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Abstract

This thesis provides novel and tight approximations to the distribution of both real
and complex non-central Gaussian quadratic forms (GQFs). To that end, a new method
to analyze random variables is proposed, which is based on the analysis of a suitably de-
fined sequence of auxiliary random variables that converges in distribution to the target
one. Consequently, the major advantage of this proposal is that the resulting expres-
sions always represent a valid distribution, in contrast to classical approximation meth-
ods based on series expansions.

By leveraging such convergence, simple and recursive approximations for the proba-
bility density function (PDF) and the cumulative distribution function (CDF) of positive
definite real GQFs are given. In the context of indefinite complex GQFs, the application
of the proposed technique leads to very tractable approximants for their first order statis-
tics in terms of elementary functions, i.e., exponentials and powers. Thus, the obtained
expressions are more useful for further analytical purposes than other solutions avail-
able in the literature. This tractability is exemplified through the performance analysis of
maximal ratio combining systems over correlated Rice channels, providing closed-form
approximations for the outage probability and the bit error.

Moreover, in the context of channel modeling, the proposed methodology of analy-
sis of variables gives raise to two generalizations of the well-know κ-µ shadowed fading
model. These new models, namely the fluctuating Beckmann and the correlated κ-µ
shadowed models, include as particular cases the vast majority of fading distributions,
ranging from the classical ones such as Rayleigh and Rice models to more refined ex-
tensions as the Beckmann distribution or the η-µ model. The statistical characterization
of both distributions is provided, giving closed-form expressions for their moment gen-
erating function (MGF), PDF and CDF; along with the formulation of the second order
statistics of the fluctuating Beckmann model.





Resumen

En esta tesis se presenta una nueva aproximación a la distribución de formas
cuadráticas gaussianas (FCGs) no centrales tanto en variables reales como complejas.
Para ello, se propone un nuevo método de análisis de variables aleatorias que, en lugar
de centrarse en el estudio de la variable en cuestión, se basa en la caracterización es-
tadística de una secuencia de variables aleatorias auxiliares convenientemente definida.
Como consecuencia