (1 + γ) · F̄SINR (γ) (7.23)

where bAR is given in Table 7.2 and F̄SINR (γ) is either given in Theorem 7 or 8 depending

on the considered scheme, i.e., SLP or MLP respectively.

Proof. The proof consists on performing expectation over (7.5) and realizing that the term

E [1 (SINR (VT0 + rbc) > γ)] is the CCDF of the SINR.

Remark 19 (Average rate when nAR tends to infinity). In view of Lemma 23 and

Corollary 5 it can be stated that for a finite SINR threshold, γ, the average BR tends to

0 as nAR tends to infinity.

Proof. The proof consists on noting that the CCDF of the SINR is equal or smaller than

1, hence for a finite γ the term nAR in the denominator of (7.23) makes the average BR

tend to 0.

Lemma 24. The average EE at a distance rbc from the typical vehicle transmitter, VT0,

appears below

E [EE (VT0 + rbc)] =
log2 (1 + γ)

ρVT

· F̄SINR(VT0+rbc) (γ) (7.24)

where x = VT0 + rbc and F̄SINR (γ) is either given in Theorem 7 or 8 depending on the

considered scheme, i.e., SLP or MLP respectively.

Proof. The proof is analogous to the case of Lemma 23.

In view of Remark 17, the capture probability, average BR and EE can be written

as it appears in Table 7.3.

7.5.2 Optimal Transmit Power

In this section, the optimal transmit power that maximizes the EE, subject to a minimum

capture probability, is derived. Such a constrain is expressed as a percentage, δ, of the
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maximum capture probability that can be achieved according to Remark 17. More

formally, the optimization problem is formulated as follows

maximize
ρVT

E [EE]

subject to F̄SINR (γ) ≥ c
(k)
1 δ

0 < δ < 1 (7.25)

where k is a label that can be either equal to SLP or MLP, i.e., k = {SLP,MLP} and the

metrics E [EE] and F̄SINR (γ) are given in Table 7.3 for SLP and MLP4. Solving (A.44)

leads to the following theorem.

Theorem 9. The optimal transmit power, for SLP and MLP, can be written as appears

below

ρ?VT =

{
c2 if 0 < δ ≤ e−1

c2 ln−1 (1/δ) if 1 > δ > e−1
(7.26)

leading to the following EE and capture probability

E [EE]? =





c
(k)
1

c2
log2 (1 + γ) e−1 if 0 < δ ≤ e−1

c
(k)
1

c2
ln
(

1
δ

)
log2 (1 + γ) δ if 1 > δ > e−1

(7.27)

F̄ ?
SINR (γ) =

{
c

(k)
1 e−1 if 0 < δ ≤ e−1

c
(k)
1 δ if 1 > δ > e−1

(7.28)

where, again, k = {SLP,MLP}.

Proof. The average EE is a concave function in the open interval ρVT ∈ (0,∞). Hence, it

has a single critical point, which is placed at ρVT = c2, that leads to the global maximum.

Nevertheless, the constrain over the capture probability imposes that the solution must

lie between the following interval ρVT ∈ [c2 ln−1(1/δ),∞). It should be noticed that the

average EE is an increasing function for ρVT < c2 and a decreasing function for ρVT > c2.

4Throughout this section as well as in Table 7.3, it is neglected the dependence with x = VT0 + rbc in
E [BR (VT0 + rbc)], E [EE (VT0 + rbc)] and F̄SINR(VT0+rbc) for the sake of simplicity.
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Table 7.4: Simulation Parameters

Parameter Value Parameter Value

(τ, α) (490, 1.68) λL (vehicles/m) 0.8 · 84−1

dsafe (m) 42 nL 2

dA (m) 42 nAR 10

pa (non-periodic) 0.25 (mbc, trep) (bits,ms) 2400, 100

ρVT (dBm/Hz) −40 γ (dB) 5

σ2
n (dBm/Hz) −165 dmax (km) 56

bw (MHz) 9 rbc (m) 150

Hence, if δ < e−1, the critical point fulfills the constrain over the capture probability,

which leads to the solution ρ?VT = c2. On the other hand, if δ > e−1, the constrain governs

the optimal transmit power which is now ρ?VT = c2 ln−1 (1/δ).

Remark 20 (Independence of the optimal transmit power). In view of Theorem 9 it

can be stated that the optimal transmit power is independent of the considered scheme, i.e.,

SLP or MLP. This is due to the fact that the optimal transmit power only depends on c2

and δ.

7.6 Numerical Results

In this section, analytical results are illustrated and validated with extensive Monte Carlo

simulations in order to assess GLOC performance. The simulation setup is chosen from

the guidelines given in [56, 58, 97]. In particular, it is considered a velocity-dependent

safe distance between vehicles, according to 3GPP simulation assumptions for LTE V2X

[56]: dsafe(m) = 2.5 · v(m/s). Assuming a vehicle velocity of 60 km/h, this leads to a safe

distance of 42 m. Such a minimum distance yields to a maximum vehicle density per lane

of λL,max = 1/(2dsafe) = 84−1 [61]. A high density of vehicles is considered, and hence

the density per lane is set to 80% of the maximum density. The system bandwidth is 10

MHz, as given in [56]; however, excluding guard-bands in LTE this leads to 9 MHz of useful

bandwidth. With non-periodic messages, it is considered a probability of being active, i.e.,
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Figure 7.4: Capture probability versus the SINR threshold, γ, for SLP (dsafe = 0 m)
and for MLP (dsafe = 42) with periodic and non-periodic broadcast messages. Analytical
results are represented with solid lines whereas simulation results are represented with
marks.

with data to transmit, of 0.25. On the other hand, with periodic messages it is considered

a message size of 2400 bits and reporting time of 100 ms as given in [56]. The path loss

is taken from [58], where a vast measurement campaign over 5.2 GHz is performed. It is

considered that VTs transmit with −40 dBm/Hz, a thermal noise power of −174 dBm/Hz

and a noise figure of 9 dB as pointed out in [56], which leads to σ2
n = −165 dBm/Hz.

Simulation parameters are summarized in Table 7.4. Simulations are carried out av-

eraging over 104 spatial realizations. Through this section, analytical results are drawn

with solid lines whereas markers are used for simulation results. As stated in Remark

13, results related with SLP are exact whereas results related to MLP are approximations.

Nevertheless a good match between simulation and analysis is observed in both cases.

7.6.1 Impact of the SINR threshold and the traffic activity

In this sub-section, it is evaluated the effect of the density of concurrent transmitters and

also, the impact of rate, or equivalently, the SINR threshold, γ, that leads to the correct
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Figure 7.5: Average BR versus the SINR threshold, γ, for SLP (dsafe = 0 m) and for MLP
(dsafe = 42 m) with periodic and non-periodic broadcast messages.

reception of a message transmitted with log2(1+γ) bps/Hz. Fig. 7.4 illustrates the capture

probability for SLP and MLP with both periodic and non-periodic messages versus γ. In

the case of non-periodic messages, MLP scheme achieves a higher capture probability than

SLP. This is due to the fact that with MLP there is no intra-segment interference, as well

as to the fact that the density of interfering vehicles is smaller. If we focus on the case

of periodic messages, it is observed a higher capture probability than in the case of non-

periodic messages. This is because in this latter case, the probability of being active, which

depends on (7.7), is greatly smaller than in the case of non-periodic messages. According

to Remark 14, the density of active vehicles in case of periodic reporting is the same in

SLP and MLP schemes. However, SLP, contrary to MLP, has intra-segment interference,

which explains why SLP has a sightly smaller capture probability, as it can be observed

from Fig. 7.4.

The average BR of correctly received messages versus the SINR threshold is shown

in Fig. 7.5. Three trends can be observed from the figure. Firstly, it can be noticed

that the average BR of periodic messages is higher than non-periodic messages. This is

related to the smaller capture probability that exhibits non-periodic messages as it has
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Figure 7.7: Capture probability versus the number of ARs, nAR, for SLP (dsafe = 0 m)
and for MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages.
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Figure 7.8: Maximal capture probability, c
(MLP)
1 , for nAR ranging from 102 to 104, under

MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages with rbc = 150 m,
dmax = 56 km and γ = 5 dB.

been discussed above. Secondly, it can be observed that SLP leads to a higher average BR,

which is due to the fact that with this scheme the bandwidth per AR is higher. Finally,

it is observed that there exist a value of γ that maximizes the average BR.

Fig. 7.6 illustrates that the capture probability is a decreasing function with respect

to pa as expected, which is related to the higher interference as the density of transmitting

vehicles increases.

7.6.2 Impact of the number of Access Resources

Throughout this sub-section, the impact of the number of ARs is studied. In particular,

Fig. 7.7 illustrates the capture probability when nAR is ranging from 1 to 100. It is

observed that in the case of non-periodic messages, with a high active probability (pa =

0.25), increasing nAR greatly increases the capture probability for both SLP and MLP.

This scenario highlights the great potential of GLOC for non-periodic messages where

reliability plays a crucial role. Such a trend is also observed with periodic messages under

MLP; however, with SLP the capture probability of periodic messages is a decreasing
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Figure 7.9: Average BR versus the number of ARs, nAR, for SLP (dsafe = 0 m) and for
MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages.

function with nAR. To understand this, let us remark that increasing nAR tend to reduce

the interference, since it rises the co-channel distance. On the other hand, increasing

nAR, leads to an increment of the probability of being active, pa, which also increases the

intra-segment interference. The growth of the probability of being active is due to the

fact that the time to transmit a periodic message rises with nAR. Hence, in case of SLP,

intra-segment interference dominates over the capture probability, which diminishes with

nAR. In case of MLP the capture probability grows with respect to nAR, since there is no

intra-segment interference, and also because rising nAR increases the distance to interfering

vehicles. In particular, with MLP it is obtained reliabilities of 99.55% and 99.76% with

non-periodic and periodic messages respectively, at a distance of 150 m with nAR = 100.

V2X communications have to be highly reliable. The exact reliability target changes

from standard to standard and depending on the application, e.g., 95% (ITS), 99% (LTE

V2X) and 99.999% (5G V2X) [56, 97, 118].

Hence, providing a very high capture probability is a paramount issue. One of the great

benefits of MLP is that, according to Remark 18, it is possible to move the system from

an interference-limited into a noise-limited regime by increasing nAR; once the system is
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Figure 7.10: Average interference for different locations, x ∈ [−105,+105] m, for SLP
and MLP with dsafe = {21, 42} with non-periodic messages, λ = 0.8/84 vehicles/m and
nAR = 3.

noise-limited, the capture probability can be increased by increasing the transmit power

as stated in Remark 17. This is illustrated in Fig. 7.8 where it is shown the maximum

capture probability, c
(MLP)
1 , which it is achieved for ρVT →∞. As stated in Remark 18,

for our simulation assumptions the system is noise-limited for nAR > 2668.

Finally, Fig. 7.9 illustrates the average BR versus nAR. It is shown that, when 10 <

nAR < 100, SLP achieves a higher average BR than MLP since ARs have more bandwidth

in the former case. Regarding non-periodic messages, it is shown that there exist an

optimal value of nAR, which maximizes the average BR. Finally, it is shown that the

average BR is a decreasing function with nAR, and it tends to 0 as nAR → ∞, as stated

in Remark 19.
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Figure 7.11: Capture probability versus the broadcast distance, rbc, for SLP (dsafe = 0 m)
and for MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages.

7.6.3 Impact of the broadcast distance and the segment size: rbc

and dA

The average interference is evaluated in Fig. 7.10 for locations, x ∈ R, ranging from −105

to +105 m, where the probe segment is centered at x = 0. As it is stated in Remark

16, it can be observed that without a minimum distance between points, the interference

does not converge within co-channel segments, which are centered at multiples of nAR. It

is used the same density λ with both SLP and MLP to assess the effect of the minimum

distance between vehicles in the interference. As it is expected, the average interference

is reduced as the minimum distance between points, dsafe, is increased.

Fig. 7.11 shows the capture probability versus the broadcast distance, where it is

observed the reduction in capture probability as rbc increases. However, it can be observed

that the dependence with rbc is higher in case of non-periodic than in case of periodic

messages.

The capture probability versus the segment size is represented in Fig. 7.12. To under-

stand this result, two aspects should be taken into account. On the one hand, increasing
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m) and for MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages.
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and for MLP (dsafe = 42 m) with periodic and non-periodic broadcast messages.

dA rises the distance to co-channel segments, since this distance depends on nARdA. How-

ever, if dA grows the segment-size also rises, which may lead to intra-segment interference.

With SLP, it is shown that the capture probability decreases as dA increases roughly be-

low 10 m. This is because, since there exist intra-segment interference, the interference

rises as dA increases. With MLP, the capture probability grows as nAR rises for nAR < 42

m. This is due to the fact that increasing dA rises the distance to co-channel segments.

Then, for nAR > 42 m, if nAR grows the capture probability decreases since there is now

intra-segment interference, which is due to the fact that dA > dsafe.

7.6.4 Transmit Power and Optimum Energy Efficiency

In this sub-section it is shown the effect of the transmit power. Then, its optimal value

in terms of EE is studied. Remark 17 is illustrated in Fig. 7.13. It is shown that the

capture probability is an increasing function with ρVT, and its maximum value, c
(k)
1 , is

roughly achieved when ρVT is high enough.

The average EE versus ρVT is shown in Fig. 7.14, where it is observed that the global
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Figure 7.15: Optimum EE versus the optimum transmit power per Hz, ρ?VT, for SLP
(dsafe = 0 m) and for MLP (dsafe = 42 m) with periodic and non-periodic broadcast
messages. Each pair of values (E[EE]?, ρ?VT) is obtained for a different SINR threshold, γ,
ranging from −5 dB to 20 dB.

(unconstrained optimum) of the EE is achieved with δ = 0.3, as stated in Theorem

9. If a higher capture probability, i.e., higher δ, must be satisfied, the optimal transmit

power leads to a smaller capture probability, as it is observed for δ = 0.99 in the figure.

Specifically, for MLP with δ = 0.99, it is observed that the optimal EE, which is around

1.4 · 109 b/J, is achieved at ρVT = −58.27 dBm/Hz. In that case, the capture probability

of periodic and non-periodic messages is 97.41% and 96.27% respectively, but the transmit

power is around 20 dB smaller than in the baseline case (ρVT = −40 dBm/Hz).

Fig. 7.15 illustrates the optimum EE versus the optimal transmit power for differ-

ent γ values ranging from −5 to 20 dBs. Hence, in this figure, every pair of the form

(E[EE]?, ρ?VT) is obtained for a different SINR threshold. As it is expected, a smaller γ

yields to a higher optimal EE, and a smaller optimal transmit power. Additionally, increas-

ing the capture probability reduces the optimal EE and increases the optimal transmit

power. The capture probability associated with Fig. 7.15 is illustrated in Fig. 7.16.
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7.7 Discussion

This chapter proposes an abstraction model that allows a tractable analysis and opti-

mization of Geo-Location based access in vehicular networks. With such a technique, the

road is divided in segments and a single orthogonal Access Resource (AR) is associated

with a given segment. The mapping between segments and ARs is made aiming to max-

imize the co-channel distance. Vehicles determines its corresponding segment based on

its geographical position, therefore reducing the interference when accessing the channel.

Two frequency allocation schemes are considered: Single-Lane Partition (SLP) and Multi-

Lane Partition (MLP). MLP distinguish between different lanes and hence it can avoid

intra-sement interference, however it uses the bandwidth less efficiently than SLP since it

requires orthogonal bandwidth allocations to each lane. A wide set of analytical results

are obtained aiming at providing a deep understanding about the proposed schemes. From

these analytical results, theoretical insights are derived. In particular, it has been shown

that: (i) the capture probability is an increasing function with respect to the transmit

power with exponential dependence; (ii) the system is noise-limited for MLP when the
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number of ARs is high enough, whereas it is interference-limited in case of SLP; (iii)

the average interference diverges when it is evaluated in co-channel segments with SLP,

whereas it always converges for the case of MLP. Interestingly, (iii) means that with MLP

it is possible to obtain a capture probability as high as necessary, by increasing the number

of ARs and transmit power. This facilitates the implementation of safety applications that

requires very high reliability. In particular, with MLP it has been obtained reliabilities of

99.55% and 99.76% with non-periodic and periodic messages respectively, at a distance

of 150 m. Finally, the optimum transmit power that achieves maximal EE subject to a

minimum capture probability is also obtained. Specifically, for MLP it is observed that

the optimal EE is achieved with a transmit power of −58.27 dBm/Hz which is 20 dB

smaller than baseline case while keeping a 99% of the maximum capture probability.

These aforementioned contributions appear in [62], which has been accepted for pub-

lication, and [63], which is a work under second round of reviews.

7.8 Appendix: Proof of Lemma 19

In case of SLP, the Laplace of the interference can be written as follows

LI(x) (s) = EI(x)

[
e−sI(x)

]

(a)
= EΦ(a)

[ ∏

VTi∈Φ(a)\{VT0}
⋂

b(x,dmax)

EHVTi
exp

(
− sHVTi (τ |VTi − x|)−α ρVT1

(
VTi ∈ A(AR0)

)
])

(b)
= exp

(
− λ · pa

∫

R

s (τ |y − x|)−α ρVT

1 + s (τ |y − x|)−α ρVT

1
(
y ∈ A(AR0)

)
· 1 (y ∈ bx (dmax)) dy

)

(c)
= exp

(
− λ · pa

∞∑

c=−∞

c·nAR·dA+
dA
2∫

y=c·nAR·dA−
dA
2

s (τ |y − x|)−α ρVT

1 + s (τ |y − x|)−α ρVT

1 (y ∈ bx (dmax)) dy

)
(7.29)

where (a) comes after expressing exponential of the summation that defines the interfer-

ence as a product over the PPP Φ(a); (b) after applying the PGFL [61] of the PPP and

performing expectation over the fading and (c) after expressing the region A(AR0) as a

summation of co-channel segments. Then, we can proceed as appears below
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LI(x) (s)
(a)
= exp

(
− λ · pa

ddmax/(nRBdA)e∑

c=−bdmax/(nRBdA)c
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(
c·nRB·dA+

dA
2
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)
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c·nRB·dA−

dA
2
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)
s (τ |t|)−α ρVT

1 + s (τ |t|)−α ρVT

· dt
)

(b)
= exp

(
− λ · pa

ddmax/(nRBdA)e∑

c=−bdmax/(nRBdA)c

[
1
(
µ

(1)
L < µ

(1)
U

) µ
(1)
U∫

t=µ
(1)
L

sHVTi (τt)−α ρVT

1 + sHVTi (τt)−α ρVT

· dt

+ 1
(
µ

(2)
L < µ

(2)
U

) µ
(2)
U∫

t=µ
(2)
L

sHVTi (−τt)−α ρVT

1 + sHVTi (−τt)−α ρVT

· dt
])

(7.30)

where (a) comes after applying the maximum distance to the integration limits and per-

forming the change of variables t = y − x and (b) comes after expressing the absolute

value function as |t| = t ·1(t ≥ 0)− t ·1(t < 0) and applying the indicator functions to the

integration limits. Finally, performing both integrals and reordering completes the proof.

7.9 Appendix: Proof of Lemma 21

The Laplace transform of the interference can be written as

LI(x) (s)
(a)
= E

[
exp

(
− s

∑

VTi∈Φ(a)\{VT0}

HVTi (τ |VTi − x|)−α ρVT

× 1 (VTi ∈ bx (dmax)) 1
(
VTi ∈ A(RB0)

)
1 (|VTi − x| > dsafe) 1 (|VTi − v| > dsafe)

)]

(b)
= exp

(
− λ · pa

ddmax/(nRBdA)e∑

c=−bdmax/(nRBdA)c

min
(
c·nRB·dA+

dA
2
−x,dmax

)
∫

t=max
(
c·nRB·dA−

dA
2
−x,−dmax

)
s (τ |t|)−α ρVT

1 + s (τ |t|)−α ρVT

× 1 (|t| > dsafe) · 1 (|t+ x− v| > dsafe) · dt
)

(7.31)
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where (a) comes after applying Assumption 4 and reordering the resulting expression

and (b) after applying the PGFL of the PPP, performing expectation over the fading,

expressing the region A(AR0) as a summation of co-channel segments and performing the

change of variables t = y − x. Then, we proceed as follows

exp

(
− λ · pa

ddmax/(nRBdA)e∑

c=−bdmax/(nRBdA)c

min
(
c·nRB·dA+

dA
2
−x,dmax

)
∫

t=max
(
c·nRB·dA−

dA
2
−x,−dmax

)
s (τt)−α ρVT

1 + s (τt)−α ρVT

× 1 (t > dsafe) · 1 (|t+ x− v| > dsafe) · dt

+

min
(
c·nRB·dA+

dA
2
−x,dmax

)
∫

t=max
(
c·nRB·dA−

dA
2
−x,−dmax

)
s (−τt)−α ρVT

1 + s (−τt)−α ρVT

× 1 (t < −dsafe) · 1 (|t+ x− v| > dsafe) · dt
)

(7.32)

where it has expressed the absolute value function as |t| = t · 1(t ≥ 0)− t · 1(t < 0) and it

has applied the resulting indicator functions to the integration limits. It should be noticed

that the following equations holds

1 (|t+ x− v| > dsafe) = 1 (t > dsafe − x+ v) + 1 (t < v − x− dsafe)

1 (|t+ x− v| > dsafe) = 1 (t > dsafe − x+ v) + 1 (t < v − x− dsafe) (7.33)

Finally, substituting the above expressions into (7.32), performing the resulting inte-

grals and reordering completes the proof.



Chapter 8

Conclusions

This dissertation have addressed the modelling, analysis and optimization of interference

mitigation techniques for HCNs and vehicular communications, which are expected to be

two key elements in next generation cellular networks.

This chapter aims at summarizing the main contributions and future work after this

thesis. In particular, section 8.1 lists the main conclusions of each chapter. Finally, section

8.2 depicts the future lines that can be followed.

8.1 Synthesis of the Dissertation

The interference is the main limiting factor in wireless systems. Hence in this thesis it has

been proposed and analyzed two mechanisms for interference mitigation. In particular

it is analyzed an Interference-Aware Fractional Power Control (IAFPC) for the UL of

HCNs that keeps the generated interference under a given threshold, i0. To account

for novel concepts in HCNs like UL/DL decoupling a generalized cell association has

been considered, which includes the coupled and decoupled settings as special cases. The

proposed mathematical framework avoids the mathematical intractability of the problem

by means of conditional thinning, which adds the necessary correlation that exist between

the probe Mobile Terminal (MT), the probe Base Station (BS) and the most interfered BS.

Besides this, two accurate approximations for the Laplace transform of the interference

have been proposed: i) Sigmidal approximation and ii) Moment Matching (MM). The

former relies on approximating the Laplace transform by a Sigmoidal function whose

209
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parameters are obtained by means of logistic regression. The latter considers a given

distribution to model the interference and then it performs MM to obtain the distribution’s

parameters. Finally, to simplify further the expressions and obtain interesting insights, it

has been carried out asymptotic analysis. The analysis reveals that IAFPC outperforms

the classical Interference-Unaware Fractional Power control (IUFPC) in terms of Spectral

Efficiency (SE), average transmitted power, and mean and variance of the interference.

Then, we investigate the performance of a scheduling algorithm where the Mobile

Terminals (MTs) may be turned off if they cause a level of interference greater than

a given threshold. This approach, which is referred to as Interference Aware Muting

(IAM), may be regarded as an interference-aware scheme that, contrary to IAFPC, is

aimed to reduce the level of interference at the Medium Access Control (MAC) layer,

instead than in the physical layer. IAM is studied in terms of average transmit power,

mean and variance of the interference, coverage probability, Spectral Efficiency (SE), and

Binary Rate (BR), which accounts for the amount of resources allocated to the typical

MT. In order to account for the BR it is used the probability mass function (PMF) of

the number of active, i.e., non-muted MTs per cell, and it is considered a scheduling

algorithm that divides the available bandwidth between the active MTs. Additionally it

is proposed a novel framework to obtain the BR and SE by using Adaptive Modulation and

Coding (AMC), which provides results closer to real implementations. Our system-level

analysis unveils that IAM increases the BR and reduces the average transmit power and

the mean and variance of the interference even further than IAFPC. Besides, it is proved

that an operating regime exists, where the performance of IAM is independent of the cell

association criterion, which simplifies the joint design of UL and DL transmissions. The

cost to pay is that MTs are muted at some time instants, and hence the fairness among

the different MTs to access the resources is reduced.

Afterwards, a multi-user UL model to assess the coverage probability of different MTs

in each cell is proposed. This framework allows us to assess the fairness as the difference

between the coverage probability of the best and worst MTs. It is proven that with a full

channel inversion power control, the fairness of the system is maximal, since all the MTs

exhibit the same coverage probability. Then, the coverage probability of cellular systems

under Nakagami-q (Hoyt) distribution is obtained in closed-form. This fading distribution

allows us to consider more severe fading conditions than those obtained with Rayleigh
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fading.

A novel Non orthogonal Multiple Access (NOMA) based access scheme for Cloud Radio

Access Networks (CRANs) is proposed. It is shown that the proposed scheme greatly

improves the performance of cell-edge MTs thanks to the use of beamforming while the

spectral efficiency is high thanks to the use of NOMA.

Finally, the performance of a MAC algorithm for vehicular communications is inves-

tigated. With this strategy the vehicles access the resources for direct Vehicle to Vehicle

(V2V) communication based on its geographical information. Here, the road is divided

in segments and orthogonal Access Resources (ARs) are allocated to consecutive seg-

ments. The mapping is made aiming to maximize the co-channel distance. The analysis

demonstrates that there exists an operation regime, for a given number of ARs, where the

performance is noise-limited. This means that the capture probability, i.e., the probabil-

ity of successful message reception, can be arbitrary increased by increasing the transmit

power. Then, the optimal transmit power that maximizes the Energy Efficiency (EE) of

the system subject to a minimum capture probability constraint is derived.

8.2 Future Work

In this section some future directions are pointed out:

• One of the key ingredients in 5G cellular networks is the shift to higher frequency

bands, i.e., millimeter wave (mmW), which poses additional challenges, since the

blockages need to be appropriately modelled. A major area of future research is to

extend the concepts introduced in this thesis like IA for interference mitigation with

mmW based networks.

• Building on the proposed multi-user model from Chapter 4 and IA scheduling al-

gorithm from Chapter 3, it would be possible to derive a mathematical framework

for the case of both, channel-aware and IA scheduling algorithms to boost the per-

formance. Additionally, it would be interesting to solve the issues related to the

fairness that exist with IAM.

• The mathematical framework to study the proposed NOMA based scheme for CRANs

might be extended to account for more metrics, like, the binary rate. It would be
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also appealing to compare the performance of the proposed framework with an Or-

thogonal Multiple Access (OMA) alternative to better understand its benefits and

weakness.

• Besides the V2V communications, the 5G cellular networks are expected to provide

connectivity in other vehicular environments like, drone communications and railway

communications. Since each application has its own features and challenges, one

future line is to develop stochastic geometry frameworks, based on the work presented

in Chapter 7 for these scenarios.



Appendix A

Resumen en castellano

Este caṕıtulo sirve de resumen a la tesis doctoral que se presenta. En primer lugar se hace

una breve introducción al tema tratado en la tesis. Depués se presentan los principales

resultados obtenidos en la tesis, agrupados como distintos trabajos en los que se estudian

técnicas concretas para mitigar la interferencia en redes heterogéneas y vehiculares. Dichos

estudios tienen en común la existencia de ciertas correlaciones espaciales en los procesos

punto subyacentes que complican el análisis matemático. Por último, este caṕıtulo finaliza

la tesis esbozando las conclusiones obtenidas.

A.1 Motivación

Con la llegada de los teléfonos y tabletas inteligentes, que exigen mayores tasas de datos

cada año, la red celular ha sufrido una profunda revisión. La respuesta de los organ-

ismos de normalización como el 3GPP (3rg Generation Partnership Project) a esta de-

manda ha conducido a la cuarta generación (4G), que introduce conceptos como redes

heterogéneas (HCNs, Heterogeneous Cellular Networks), desacoplamiento de los enlaces

ascendente y descendente (UL/DL) y técnicas cooperativas conscientes de la interfereren-

cia (IA, Interference-Aware) para la mitigación de interferencias.

Por otro lado, la evolución de 4G, bajo estándares comerciales como LTE-A (Long

Term Evolution-Advanced) y LTE-A Pro, facilita el camino hacia 5G, que traerá nuevos

servicios y aplicaciones y mejorará el rendimiento general del sistema. Entre los nuevos

servicios que ofrecerá la evolución de 4G (LTE-A Pro) y 5G, encontramos la comunicación

213
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directa entre veh́ıculos, que será asistida por la red celular. Este tipo de comunicación

tiene como objetivo aumentar la seguridad en la carretera y, por lo tanto, impone severas

restricciones de fiabilidad sobre los mensajes que se intercambian.

Todas estas técnicas y conceptos que se proponen para las futuras redes celulares

requieren un modelo matemático preciso y manejable para el análisis de prestaciones.

Este análisis nos permite sacar conclusiones teóricas sobre los principales indicadores de

las prestaciones del sistema que conducen a una comprensión profunda de las técnicas

consideradas. Además, nos permite realizar su optimización, determinando el conjunto

óptimo de parámetros que maximizan una determinada métrica.

Debido a la naturaleza aleatoria e irregular que exhiben las HCNs, aśı como las redes

vehiculares, la geometŕıa estocástica ha aparecido recientemente como una herramienta

matemática muy prometedora para el modelado y análisis a nivel de sistema. Sin embargo,

algunas caracteŕısticas de las HCNs y las redes vehiculares, como el control de potencia, la

planificación dinámica de recursos o la planificación de frecuencias, imponen correlaciones

espaciales sobre el proceso puntual subyacente que complica significativamente el análisis

matemático.

Por lo tanto, el objetivo principal de esta tesis es obtener expresiones anaĺıticas cerradas

para los indicadores clave de las prestaciones del sistema en redes HCNs, aśı como en redes

vehiculares. El foco está aqúı en proporcionar una expresión simple a problemas complejos,

donde algunas correlaciones espaciales complican la tratabilidad del problema. Con las

expresiones derivadas, se han obtenido ideas interesantes sobre el rendimiento del sistema.

La interferencia es el principal factor limitante en los sistemas inalámbricos. Por lo

tanto, en esta tesis se han propuesto y analizado dos mecanismos para mitigar las interfer-

encias en el enlaze ascendente de redes heterogéneas y un mecanismo de acceso al medio

de forma distributida en redes vehiculares.

En concreto, se analiza un control de potencia fraccionado consciente de la interfer-

encia (IAFPC, Interference-Aware Fractional Power Control) para la UL de HCNs que

mantiene la interferencia generada bajo un umbral dado, i0. A continuación, investigamos

el rendimiento de un algoritmo de planificación en el que los MTs pueden ser silenciados si

causan un nivel de interferencia superior a un determinado umbral. Este enfoque, que se

ha denominado IAM (Interference-Aware Muting), puede considerarse como un esquema

de mitigación de interferencias que, contrariamente a IAFPC, tiene como objetivo reducir
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el nivel de interferencia en la capa de Control de Acceso al Medio (MAC), en lugar de

hacerlo en la capa f́ısica. Gracias al desvanecimiento a largo plazo, también conocido

como shadowing, y a la movilidad que carateriza a los MTs, los usuarios silenciados sólo

permanecen inactivos durante un periodo de tiempo. No obstante, el hecho de silenciar

algunos MTs reduce la justicia en cuanto al acceso a los recursos en el sistema.

Aśı pues, para completar la discusión sobre la justicia en redes celulares se propone un

marco matemático para el análisis de sistemas multi-usuario. El resultado principal es la

probabilidad de cobertura de los distintos MTs que pertenecen a la misma celda en el caso

del UL con control de potencia fraccionado. De este modo, se puede dar una definición de

justicia, teneniendo en cuenta la diferencia de probabilidad de cobertura entre el mejor y

peor MT en lugar de hacerlo como la probabilidad de acceder a los recursos.

Finalmente, se investiga el rendimiento de un algoritmo MAC para comunicaciones

vehiculares. Con esta estrategia los veh́ıculos acceden a los recursos para la comunicación

directa Veh́ıculo a Veh́ıculo (V2V, Vehicle-to-Vehicle) basada en su información geográfica

y aśı se disminuye la interferencia en el sistema.

El resto del caṕıtulo queda estructurado como sigue. La sección A.2 hace un resumen

del estudio del mecanismo propuesto de control de potencia IAFPC. El análisis del mecan-

ismo de planificación de recursos IAM se resume en la sección A.3. El modelo para obtener

la probabilidad de cobertura multi-usuario se discute en la sección A.4. La sección A.7 se

dedica al mecanismo de acceso al medio distribuida en redes vehiculares. Por último, las

conclusiones obtenidas con esta tesis doctoral se detallan en la sección A.8.

A.2 Control de Potencia Fraccionado Consciente de

la Interferencia

En este trabajo, se presenta un nuevo marco para el modelado y análisis del enlace ascen-

dente de redes heterogéneas con control de potencia consciente de la interferencia, IAFPC.

El modelo matemático propuesto para el análisis es un modelo general que considera como

casos particulares los métodos de control de potencia estudiados hasta la fecha [26, 29, 31].

El marco propuesto para el análisis se basa una técnica concida como conditional thinning,

con el fin de modelar adecuadamente las posiciones de los MTs interferentes y de tener en

cuenta la correlación espacial con la ubicación de la BS que da servicio al MT de prueba.



Appendix A. Resumen en castellano 216

El caso que nos ocupa es más compicado que el caso considerado hasta la fecha, que anal-

iza el control de potencia fraccionado clásico (FPC, Fractional Power Control), ya que en

nuestro caso hay que considerar también la correlación espacial que hay entre los MTs y

la BS más interferida por la transmisión de cada MT. Además, es necesario tratar con

funciones no lineales que dependen de las distancias hacia la BS de servicio y hacia la BS

más interferida. Todas estas cuestiones hacen que el cálculo de la distribución de la SINR

no sea una tarea sencilla. Para superar la complejidad matemática del problema que nos

ocupa, proponemos dos aproximaciones para la transformada de Laplace de la interfer-

encia agregada: i) aproximación usando una función sigmoide y ii) ajuste de momentos

(MM, Moment Matching). Además, se realiza un análisis asintótico para simplificar aún

más las expresiones y obtener conclusiones teóricas acerca del rendimiento del sistema.

Con el análisis asintótico se evita la necesidad de aproximar la interferencia para reducir

la complejidad de las expresiones obtenidas.

A.2.1 Modelo de Sistema

Consideramos una red heterogénea o HCN compuesta por dos niveles, es decir, macro BSs

(MBSs) y BS pequeñas (SBS, Small-cell BSs). Las BSs del nivel j ∈ K = {1, 2} se dis-

tribuyen espacialmente en R2 de acuerdo con un PPP uniforme, Φ(j) = {BS
(j)
0 ,BS

(j)
1 , · · · },

de densidad λ(j) donde BS
(j)
i es la ubicación de la i-ésima BS del nivel j-ésimo. Los

MTs se distribuyen espacialmente de acuerdo con otro PPP independiente y uniforme,

ΦMT = {MT0,MT1, · · · }, de densidad λMT. La señal transmitida sufre desvanecimiento

multi-camino y desvanecimiento a largo plazo (shadowing). Las pérdidas de propagación

entre dos puntos separados por una distancia r se modelan como (τ · r)α, donde α y τ

son el exponente y la pendiente de las pérdidas de propagación . El criterio de asociación

entre MTs y BSs se basa en un criterio de máxima potencia pesada media recibida tal y

como se describe en [26]. Los pesos de las asociaciones se representan con el śımbolo t(j)

para cada nivel j ∈ K. Para introducir las correlaciones necesarias entre las posiciones de

cada MT y la BS que le da servicio definimos el evento X (j)
MTi

como: MTi se asocia con

nivel j. La definición matemática de este evento aparece en el caṕıtulo 2.

El control de potencia dado por IAFPC [49], implica que cada MT causa menos in-

terferencia que un umbral, i0, a la BS a la que más interfiera. Además, el MT tiene una

restricción a la potencia que nunca podrá exceder pmax. Se supone que el control de poten-
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cia puede adaptarse a las variaciones lentas del enlace, por lo tanto sólo puede compensar

la pérdida de propagación y el shadowing. La potencia de transmisión se puede expresar

como sigue:

pMT (RMT0 , UMT0) = min (p0 (τRMT0)αε , i0 (τUMT0)α , pmax) (A.1)

donde RMT0 es la distancia entre el MT de prueba y la BS que le da servicio, UMT0

la distancia entre el MT de prueba y la BS a la que interfiere más, p0 es la potencia

recibida objetivo y ε es el factor de compensación parcial del enlace, donde ε = 1 implica

compensación total de las pérdidas de propagación y del shadowing.

El evento Q(m)
MTi

se define como: la BS más interferida para el i-ésimo MT, MTi,

pertenece al nivel m. Por tanto, podemos definir el evento X (j,m)
MTi

= X (j)
MTi
∩ Q(m)

MTi
como

sigue: MTi está asociado con el nivel j y su BS más interferida pertenece al nivel m.

La SINR del MT de prueba, MT0, puede expresarse como sigue

SINRMT0 =
HMT0 (τRMT0)−α pMT (RMT0 , UMT0)

Iexact + σ2
n

(A.2)

donde HMT0 es el desvanecimiento multi-camino del enlace deseado, RMT0 y UMT0 son las

distancias hacia la BS que da servicio y la BS más interferida respectivamente, Iexact es la

interferencia agregada y σ2
n es la potencia de ruido. El shadowing no aparece expĺıcitamente

porque se incluye en el análisis dentro del proceso punto subyacente gracias al teorema del

desplazamiento aleatorio (displacement theorem, [93]).

El criterio de asociación establece una correlación entre las posiciones de los MT in-

terferentes y la BS de prueba. Dicha correlación se recoge con el siguiente evento O(j,k)
MTi

definido como: el MT i-ésimo, MTi, recibe mayor potencia pesada de la BS que le da

servicio que de la BS de prueba.

Finalmente, es necesario definir un evento para tener en cuenta la correlación que i0

introduce en los MTs interferentes ya que no pueden estar en una posición en la que

interfieran más que i0 a la BS de prueba. Esto obliga a definir el evento ZMTi como sigue:

el MTi causa menos interferencia a la BS de prueba, BS0 que i0.

Gracias a estos eventos, cuya expresión matemática aparece en el caṕıtulo 2, se puede

dar una expresión anaĺıtica de la interferencia, que incluye las correlaciones necesarias,
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como sigue:

I =
∑

k∈K

∑

MTi∈Ψ(k)

HMTi (τDMTi)
−α pMT (RMTi , UMTi) 1

(
O(j,k)

MTi

)
1 (ZMTi) (A.3)

donde Ψ(k) es el PPP de los MT interferentes que están planificados en el recurso f́sico

(PRB, Physical Resource Block) de interés. La densidad de dicho PPP es λ(k).

A.2.2 Resultados Teóricos

En esta sub-sección se van a resumir algunos de los resultados teóricos obtenidos tras hacer

el análisis de la técnica IAFPC. Uno de los resultados principales, es la transformada de

Laplace de la interferencia, ya que puede usarse como función generadora de momentos

para obtener la media y la varianza de la interferencia. Por comodidad, dicha expresión

aparece a continuación

LI
(
s|X (j)

MT0

)
= exp

(
β(j) (s)

)
(A.4)

donde

β(j) (s) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi

) ∞∫

r=0

∞∫

u=
(
t(n)

t(k)

) 1
α
r

fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)
χ (s, r, u) drdu

(A.5)

mientras que pMT (r, u) está dado en (A.1). El término fRMTi
,UMTi

(
r, u|X (k,n)

MTi

)
es la función

densidad de probabilidad (pdf, probability density function), de las distancias hacia la BS

que da servicio y la BS más interferida por el MT interferente, MTi. Dicha pdf se ha

obtenido de forma cerrada tal y como aparece en el Lema 2. Por último, la función

χ (s, r, u) aparece en forma cerrada en el caṕıtulo 2.

Por otro lado, distribución de la SINR se ha obtenido en términos de su ccdf (comple-

mentary cumulative density function), expresada como aparece a continuación
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F̄SINR (γ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0

) ∞∫

v=0

∞∫

w=
(
t(m)

t(j)

) 1
α
v

fRMT0
,UMT0

(
v, w|X (j,m)

MT0

)
e
− γσ

2
n(τv)α

pMT(v,w)

× LI
(

γ (τv)α

pMT (v, w)
|X (j)

MT0

)
dvdw (A.6)

Tal y como puede observarse de (A.6), la ccdf de la SINR es una expresión que depende

de la transformada de Laplace de la interferencia y tiene dos integrales anidadas. Por tanto,

para reducir la complejidad de F̄SINR (γ), es necesario proporcionar una expresión cerrada

para la transformada de Laplace de la interferencia. Para conseguir este último objetivo,

se proponen dos aproximaciones: i) aproximación Sigmoidal, y ii) ajuste de momentos

(MM, Moment Matching).

La primera aporximación propone aproximar la transformada de Laplace de la inter-

ferencia, por una funcición sigmoide, teniendo el eje s en decibelios. De este modo se hace

la siguiente aproximación

LĪ
(
s|X (j)

MT0

)
=

1

1 + e
b0
(

10 log10(s)−s(dB)
0

) (A.7)

donde s
(dB)
0 y b0 son los dos únicos parámetros de la aproximación. El primero de los

parámetros está relacionado con el cruze de la función con 0.5, mientras que el segundo

está relacionado con la pendiente de la función en dicho punto. Dichos parámetros se

pueden obtener por regresión loǵıstica a partir de un conjunto reducido de valores de

LI
(
s|X (j)

MT0

)
.

La otra alternativa consiste en proponer una distribución de probabilidad para modelar

la interferencia y hacer ajuste de momentos (MM, Moment Matching) para obtener los

parámetros que definen la distribución. En realidad, ni siquiera es neceario proponer una

distribución de probabilidad que pueda ser definida con una pdf. Basta con proponer

directamente una función que dependa de n parámetros como la transformada de Laplace

de una distribución, dicha función debe ser derivable n veces y al particularizar su derivada

n-ésima en s = 0 debe dar un valor finito. Es por ello que es este enfoque se le ha

denominado TDA (Transformed Distribution Approach).
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Usando la expresión de la ccdf de la SINR dada en (A.6) y alguna de las expresiones

cerradas de la transformada de Laplace que se ha comentado, es posible representar la

ccdf de la eficiencia espectral, (SE, Spectral Efficiency) como sigue

F̄SE (ξ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0

)
F̄SINR

(
2ξ − 1|X (j,m)

MT0

)
(A.8)

La eficiencia espectral media la podemos obtener a partir de su ccdf ya que, al ser la

SE una variable aleatoria positiva, se puede representar como: E [SE] =
∫
ξ>0

F̄SE (ξ) dξ.

El marco matemático definido para IAFPC, tiene especial interés, ya que permite

modelar el mecanismo de control de potencia fracionado clásico (FPC), que es inconsciente

de la interferencia, como un caso particular cuando i0 →∞.

Además, para simplificar más las expresiones obtenidas, sin necesidad de usar las

aproximaciones Sigmoidal o TDA, se ha realizado análisis asimptótico. Se dice que dos

funciones f(x) y f (x∼a)(x) son asymptóticamente similares cuando x es cercano a a si se

cumple la siguiente igualdad: lim
x→a

f(x)

f (x∼a)(x)
= 1. Ésto nos permite hacer el análisis cuando

i0 toma una valor pequeño, pero sin llegar a ser 0. Del análisis asimptótico en el régimen

de i0 bajo se obtiene la siguiente expresión cerrada para la potencia media cuando se tiene

una asociación basada en pérdidas de propagación mı́nimas

E
[
P

(i0∼0)
MT0

]
= i0

(
τ√
πλ

)α
Γ
(

2 +
α

2

)
(A.9)

donde Γ(x) es la función Gamma.

Conclusiones teóricas: de la expressión dada en (A.9) se derivan las siguientes

afirmaciones:

1. La potencia media transmitida se reduce si la interferencia máxima permitida, i0, se

reduce. Además, ambas métricas lo hacen de forma proporcional.

2. Aumentar la densidad de BS disminuye la potencia media transmitida. Esto ocurre

porque al haber más BSs, la BS más interferida recibe mayor potencia interferente,

y por tanto hay que reducir la potencia de transmisión.

3. Aumentar el exponente de las pérdidas de propagación aumenta la potencia trans-
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mitida, ya que llega menos interferencia a la BS más interferida y se requiere mayor

potencia para compensar las pérdidas de propagación con la BS que da servicio.

4. Es interesante remarcar que, en este régimen, la potencia media no depende de la

pendiente de las pérdidas de propagación, τ , aunque śı de su exponente, α.

El caso de asociación mediante un criterio de minimización de las pérdidas de propa-

gación tiene especial relevancia, ya que se ha demostrado en [26, 32] que dicha asociación

maxmiza las prestaciones en el UL de HCNs. Para este mismo caso especial de asociación

se ha obtenido la siguiente expresión para la transformada de Laplace de la interferencia,

sin usar las aproximaciones mencionadas (Sigmoidal y TDA):

L(i0∼0)
I (s) = exp

(
− 4si0
α− 2

· 2F1

(
1,
α− 2

α
; 2− 2

α
;−si0

))
(A.10)

Conclusión teórica: tal y como puede apreciarse de (A.10), dicha expresión no

depende de λ. Como la media, varianza y el resto de momentos de la interferencia se

obtienen como derivadas de su transformada de Laplace, esto quiere decir que ningún

estad́ıstico de la interferencia depende de la densidad de BSs.

A.2.3 Resultados Numéricos

En esta sub-sección se presentan algunos resultados numéricos para evaluar las prestaciones

del mecanismo de control de potencia evaluado. A menos que se indique lo contrario,

los resultados obtenidos mediante simulación aparecen con marcadores mientras que los

resultados teóricos aparecen con ĺıneas continuas.

La Fig. A.1 representa en azul la potencia media transmitida de un MT elegido al azar

(MT t́ıpico o de prueba) en función del umbral de interferencia máxima en el sistema,

i0. Se aprecia que la potencia media se reduce si i0 decrece, como era de esperar. Un

valor más estricto de i0 disminuye la potencia de transmisión. Además, se observa que

ese truncamiento de la potencia de transmisión puede deberse a la potencia máxima de

transmisión (curva para pmax = 5 dBm). En color verde aparace el caso ĺımite cuando

i0 tiende a ∞. Este caso se corresponde con un mecanismo FPC clásico y por tanto

incosciente de la interferencia. Se observa que para un valor de i0 suficientemente alto

(i0 = −60 dBm), IAFPC se comporta como FPC. Por último el análisis asintótico aparece
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Figure A.1: Potencia media transmitida en función de i0 para IAFPC y FPC clásico
(incosciente de la interferencia) con ε = 1, pmax →∞ y pmax = 5 dBm.

como una curva roja. Tal y como era de esperar, se aprecia que dicho resultado es preciso

cuando el valor de i0 es bajo.

La Fig. A.2 ilustra la transformada de Laplace de la interferencia para IAFPC condi-

cionada en el evento X (1)
MT0

para distintas aproximaciones y para dos valores distintos de i0,

que son −60 y −120 dBm. La aproximaciones consideradas son la aproximación sigmoidal

(curva azul) y TDA usando funciones exponencial (curva negra) y algebraica (curva verde).

La transformada de Laplace sin hacer aproximaciones aparece representada con ćırculos

rojos. Por otro lado la aproximación sigmoidal usa 8 puntos igualmente espaciados entre

s(dB) = 80 and s(dB) = 200 para obtener los parámetros b0 and s
(dB)
0 mediante regresión

loǵıstica. Se aprecia que tales aproximaciones dan lugar a resultados precisos en cuanto a

la transformada de Lapalce y además conducen a expresiones cerradas.

La siguiente figura ilustra la eficiencia espectral media para IAFPC en función de i0

(curva azul). Se observa que existe un valor de i0 óptimo que maximiza dicha métrica.

Esto se debe a que disminuir i0 tiene dos efectos opuestos. Por un lado, disminuir i0

cuando el sistema está limitado por interferencia (valores altos de i0) implica reducir de

forma inteligente aquellas transmisiones que generan demasiada interferencia y se mejoran
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Figure A.2: Transformada de Laplace de la interferencia para IAFPC condicionada en el
evento X (1)
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Figure A.3: Eficiencia espetral media en función de i0 para IAFPC con pmax →∞.
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por tanto las prestaciones del sistema. Por otro lado, cuando el sistema está limitado por

ruido (i0 tiene valores pequeños) reducir i0 implica disminuir la potencia de señal deseada

comparado con la potencia de ruido, que ya domina sobre la interferencia.

Como valores de referencia, en verde y naranja aparece la eficiencia espectral media

para un control de potencia insconsciente de la interferencia, FPC, con dos valores distintos

de ε. El valor ε = 1 se corresponde con una compensación total de las pérdidas de

propagación. El valor ε = 0.67 es, en cambio, el valor óptimo que maximiza la SE media

con FPC. Esta figura ilustra por tanto que IAFPC mejora considerablemente el SE medio

con respecto al mecanismo FPC clásico. Además de la Fig. A.1 se desprende que IAFPC

también reduce la potencia media, lo cual aumenta la vida útil de la bateŕıa de los móviles.

Por último, en el caṕıtulo 2 aparecen numerosos resultados que demuestran que IAFPC

también mejora la interferencia media y la varianza de la interferencia en el sistema, lo

cual aporta numerosas ventajas prácticas en sistemas reales.

A.3 Planificación de Terminales Móviles Consciente

de la Interferencia

En esta sección se resumen los resultados del estudio de la técnica de planificación de

recursos IAM. Dicha técnica se analiza en términos de potencia media de transmisión,

media y varianza de la interferencia, probabilidad de cobertura, SE y Régimen Binario

(BR). Esta última métrica representa, a diferencia de la SE, la cantidad de recursos asig-

nados al MT t́ıpico. Para contabilizar el BR se utiliza la función de masa de probabilidad

(PMF, Probability Mass Function) del número de MTs activos (no silenciados) por celda,

y se considera un algoritmo de planificación de recursos que divide el ancho de banda

disponible entre los MT activos. Además, se propone un nuevo marco matemático para

obtener el BR y SE mediante el uso de modulación y codificación adaptativas (AMC,

Adaptive Modulation and Coding), que proporciona resultados más cercanos a las imple-

mentaciones reales. El análisis revela que IAM aumenta la BR y reduce la potencia de

transmisión promedio y la media y la varianza de la interferencia incluso más que IAFPC.

Además, se demuestra que existe un régimen de funcionamiento, en el que el rendimiento

de IAM es independiente del criterio de asociación, lo que simplifica el diseño conjunto de

transmisiones de los enlaces UL y DL. El precio a pagar es que los MTs se silencien en
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algunos instantes y, por tanto, se reduce la justicia entre usuarios a la hora de acceder a

los recursos.

A.3.1 Modelo de Sistema

El modelo de sistema es similar al expuesto en la sección anterior tanto para las posiciones

de las estaciones BS y los MTs como para la propagación de las señales o la asociación

entre MTs y BSs. La diferencia está, en que en este caso se considera el mecanismo de

control fracionado de potencia, que es inconsciente de la interferencia y cuya potencia

transmitida viene dada por la siguiente función: pMT(r) = p0(τr)αε; siendo r la distancia

hacia la BS que da servicio, p0 la potencia recibida objetivo y ε el factor de compensación

parcial.

La planificación dinámica de recursos IAM consta de dos pasos que realiza cada BS y

se detallan a continuación:

1. Determinar el conjunto de MTs activos. Los MTs activos son aquellos cuya trans-

misión no causa mayor nivel de interferencia que i0 a ninguna BS, y no requiere

transmitir con más potencia que pmax.

2. Una vez que se ha determinado el conjunto de MTs activos, se divide el ancho de

banda del sistema, bw, entre ellos. Por ello, si NA
BS

(j)
n

es el número de MTs activos

de la BS n-ésima del tier j, el ancho de banda para la transmisión de cada MT es

bw/N
A
BS

(j)
n

.

Por último, para poder hacer el análisis hay que tener en cuenta un nuevo tipo de

correlación en la posición de los MTs, que viene derivado del proceso de silenciado de los

MTs. Esta correlación se introduce en el análisis mediante el evento AMTi
, que se define

como: el MT i-ésimo pertenece al conjunto de MTs activos de la BS que le da servicio. El

resto de eventos necesarios para modelar la interferencia también se tienen en cuenta en

este modelo matemático y tienen el mismo significado tal como se detalla en el caṕıtulo 3.

En la inmensa mayoŕıa de art́ıculos centrados en el análisis de prestaciones usando

geometŕıa estocástica, para obtener la SE o el BR se usa la fórmula de Shannon mediante

la cual la SE se puede expresar como sigue: SE = log2(1+SINR) bps/Hz. Esta resultado se

corresponde con la SE a la que se puede transmitir manteniendo una probabilidad de error
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arbritariamente pequeña. Se considera aqúı un sistema ideal en el que el transmisor tiene

perfecto conocimiento del estado del canal, y el receptor tiene una complejidad infinita. No

obstante, en sistemas reales, el transmisor no tiene un conocimiento perfecto del estado

del canal, y el receptor tiene una complejidad limitada. La modulación y codificación

adaptativa (AMC, Adaptive Modulation and Coding) es la solución prática en sistemas

reales como LTE. En esta solución la BS estima la SINR a partir de los pilotos que mandan

los MTs. Dichos valores de SINR, una vez que están cuantificados, se concen como CQIs,

(Channel Quality Indicators). Se usan 4 bits para su representación, lo cual conduce a

nCQI = 16 valores posibles. Una vez que se ha estimado dicha SINR, la BS elige el esquema

de modulación y codificación (MCS, Modulation and Coding Scheme) para conseguir una

BLER (Block Error Rate) menor o igual a una BLER objetivo, que en LTE es de 0.1.

Para elegir ese MCS la BS usa unas tablas que contienen los umbrales de SINR, γiCQI
,

iCQI ∈ [1, nCQI]. Aśı pues, dado un conjunto de umbrales de SINR, γiCQI
, la SE para un

MT, MT0, con un valor de SINR, SINRMT0 , se expresa como sigue:

SEMT0 =

nCQI∑

iCQI=1

SEiCQI
1
(
SINRMT0 ∈ [γiCQI

, γiCQI+1
)
)

(A.11)

donde γ1 < · · · < γnCQI
. El valor iCQI = 0 está asociado con la no transmisión. Por otro

lado
⋂nCQI

iCQI=1 [γiCQI
, γiCQI+1

) = ∅, γnCQI+1
→∞.

El BR se determina a partir del SE y de la asignación de ancho de banda para la

transmisión de cada MT que haga el planificador. En nuestro caso se representa como

sigue: BRMT0 = bw/N
A
BMT0

· SEMT0 (bps) ; donde NABMT0
es el número de MTs asociados

a la misma BS que MT0. Es importante remarcar que este marco matemático para la

AMC considera los umbrales como un parámetro del modelo. Dichos umbrales no se

pueden obtener de forma análitica si se usan códigos correctores práticos como son los

turbo códigos, y otros efectos no ideales como el error en la estimación de la SINR, o

la limitación de complejidad en el cálculo de las medidas LLR (Log Likelihood Ratio).

Por tanto, en este trabajo se han usado unos umbrales de SINR, obtenidos por medio de

un simulador de enlace realista que considera un turbo decodificador de baja complejidad

basado en el algoritmo SOVA (Soft Output Viterbi Algorithm) [119], además de las citadas

no idealidades que ocurren en sistemas reales para el cálculo de dichos umbrales [1]. En

el caṕıtulo 3 aparecen los umbrales considerados.
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A.3.2 Resultados Teóricos

Uno de los resultados teóricos principales para el caso de asociación generalizada es la

probabilidad de estar activo, que aparece a continuación

Pr (AMT0) =
∑

j∈K

∫

v>0

1

(
v <

1

τ

(
pmax

p0

) 1
α

)
(
ν(j) (v) + η(j) (v)

)
dv (A.12)

donde ν(j)(v) y η(j)(v) aparecen definidos como una expresión cerrada en (A.13) y (A.14)

ν(j)(v) = 2πvλ(j)

(
e−πλ

(j)v2 ×


e
−πλ(j̃)max2

( p0
i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α
v


− e−πλ

(j̃)v2


×

1


v > max



(
p0

i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α

v






+
λ(j̃)

λ(j) + λ(j̃)
e
−π(λ(j)+λ(j̃))max2

( p0
i0

) 1
α (τv)ε

τ
,

(
t(j̃)

t(j)

) 1
α
v,v

)
(A.13)

η(j)(v) = 2πvλ(j)

(
e
−πλ(j̃)

(
t(j̃)

t(j)

) 2
α
v2

×


e
−πλ(j)max2

((
p0
i0

) 1
α (τv)ε

τ
,v

)
− e

−πλ(j)

(
t(j̃)

t(j)

) 2
α
v2


×

1

(
v >

(
t(j)

t(j̃)

) 1
α

max

((
p0

i0

) 1
α (τv)ε

τ
, v

))

+
λ(j)

λ(j) + λ(j̃)
e
−π(λ(j)+λ(j̃))max2

( p0
i0

) 1
α (τv)ε

τ
,v,

(
t(j̃)

t(j)

) 1
α
v

)
(A.14)

La probabilidad de estar activo dada en (A.12) es además un indicador de la justicia

entre los MTs a la hora de acceder a los recursos. Si esta probabilidad es 1 quiere decir

que todos los MTs tienen la misma probabilidad de acceder a los recursos.

La transformada de Laplace de la interferencia se obtiene como sigue:
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LI
(
s|X (j)

MT0

)
= exp

(
β(j)(s)

)
(A.15)

β(j)(s) = −
∑

k∈K

2πλ(k)
∑

n∈K

Pr
(
Q(n)

MTi
|X (k)

MTi
,AMTi

) ∞∫

0

fRMTi

(
r|X (k,n)

MTi
,AMTi

)
χ (s, r) dr,

(A.16)

la cual es una expresión que consta de una sola integral ya que, tal y como se detalla en el

caṕıtulo 3, fRMTi

(
r|X (k,n)

MTi
,AMTi

)
, χ (s, r) y Pr

(
Q(n)

MTi
|X (k)

MTi
,AMTi

)
se obtienen en forma

cerrada.

Finalmente, la ccdf de la SINR queda como sigue:

F̄SINR (γ) =
∑

j∈K

∑

m∈K

Pr
(
X (j,m)

MT0
,AMT0

)

×
∫ ∞

0

fRMT0

(
v|X (j,m)

MT0
,AMT0

)
e−γσ

2
n(τv)α(1−ε)p−1

0 LI
(
γ (τv)α(1−ε) p−1

0 |X (j)
MT0

)
dv

(A.17)

que es una expresión que consta de dos integrales anidadas.

Conclusión teórica: A ráız de las expresiones obtenidas es posible determinar que ex-

isten tres regiones de funcionamiento en función de los pesos de asociación que se describen

a continuación:

1. Régimen inconsciente de la interferencia. En este régimen de funcionamiento la ccdf

de la SINR, y por tanto el resto de métricas que dependen de ella como el BR y el

SE no dependen del parámetro i0. Este régimen ocurre si i0 > p0 y t(1)/t(2)(dB) ∈
[−i0/p0, i0/p0], donde t(1)/t(2)(dB) es el cociente entre los pesos de asociación de las

MBS y SBS respectivamente expresado en dB.

2. Régimen consciente de la interferencia e independiente de la asociación. En este

régimen, las prestaciones dependen de i0, pero no dependen del cociente t(1)/t(2).

Este régimen se da cuando i0 < p0 y t(1)/t(2)(dB) ∈ [−p0/i0, p0/i0].
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3. Régimen consciente de la interferencia y dependiente de la asociación. Si no se dan

ninguna de las condiciones anteriores se está en este régimen. En este régimen las

prestaciones dependen tanto de i0 como del cociente de t(1)/t(2).

El segundo régimen de funcionamiento es de especial interés ya que facilita la opti-

mización conjunta de la asociación para los enlaces UL y DL. Para entender esto basta

recordar que en el caso desacoplado se tiene un conjunto de pesos de asociación t(1)/t(2)

para el UL, y otro par de pesos t̂(1)/t̂(2) para el DL. En este caso la optimización conjunta

del UL y DL resulta sencilla porque ambos enlaces se pueden optimizar por separado [26].

Tal y como se demuestra en [6] el cociente óptimo de pesos del DL en un escenario t́ıpico

ronda los 20 dB. En el caso del UL, se demuestra en [26, 32] que la asociación basada en

mı́nimas pérdidas de propagación es la que maximiza las prestaciones. Esta asociación se

corresponde con un cociente de los pesos de asociación igual a 0 dBs, (t(1)/t(2) = 0 dB).

Por desgracia el desacoplo de la asociación para el UL y DL no resulta atractivo desde el

punto de vista de la implementación, ya que plantea numerosos desaf́ıos prácticos [8].

Afortunadamente, IAM facilita la optimización conjunta del UL y DL en el caso

acoplado (en el que existe un único par de pesos de asociación). Como existe una región

de funcionamineto en la que las prestaciones del UL son independientes de los pesos de

asociación, basta con elegir el cociente t(1)/t(2) de forma que se maximizen las prestaciones

del DL.

El BR medio se puede expresar matemáticamente como sigue:

E [BRMT0 ] =
∑

j∈K

∑

m∈K

nCQI∑

iCQI=1

Pr
(
X (j,m)

MT0
,AMT0

) SEiCQI
3.53.5bw

(
3.5λ(j) + λMTp

)
(

1−
(
1− λMTp

λ(j)

)3.5
)−1

λMTp
(
1− λMTp

λ(j)

)3.5

×
(
F̄SINR

(
γiCQI
|X (j,m)

MT0
,AMT0

)
− F̄SINR

(
γiCQI+1|X (j,m)

MT0
,AMT0

))
(A.18)

donde se ha usado el atajo p = Pr(X (j)
MT0

,AMT0) para simplificar la expresión. Se puede

expresar que dicha ecuación es una función cerrada de la ccdf de la SINR.

A continuación se presentan algunos resultados para el caso especial de asociación a

la BS con menores pérdidas de propagación (t(1)/t(2) = 0 dB), ε = 1 y con una potencia

máxima de transmisión muy alta (pmax →∞). Este caso tiene especial interés ya que en

[26, 32] se demuestra que este criterio de asociación maximiza las prestaciones del UL con
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control de potencia fraccionado, FPC.

En el citado escenario de especial relevancia, la potencia media transmitida en el

régimen consciente de la interferencia (i0 < p0) se puede escribir como sigue:

E [pMT (RMT0)] =
ταΓ

(
1 + α

2

)

(πλ)
α
2 p0

2
α

i0
2
α+1

(A.19)

Conclusión teórica: en vista de la expresión anterior se puede determinar que la

potencia media transmitida se escala de forma polinómica con el exponente, 2/α + 1,

como una función de i0. Nuevamente, un incremento de la densidad de BSs implica un

decremento de la potencia media transmitida ya que crece la interferencia generada.

En el mismo caso especial la ccdf de la SINR se puede expresar de la siguiente manera:

F̄SINR (γ|AMT0) = exp

(
−γσ

2
n

p0

− 2
γ

α− 2

(
i0
p0

)α+2
α

2F1

(
1,
α− 2

α
, 2− 2

α
,−γ

(
i0
p0

)))

(A.20)

Conclusión teórica: A ráız de (A.20) se puede afirmar que la ccdf de la SINR en dicho

caso particular es independiente de la densidad de BS. Esto ocurre porque al considerar

control de potencia total (ε = 1) la potencia de la señal deseada no vaŕıa al subir o bajar

la densidad de BSs mientras que la interferencia tampoco vaŕıa con la densidad de BS

gracias a IAM.

A.3.3 Resultados Numéricos

En esta sección se presentan algunos resultados numéricos obtenidos para IAM. Las presta-

ciones de IAM se comparan con las de IAFPC para determinar la bondad y la debilidad de

cada método. En la Fig. A.4 aparece una comparación de ambas técnicas en términos de

la potencia media transmitida. De dicha comparativa se desprenden las siguientes conclu-

siones: i) IAM da lugar a menor potencia media transmitida que IAFPC y ii) IAFPC da

lugar a menor potencia que el mecanismo clásico de FPC (insconciente de la interferencia).

La Fig. A.5 ilustra el BR medio de IAM con AMC tanto para el MT t́ıpico como

para los MTs activos. También aparecen el BR medio de IAFPC. Se pueden extraer las

siguientes conclusiones de la figura:
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Figure A.4: Potencia media transmitida en función de i0 para IAM y IAFPC con ε = 1 y
dos valores de la potencia máxima de transmisión: pmax →∞ y pmax = 5 dBm.
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Figure A.5: BR medio para IAM y IAFPC para ε = 1, t(1)/t(2) = 9 dB y pmax →∞. Para
IAM se consideran tanto las prestaciones del MT t́ıpico como de los MTs activos.
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1. Valores pequeños de i0 dan lugar a un BR medio máximo para los MTs activos con

IAM (curva naranja) que viene determinado por el MCS de más alta SE. El BR

medio de los MTs activos es el BR promediado sobre los MTs que están activos en

un instante de tiempo determinado. También puede entenderse como el BR medio

de un MT promediado sólo en los instantes en los que está activo (sin tener en cuenta

los silencios).

2. Existe un valor de i0 que maximiza el BR medio para el MT t́ıpico. La existencia

de un máximo se debe a dos efectos opuestos. Por un lado disminiur i0 implica que

los MTs activos aumentan mucho el BR porque la interferencia se reduce mucho.

Por otro lado, disminuir i0 implica que los MTs están silenciados más tiempo y por

tanto al promediar se reduce el BR medio.

3. El máximo valor de BR medio con IAM supera al conseguido con IAFPC. Esto

quiere decir que desde el punto de vista de cada MT, conviene usar IAM, ya que

aunque en algunos instantes el MT esté silenciado, su BR medio teniendo en cuenta

tanto los periodos de silencio como los de actividad es mayor que si se usa IAFPC.
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Figure A.6: BR medio como función de t(1)/t(2) para FPC (i0 → ∞) y IAM con i0 =
{−90,−80,−70,−60} dBm y pmax →∞.
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Las figuras Fig. A.6 y Fig. A.7 ilustran el BR medio y la probabilidad de estar activo

respectivamente, en función de la asociación. Las regiones de funcionamiento pueden

observarse en dichas figuras. En concreto, sabemos de los resultados teóricos que con

i0 = −60 dBm (p0 = −70 dBm), tenemos que i0 > p0, y por tanto el sistema es inconsciente

de la interferencia para t(1)/t(2) ∈ [−10, 10] dB. Esto se puede corroborar tras observar

ambas figuras.
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Figure A.7: Probabilidad de estar activo para el MT t́ıpico en función de t(1)/t(2) para
IAM con i0 = {−90,−80,−70,−60} dBm y pmax →∞.

En concreto se observa que el BR medio para i0 = −60 dBm (curva naranja) en

t(1)/t(2) ∈ [−10, 10] dB es exactamente el mismo que el que se obtiene con un mecan-

ismo FPC clásico (curva verde) y por tanto inconsciente de la interferencia (IUFPC,

Interference-Unaware Fractional Power Control). De especial relevancia es el caso i0 = −90

dBm (curva roja). Tal y como se aprecia en la Fig. A.5 es el valor que maximiza el BR

medio con IAM. En este caso, sabemos que el sistema es independiente de la asociación

para t(1)/t(2) ∈ [−20, 20] dB. Esto se observa en ambas figuras ya que tanto el BR medio

como la probabilidad de estar activo no dependen de la asociación. Esto facilita la opti-

mización conjunta de las transmisiones en los enlaces UL y DL en el caso acoplado; ya que

bastaŕıa con elegir el valor de i0 que maximize las prestaciones en el UL. Luego bastaŕıa
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elegir el valor de la asociación que maximice las prestaciones en el DL. Si ese valor cae

dentro del intervalo t(1)/t(2) ∈ [−20, 20] las prestaciones del UL no se ven afectadas.

El precio a pagar es que la justicia entre MTs, en cuanto al acceso a los recursos, se

reduce. Eso se observa en la Fig. A.7, donde se aprecia que la probabilidad de acceder a

los recursos para el MT t́ıpico es menor que 1.

A.4 Probabilidad de Cobertura en Sistemas Multi-

Usuario

En esta sección se resume el análisis y resultados de un modelo que permite evaluar la

probabilidad de cobertura, o equivalentemente, la ccdf de la SINR, para cada uno de los

MTs asociados con una celda. El modelo, que se centra en el UL de una red homogénea con

control de potencia fraccionado (FPC), considera que cada celda tiene k MTs planificados

en recursos ortogonales. La comparación de la probabilidad de cobertura del mejor y

del peor MT permite evuluar la justicia entre los MTs en cuanto a la probabilidad de

cobertura.

A.4.1 Modelo de Sistema

Se considera que las posiciones de las BSs se pueden modelar como un PPP uniforme en

el plano de densidad λb = λ/k. Cada BS da servicio a k MTs que son planificados en cada

intervalo de transmisión en recursos ortogonales, y por tanto la densidad de MTs es λ.

Los MTs se asocian a la BS más cercana. De cara a evaluar la probabilidad de cobertura

los MTs, éstos son ordenados en función de la distancia a la BS que da servicio. De este

modo el MT, MTl, es el l-ésimo MT más cercanos a la BS que le da servicio. La SINR de

dicho MT se expresa como

SINRl =
GlR

α(ε−1)
l

Il + σ2
(A.21)

donde Il =
∑

x∈Φi,l
GxR

αε
x D

−α
x . Φi,l es el proceso punto de los MTs interferentes para el

MT l-ésimo mientras que Gx y Gl son los desvanecimientos multi-camino entre el MT in-

terferente y el MT l-ésimo con la BS de prueba. Por otro lado, Dx y Rx son las distancias
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entre el MT interferente con la BS de prueba y con la BS que le da servicio, respecti-

vamente. La potencia transmitida por un MT a distancia r de la BS que le da servicio

es rαε, (se asume una potencia objetivo y una pendiente de las pérdidas de propagación

unitarias).

Como el criterio de asociación se basa en distancia mı́nima con la BS que da servicio y

las posiciones de las BS siguen un PPP, las celdas están formadas por poĺıgonos aleatorios

que resultan de hacer la tesselación de Voronoi. Por tanto, es matemáticamente inviable

obtener la transformada de Laplace de la interferencia de forma exacta. Aśı, para hacer

el análisis se asume que los interferentes están más lejos de la BS de prueba que el MT

k-ésimo, que es el más lejano.

Los resultados de simulación consideran el modelo exacto, en el que las BSs siguen un

PPP uniforme de densidad λb, y se distribuyen de forma aleatoria k MTs dentro de cada

celda, que se obtiene mediante la teselación de Voronoi. Sin embargo el análisis considera

la suposición antes mencionada en la que se considera que los MTs interferentes se sitúan

más lejos que el MT k-ésimo.

A.4.2 Resultados Teóricos

Uno de los resultados principales es la pdf conjunta de la distancia a la BS de prueba de

los MTs l-ésimo y k-ésimo. Dicha pdf se representa a continuación.

fRl,Rk(rl, rk) =
4e−πr

2
kλ(λπ)krkr

2l−1
l (r2

k − r2
l )
k−l−1

(k − l − 1)!(l − 1)!
(A.22)

donde 0 ≤ rl ≤ rk.

El resultado principal es la probabilidad de cobertura del MT l-ésimo, que se expresa

a continuación.

pc(l, k, t, λ,p, α, ε, µ, σ
2) =

∫ ∞

0

∫ ∞

rl

ξ(rl, rk)fRl,Rk(rl, rk)drkdrl (A.23)

donde

ξ(rl, rk) = e−µtσ
2r
α(1−ε)
l LIl|rl,rk(µtr

α(1−ε)
l ) (A.24)
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siendo LIl|rl,rk(s) la transformada de Laplace de la interferencia condicionada en rl y rk.

Este término, evaluado en s = µtr
α(1−ε)
l tiene la siguiente forma

LIl|rl,rk(µtr
α(1−ε)
l ) = exp

(
−2πpλ

∫ ∞

rk

(
1−

∫ ∞

0

πpλe−pλπq

1 + tr
α(1−ε)
l qαε/2v−α

dq

)
vdv

)
(A.25)

A.4.3 Resultados Numéricos

Es importante recalcar que en el sistema considerado los k MTs que hay en cada celda

acceden a los recursos en cada intervalo de transmisión. Por tanto, en este sistema, la

justicia en cuanto al acceso a los recursos es máxima. El objeto de estudio se centra

en la justicia entre usuarios en cuanto a las prestaciones, y en concreto, en cuanto a la

probabilidad de cobertura.

La Fig. A.8 ilustra la probabilidad de cobertura para el más cercano MT (l = 1) y

el más lejano (l = k) MT cuando se usa un factor de compensación parcial de 0.75. En

este caso se aprecia que, a pesar de que todos los MTs acceden por igual a los recursos,

la justicia entre los MTs de una celda no es total, ya que la probabilidad de cobertura del

MT más cercano a la BS de prueba, MT1, es mejor que la del MT más lejano, MTk.

La Fig. A.9 ilustra en cambio la probabilidad de cobertura del MTs más cercano

y el más lejano para una compensación total de las pérdidas de propagación. En este

caso la justicia en términos de cobertura es máxima porque todos los MTs tienen las

mismas prestaciones. Es interesante remarcar que el factor de compensación parcial, ε,

que maximiza las prestaciones del MT t́ıpico (uno elgido al azar), suele ser menor que uno

(ε < 1) tal y como puede verse en la Fig. 2.10 y en multitud de trabajos en la literatura

[26, 29, 32]. Esto se debe a que ε = 1 genera mucha interferencia a las celdas vecinas si

no se usa alguna técnica de mitigación de interferencias como IAFPC o IAM. Por tanto,

las figuras A.8 y A.9 ponen de manifiesto una vez más el compromiso que existe entre

maximizar las prestaciones, como cobertura o BR, y la justicia entre los usuarios.
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Figure A.8: Probabilidad de cobertura para k = {10, 25, 50} con compensación parical de
las pérdidas de propagación (ε = 0.75), para el caso sin ruido con α = 2.5, λb = 0.24
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Figure A.9: Probabilidad de cobertura para k = {10, 25, 50} con compensación total de
las pérdidas de propagación (ε = 1), para el caso sin ruido con α = 2.5, λb = 0.24.
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A.5 Probabilidad de Cobertura con Desvanecimiento

Hoyt

En esta trabajo, se deriva una aproximación cerrada de la probabilidad de cobertura de los

sistemas celulares bajo un desvanecimiento tipo Hoyt (Nakagami-q). El análisis realizado

expresa el desvanecimiento como funciones condicionadas con distribución exponencial.

Después, la esperanza sobre la distancia hacia la estación base que da servicio se divide

en dos integrales finitas que pueden aproximarse mediante la regla de Gauss-Chebyshev.

La exactitud de las expresiones obtenidas se valida con simuación Monte Carlo.

A.5.1 Modelo de Sistema

Consideramos el DL de una red celular homogénea, donde las BSs están distribuidas acorde

a un PPP, ΦBS = {BS1,BS2, ..}, cuya densidad es λBS. Los MTs están distribuidos acorde

a un PPP, y cada MT se asocia a la BS más cercana. Las señales transmitidas sufren

desvanecimiento con distribución Hoyt (Nakagami-q), con un factor de escala, q ∈ [0, 1]

y media unitaria. La PDF de la envolvente al cuadrado del desvanecimiento se puede

expresar como una exponencial condicionada como sigue [95]:

fH (h) = EΘ

[
fH|θ (h) |Θ = θ

]
= Eθ

[
1

γ (θ, q)
e−h/γ(θ,q)|Θ = θ

]
, (A.26)

donde γ (θ, q) =
(

1− 1−q2

1+q2 cos (θ)
)

y Θ se distribuye de manera uniforme entre 0 y π.

Se considera una ley de pérdidas de propagación con una pendiente de pérdidas, τ , y un

exponente de las pérdidas, α > 2. La relación SINR del MT t́ıpico, que puede considerarse

que está situado en el orgien sin pérdida de generalidad, sigue la siguiente ecuación

SINRMT0 =
HBS0 (τRBS0)−α ρBS

I + σ2
n

, (A.27)

siendo HBS0 y RBS0 el desvanecimiento y la distancia con la BS servidora respectivamente,

ρBS es la potencia de transmisión por Hz, I es el término interferente y σ2
n es la potencia

de ruido. La interferencia se expresa como sigue

I =
∑

BSi∈ΦBS

HBSi (τRBSi)
−α ρBS1 (RBSi > RBS0) , (A.28)
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siendo 1(A), la función indicadora.

A.5.2 Resultados Teóricos

La probabilidad de cobertura del MT t́ıpico se puede expresar de forma cerrada como

sigue:

Pc =
π

2nr

nr∑

i=1

(
µ (ri) +

µ
(
r−1
i

)

t2

)∣∣∣∣sin
(

2i− 1

2nr
π

)∣∣∣∣, (A.29)

donde

µ (r) =

nθ∑

j1=1

∣∣∣∣sin
(

2j1 − 1

2nθ
π

)∣∣∣∣
λBSrπ

2

nθ
exp

(
− πλBSr

2

− tσ2
n (τr)α

ρBSγ (θ1, q)
− λtr2π2

(α− 2)nθ

nθ∑

j2=1

γ (θj2 , q)

γ (θj1 , q)

2F1

(
1,
α− 2

α
, 2− 2

α
,
−tγ (θj2 , q)

γ (θj1 , q)

) ∣∣∣∣sin
(

2j2 − 1

2nθ
π

)∣∣∣∣

)
(A.30)

y ri = 1
2

[
cos
(

2i−1
2nr

π
)

+ 1
]
.

A.5.3 Resultados Numéricos

La siguiente figura representa la probabilidad de cobertura para el caso Rayleigh (q = 1)

y para un caso de desvanecimiento severo (q = 0.05). Se aprecia un buen ajuste entre

los resultados teóricos y los obtenidos por simulación. De la figura se observa que la

probabilidad de cobertura para valores de SINR altos es aproximadamente la misma para

los casos q = 1 y q = 0.05. No obstante, la probabilidad para valores de SINR umbral por

debajo 0 dB depende mucho de la severidad del desvanecimiento.
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Figure A.10: Probabilidad de cobertura en función de la SINR umbral, t, para q = 1 y
q = 0.05.

A.6 Acceso Múltiple No Ortogonal para CRANs

En esta sección, se propone un nuevo esquema de acceso múltiple no ortogonal (NOMA,

Non-Orthogonal Multiple Access) para redes de acceso de radio en la nube (CRAN, Cloud

Radio Access Networks). En este esquema, dos usuarios están planificados en los mismos

recursos según NOMA. Sin embargo, se realiza conformación coordinada de haces para

mejorar las prestaciones de los peores usuarios en términos calidad del enlace (usuarios

de borde). De cara al modelado matemático, se asume que las posiciones de las BSs

siguen un proceso de punto de tipo cluster. En un esfuerzo por caracterizar el rendimiento

del esquema, se derivan expresiones simples en términos de probabilidad de interrupción

(outage) tanto para los usuarios cercanos como para los usuarios de borde de celda. Se

demuestra anaĺıticamente que la ganancia media de conformado del haz es una función

de lineal con respecto al número de BSs cooperantes. Los resultados numéricos verifican

la exactitud del análisis y revelan que el marco propuesto es capaz de mejorar en gran

medida el rendimiento de los usuarios de borde.
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A.6.1 Modelo de Sistema

Nos centramos en el DL de una red CRAN donde las BSs se organizan en distintos grupos

(clusters) que pueden compartir información. Las posiciones de las BSs se modelan acorde

a un proceso tipo cluster [61]. El proceso punto padre, que modela los centros de los

clusters, se representa como ΦC ⊂ R2 y sigue un proceso Matérn (HCPP, Hard Core

Point Process) de tipo II cuya densidad es λC y su mı́nima distancia entre puntos es

dmin [61]. Para un cluster centrado en x ∈ ΦC , el proceso punto hijo se representa como

Φ
(x)
BS = Φ

(o)
BS+x, donde o = (0, 0) representa el origen y Φ

(o)
BS sigue un proceso punto binomial

(BPP, Binomial Point Process) de nBS puntos dentro de un anillo cuyo radio interior es

re y el exterior es rc. El radio exterior representa el tamaño del cluster mientras que el

radio interior representa una región de guarda donde no se posicionan BSs para reducir la

interferencia. Esto se hace porque la interferencia crece al acercarse al centro del cluster.

Se considera que el peor MT en términos de calidad del enlace está situado en el centro

del cluster, mientras que cada BS da servicio a un MT cercano en el recurso de interés.

Se considera en este trabajo que las celdas son discos de radio rBS. El desvanecimiento

entre las posiciones x e y se expresa como Hx,y ∼ CN (0, 1), y sigue una distribución

compleja normal. Se asume desvanecimiento independiente para distintas localizaciones.

Se considera un modelo de pérdidas de propagación acotado, por tanto, las pérdidas de

propagación entre las posiciones x e y se expresan como (1+Rα
x,y). La ganancia instantánea

de un enlace entre x e y se representa como Gx,y = Hx,y/
√

1 +Rα
x,y.

Las BSs del mismo cluster transmiten de forma simultánea al mismo MT de borde

para mejorar sus prestaciones. Para mejorar la eficiencia espectral, las BSs planifican en

el mismo recurso (RB, Resource Block) las señales deseadas tanto para su MT cercano

como para el MT de borde. Por tanto, los MTs cercanos realizan cancelación sucesiva de

interferencias (SIC, Successive Interference Cancellation) para eliminar la interferencia de

los datos dirigidos al MT de borde. El MT de borde no realiza SIC porque, se asigna más

potencia a su transmisión gracias a los coeficientes de asigación de potencia.

De manera más formal, la señal transmitida por la BS i-ésima que pertenece al q-ésimo

cluster se expresa como sigue

XBSi,q =
√
pBSan · SMT

(n)
i,q

+
√
pBSae ·WBSi,q ,MT

(e)
q
· S

MT
(e)
q
, (A.31)



Appendix A. Resumen en castellano 242

donde S
MT

(e)
q
∈ C y S

MT
(n)
i,q
∈ C son los śımbolos dirigidos a los MTs cercano y de borde

respectivamente, pBS es la potencia nominal por BS, an ∈ R y ae ∈ R con an + ae = 1 y

ae ≥ an son los coeficientes de asignación de potencia para los MTs cercanos y de borde

respectivamente. El q-ésimo cluster está centrado en la posición Cq.

La SINR para los MTs de borde se expresa como sigue

SINR
MT

(e)
0

=
Ξ

MT
(e)
0
aeρBS

Ξ
MT

(e)
0
anρBS + IinterρBS + 1

, (A.32)

donde Ξ
MT

(e)
0

es la ganancia de conformación de haz coordinada, ρBS = pBS/σ
2
n es la SNR

de transmisión y Iinter es la interferencia.

El mensaje dirigido para el MT de borde se transmite con una SE de SEe bps/Hz. Por

tanto se asume que el MT no es capaz de decodificar el mensaje con éxito si su SINR es

menor que 2SEe − 1, lo cual significa que el MT está en outage.

Para los MTs cercanos, primero intentan decodificar el mensaje dirigido al MT de

borde. Después, si este mensaje se decodifica correctamente, cancelan la interferencia

intra-celda e intentan decodificar su propio mensaje.

La SINR para decoficar el śımbolo dirigido al MT de borde aparece a continuación

SINR
(e)

MT
(n)
0,0

=

∣∣∣G
BS0,0,MT

(n)
0,0

∣∣∣
2 ∣∣∣W

BS0,0,MT
(e)
0

∣∣∣
2

aeρBS

∣∣∣G
BS0,0,MT

(n)
0,0

∣∣∣
2

anρBS + IintraρBS + IinterρBS + 1
, (A.33)

donde Iinter representa la interferencia entre clusters, y Iintra, representa la interferencia

intra-cluster.

Una vez que la interferencia intra-celda, que viene de la transmisión al MT de borde,

ha sido cancelada, los MTs cercanos decodifican su propio mensaje. La SINR en este caso

se reresenta como sigue:

SINR
(n)

MT
(n)
0,0

=

∣∣∣G
BSk,0,MT

(n)
0,0

∣∣∣
2

anρBS

IintraρBS + IinterρBS + 1
. (A.34)
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A.6.2 Resultados Teóricos

La media y varianza de la ganancia de conformación de haz coordinada se expresa como

sigue:

E [Ξx] = −nBSµ
(1)
Ξ (0)

var (Ξx) = nBS

(
µ

(2)
Ξ (0)−

(
µ

(1)
Ξ (0)

)2
)
, (A.35)

donde µ
(1)
Ξ (0) y µ

(2)
Ξ (0) están definidas en el caṕıtulo 6.

Conclusión teórica: La ganancia media de la conformación de haz es una función

lineal creciente con respecto al número de BSs por cluster.

La probabilidad de outage para los MTs de borde viene dada por la siguiente expresión

P
MT

(e)
0

out ≈ 1−
nM∑

q=1

nGC∑

i=1

ti∑

k=1

k−1∑

n=0

ωq,i,k
(1 + rαi )n

n!

× νn1 (−1)n
dn

dsn

[
e−sρ

−1
BSLIinter

(s)
]∣∣∣∣
s=ν1(1+rαi )

, (A.36)

donde wq,i,k y LIinter
(s) aparecen en el caṕıtulo 6, ν1 = γe

ae−γean y γe = 2SEe−1 es el umbral

de SINR para tener una SE de SEe bps/Hz. Si ae− γean < 0, entonces la probabilidad de

outage es 1.

Por otro lado, la probabilidad de outage para los MTs cercanos se expresa como

PMT
(n)
o

out ≈ F|W |2

(
γ1an
ae

)
+
π (rc − re)

2nGC

nGC∑

i=1

2ri
r2
c − r2

e

× LΞ

(
γ1an
ae

(1 + rαi )

) ∣∣∣∣sin
(

2i− 1

nGC

π

)∣∣∣∣

× FQ


max


 γe(

ae
1+rαi

− γean
)
ρBS

,
γn

aeρBS



∣∣∣∣∣∣
ri


 , (A.37)

FQ(q), F|W |2(x) y LΞ(s) vienen dados en el caṕıtulo 6.
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Figure A.11: Comparación de la probabilidad de outage para los MTs cercano y lejano en
función del número de BSs por cluster, nBS . El caso nBS = 1 se añade como referencia.

Como puede apreciarse tanto la probabilidad de outage para el MT cercano como para

el de borde son funciones sencillas.

A.6.3 Resultados Numéricos

La siguiente figura ilustra la probabilidad de outage para los MTs cercanos y de borde

en función del número de BSs cooperantes por cluster. Se observa que conforme aumenta

el número de BSs cooperantes las prestaciones de los MTs de borde aumentan significa-

tivamente. El precio a pagar es una pequeña reducción de las prestaciones de los MTs

cercanos.

A.7 Mecanismo de Acceso al Medio Distribuido Basado

en la Posición para Redes Vehiculares

En este trabajo se modela, analiza y optimiza un mecanismo de acceso al medio distribuido

para redes vehiculares. El modelo considera la distancia de seguridad dependiente de
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la velocidad que existe entre veh́ıculos del mismo carril. Esto impone una correlación

espacial entre los veh́ıculos que complica el análisis. Para tener en cuenta esta correlación

se ha propuesto nuevamente un marco matemático basado en el conditional thinning. Se

han analizado dos mecanismos de planificación de frecuencias espacialmente a lo largo

de la carretera que se diferencian en el hecho de si el sistema tiene que distinguir entre

el carril en el que circulan los veh́ıculos o no. Además, se considera la transmisión de

tipos de mensajes de difusión, periódicos y no periódicos. Entre las métricas análizadas se

encuentra la probabilidad transmitir un mensaje correctamente (probabilidad de captura),

el BR medio y la eficiencia energética (EE, Energy Efficiency) media. Entre los resultados

teóricos más relevantes destaca el hecho de demostrar que existe una región en la que

el sistema está limitado por ruido (en lugar de por interferencia) y la optimización del

sistema. Dicha optimización consiste en obtener la potencia de transmisión que maximiza

la EE sujeta a una probabilidad de captura mı́nima.

A.7.1 Modelo de Sistema

Se considera una carretera recta de nL carriles en la que la longitud de la misma es mucho

mayor que su anchura, lo cual permite despreciar la coordenada z, tal y como se ilustra en

la Fig. A.12. Se asume que existe una distancia mı́nima entre veh́ıculos del mismo carril,

que viene dado por la distancia de seguridad, dsafe. Por tanto las posiciones de los veh́ıculos

se pueden modelar como un proceso punto del tipo HCPP (Hard Core Point Process). de

tipo II, ΦL = {V0, V1, · · · }, cuya densidad es λL. Se asumen que en cada instante de

tiempo un veh́ıculo tiene datos para transmitir con probabilidad pa. Por tanto el proceso

punto de veh́ıculos activos, Φ(a), se determina a partir de un independent thinning sobre

ΦL.

El mecanismo propuesto de acceso al medio, denominado GLOC (Geo-LOCation based

access), considera que la carretera se divide en segmentos de longitud dA, donde cada

segmento está asociado con un recurso ortogonal (AR, Access Resource). El ancho de

banda del sistema, bw, se divide a partes iguales entre en número total de ARs. En un

instante de tiempo, cada veh́ıculo con datos para transmitir determina el segmento en

el que se encuentra a partir de su posición GPS (Global Positioning System), y después,

transite usando el AR asociado a dicho segmento. El mapeo entre ARs y segmentos se hace

siguiendo un criterio de maximizar la distancia co-canal. Se proponen dos particiones de
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la carretera en segmentos, denominadas SLP (Single-Lane Partition) y MLP (Multi-Lane

Paritition), que se diferencia en los requisitos de precisión impuestos a la estimación de la

posición. Ambos esquemas están ilustrados en las figuras A.12 y A.13 respectivamente.
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Figure A.12: Diagrama de GLOC con SLP para una carretera de dos carriles y 3 ARs.
Los distintos colores están asociados a distintos ARs. En la parte inferior de la figura
se muestra el modelo de abstracción usado para el análisis donde las posiciones de los
veh́ıculos son puntos en la recta real.
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Figure A.13: Diagrama de GLOC con SLP para una carretera de dos carriles y 6 ARs.
Los distintos colores están asociados a distintos ARs. En la parte inferior de la figura
se muestra el modelo de abstracción usado para el análisis donde las posiciones de los
veh́ıculos son puntos en la recta real.

La ventaja de MLP sobre SLP radica en que gracias a que existe una distancia mı́nima
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entre veh́ıculos del mismo carril, y los distintos carriles usan recursos ortogonales, existe

una distancia mı́nima al interferente más cercano, lo cual aumenta la SINR. Si la distancia

mı́nima, dsafe, es mayor que la longitud del segmento, dA, entonces no existe interferencia

dentro del segmento de prueba. En cambio con SLP no hay un distancia mı́nima hacia el

interferente más cercano ya que los distintos carriles tienen los mismos ARs.

Por otro lado, la ventaja de SLP sobre MLP es que para el mismo ancho de banda de

sistema, bw, cada AR tiene un ancho de banda mayor. Una discusión más profunda de

estos y otros aspectos aparece en el caṕıtulo 7.

La SINR evaluada en la posición x sigue esta expresión

SINR (x) =
HVT0 (τ |VT0 − x|)−α ρVT

I (x) + σ2
n

(A.38)

donde HVT0 es el desvanecimiento multi-camino con el veh́ıculo receptor, que está situado

en x, ρVT es la potencia de transmisión por Hz, I(x) la potencia interferente y σ2
n la

potencia de ruido. La interferencia se puede expresar como sigue:

I (x) =
∑

VTi∈Φ(a)\{VT0}

HVTi (τ |VTi − x|)−αρVT1
(
VTi ∈ A(AR0)

)
1 (VTi ∈ bx (dmax))

(A.39)

donde Φ(a), que es el proceso punto de los veh́ıculos interferentes, sigue un PPP en el caso

SLP y un HCPP en el caso MLP. Como el caso HCPP es intratable matemáticamente, se

propone la siguiente suposición para hacer tratable el análisis:

Suposición: La interferencia en el caso MLP se puede modelar como sigue:

I (x) =
∑

VTi∈Φ(a)

HVTi (τ |VTi − x|)−α ρVT1
(
VTi ∈ A(RB0)

)

× 1 (|VTi − x| > dsafe) 1 (|VTi − VT0| > dsafe) (A.40)

donde Φ(a) es un PPP con densidad λLpa. La idea que hay detrás de esta asunción es que

para modelar correctamente la interferencia, basta con imponer la condición de que no

puede haber dos veh́ıculos a menor distancia que dsafe, en las cercańıas del transmisor y

del receptor de prueba. Esta suposición resultará ser bastante precisa, tal y como se verá
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con los resultados numéricos.

Además de la probabilidad de captura, en este trabajo son importantes el BR y la EE

medios. No obstante, en este caso se considera por motivos de implementación que los

veh́ıculos transmiten con un MCS fijo. Por tanto el BR de los bits correctamente recibidos

se expresa como sigue:

BR (x) = 1 (SINR (x) > γ) · bAR · log2 (1 + γ) (A.41)

donde bAR es el ancho de banda de cada AR. En el caso SLP, bAR = bw/nAR, mientras que

en el caso MLP, bAR = bw/(nARnL), siendo nL el número de carriles. Para SLP, nAR repre-

senta el número total de ARs, mientras que para MLP, nAR representa el número de ARs

por carril. Con el śımbolo γ se representa el umbral asociado a la correcta decodificación

de un mensaje transmitido con un MCS cuya SE es log2(1 + γ). La EE se define como el

cociente entre el BR y la potencia transmitida, y viene expresada en b/J. Su significado

es cuánto cuesta en términos energéticos transmitir un bit que se reciba correctamente.

Su expresión aparece a continuación:

EE (x) =
log2 (1 + γ)

ρVT

1 (SINR(x) > γ) (A.42)

Se han considerado dos tipos de mensajes, periódicos y no periódicos. Los mensajes

no periódicos se transmiten a causa de eventos que ocurren con cierta probabilidad. Esta

probabilidad es un parámetro de la simulación que aqúı se ha definido con el śımbolo pa.

El caso periódico considera unos mensajes, de tamaño mbc bits, que se transmiten cada

trep segundos. Por tanto, aqúı pa no es un parámetro de simulación, sino una función que

depende de los citados parámetros como sigue:

pa =
mbc

bARtrep log2 (1 + γ)
(A.43)

A.7.2 Resultados Teóricos

Los principales resultados teóricos aparecen recogidos en la siguiente tabla.

El significado de c
(SLP)
1 y c

(MLP)
1 es la probabilidad de captura que se tiene cuando la

potencia de transmisión tiende a infinito para SLP y MLP, respectivamente.

Por otro lado, el problema de optimización resuelto se plantea como sigue:
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Table A.1: Resumen de los principales resultados matemáticos en función de ρVT

Metric F̄SINR(γ) E [BR] E [EE]

SLP c
(SLP)
1 e

− c2
ρVT

bw
nRB
· log2 (1 + γ) · c(SLP)

1 e
− c2
ρVT

log2(1+γ)
ρVT

· c(SLP)
1 e

− c2
ρVT

MLP c
(MLP)
1 e

− c2
ρVT

bw
nRB·nL

· log2 (1 + γ) · c(MLP)
1 e

− c2
ρVT

log2(1+γ)
ρVT

· c(MLP)
1 e

− c2
ρVT

c2 = γσ2
n (τrbc)

α c
(SLP)
1 = 1

dA

dA
2∫

v=− dA
2

LI(v+rbc)

(
γ(τrbc)α

ρVT

)
dv

c
(MLP)
1 =

dA/2∫
v=−dA/2

1(v/∈bv+rbc
(dsafe))

|D(v+rbc)| LI(v+rbc)

(
γ
pVT

(τrbc)
α
)
· dv

maximize
ρVT

E [EE]

subject to F̄SINR (γ) ≥ c
(k)
1 δ

0 < δ < 1 (A.44)

donde 0 < δ < 1 sirve para expresar la probabilidad de captura, F̄SINR(γ), como un por-

centaje de la probabilidad de captura máxima c
(k)
1 , siendo k una etiqueta para identificar

a SLP o a MLP, k = {SLP,MLP}. La solución al problema es la potencia de transmisión

óptima

ρ?VT =

{
c2 if 0 < δ ≤ e−1

c2 ln−1 (1/δ) if 1 > δ > e−1
(A.45)

dicha potencia óptima de transmisión conduce a la máxima EE

E [EE]? =





c
(k)
1

c2
log2 (1 + γ) e−1 if 0 < δ ≤ e−1

c
(k)
1

c2
ln
(

1
δ

)
log2 (1 + γ) δ if 1 > δ > e−1

(A.46)

siendo la probabilidad de captura obtenida la que aparece a continuación

F̄ ?
SINR (γ) =

{
c

(k)
1 e−1 if 0 < δ ≤ e−1

c
(k)
1 δ if 1 > δ > e−1

(A.47)
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donde de nuevo k = {SLP,MLP}.
Conclusiones teóricas: A partir de los resultados obtenidos se derivan las siguientes

conclusiones teóricas:

1. En el caso MLP, el sistema para a estar limitado por ruido (no existe interferencia) si

dsafe > dA y nAR > (2dmax + dA)/dA; siendo dmax el rango máximo de comunicación.

2. La potencia óptima de transmisión es independiente del esquema considerado, SLP

o MLP.

A.7.3 Resultados Numéricos

20 40 60 80 100
0

0.2
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0.8

1

1

nAR

F̄
S
IN

R
(γ

)

non-periodic SLP

periodic SLP

non-periodic MLP

periodic MLP

Figure A.14: Probabilidad de captura en función del número de ARs, nAR, para SLP y
MLP (dsafe = 42 m) con mensajes periódicos y no periódicos.

La Fig. A.14 ilustra la probabilidad de captura en función del número de ARs para

SLP y MLP con mensajes periódicos y no periódicos. Se observa que para el caso de

mensajes no periódicos, subir nAR mejora mucho la probabilidad de captura. Esto se debe

a que aumentar nAR aumenta la distancia co-canal y disminuye por tanto la interferencia,

ya que la densidad de veh́ıculos interferentes es constante y depende de pa. No obstante,
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en el caso de mensajes periódicos, aumentar nAR además de aumentar la distancia co-

canal, también aumenta la densidad de veh́ıculos interferentes, ya que aumenta pa (véase

la ecuación (A.43)). En el caso de MLP con mensajes periódicos, el efecto de aumentar

la distancia co-canal domina al aumento de la densidad de interferentes y por ello, la

probabilidad de captura crece con nAR. No ocurre aśı para el caso SLP, donde domina el

efecto del aumento de la densidad ya que existe en este caso interferencia de veh́ıculos del

mismo segmento que el transmisor de prueba. No obstante, los resultados de fiabilidad son

bastante altos, en concreto con MLP se obtienen unas probabilidades de captura de 99.76%

para mensajes periódicos y 99.55% para mensajes no periódicos con una alta densidad de

veh́ıculos interferentes (pa = 0.25).

102 103 104

0.996

0.997

0.998

0.999

1

nAR

c(
M

L
P
)

1

non-periodic MLP

periodic MLP

nAR = 2668

Figure A.15: Máxima probabilidad de captura, c
(MLP)
1 , para nAR de 102 a 104, con MLP

(dsafe = 42 m) para mensajes periódicos y no periódicos. rbc = 150 m, dmax = 56 km y
γ = 5 dB.

La Fig. A.15 ilustra la conclusión teórica obtenida acerca de la existencia de una

región de funcionamiento limitada por ruido. En dicha figura se ilustra que para un

número determinado de ARs, la probabilidad máxima c
(MLP)
1 alcanza el valor de 1. Por

último la Fig. A.16 ilustra la EE en función de la potencia transmitida. Con una ĺınea

discont́ınua negra aparece la potencia óptima para δ = 0.3 mientras que la ĺınea naranja se
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Figure A.16: EE media en función de la potencia de transmisión por Hz, ρVT, para SLP
(dsafe = 0 m) y MLP (dsafe = 42 m) con mensajes periódicos y no periódicos.

asocia a δ = 0.99. Se observa por tanto que aumentar la probabilidad de captura mı́nima

requiere transmitir con mayor potencia, bajando la eficiencia energética.

A.8 Conclusiones

En esta tesis se ha llevado a cabo el modelado y análisis matemático de distintos mecan-

ismos de mitigación de interferencias para sistemas celulares de nueva generación. El

trabajo se ha centrado en primer lugar en el estudio de mecanismos donde, por medio del

intercambio de información entre BSs, se consigue un conocimiento sobre la interferencia

que permite limitarla, dando lugar a un aumento significativo de las prestaciones. Con

respecto a este aspecto, se han propuesto y analizado dos mecanismos que limitan la inter-

ferencia generada en el sistema en dos niveles distintos, nivel f́ısico y de acceso al medio,

mediante un mecanismo de control de potencia y un algoritmo de planificación de recursos

respectivamente. El mecanismo de planificación de recursos consiste en silenciar de forma

inteligente aquellos usuarios en los instantes en los que causan mayor interferencia. Este

silenciamiento lleva a una disminución necesaria de la justicia entre usuarios a la hora de
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acceder a los recuros. Motivado por este aspecto, se ha desarrollado un modelo multi-

usuario para evaluar la justicia entre usuarios en términos de probabilidad de cobertura.

De esta manera se identifica la interacción que existe entre el control de potencia en el

enlace ascendente y la justicia en cuanto a la probabilidad de cobertura. Para considerar

condiciones de canal más severas que las que ofrece el canal Rayleigh, se ha llevado a cabo

el análisis para un canal tipo Hoyt, que incluye a las distribuciones Rayleigh y Gaussiana

unilateral como casos especiales.

Se ha propuesto un esquema basado en el acceso múltiple no ortogonal para redes coop-

erativas CRAN (Cloud Radio Access Netowrks). El esquema se ha modelado y analizado

demostrando que se consigue mejorar las prestaciones de los usuarios de borde.

Finalmente, se ha analizado un mecanismo de acceso al medio distribuido para redes

vehiculares, que está apoyado por la red celular, ya que ofrece la sincronización necesaria en

tiempo y frecuencia. Se ha demostrado que dicho mecanismo permite alcanzar fiabilidades

arbritariamente altas con un diseño adecuado del número de recursos ortogonales y de la

potencia de transmisión. Además, se ha obtenido la potencia de transmisión óptima que

maximiza la eficiencia energética sujeta a una probabilidad de captura mı́nima.

El análisis de las mencionadas técnicas se ha realizado usando como herramienta

matemática la geometŕıa estocástica. No obstante ciertas correlaciones espaciales derivadas

de los mecanismos de mitigación de la interferencia que se han estudiado complican el prob-

lema entre manos. Para realizar un análisis tratable y preciso se han desarrollado unos

marcos matemáticos basados en una técnica conociada como conditional thinning. Gra-

cias al análisis realizado ha sido posible ofrecer soluciones sencillas a problemas complejos.

Dichas soluciones han derivado en numerosas conclusiones teóricas que conducen a un

entendimiento profundo de las técnicas estudiadas.
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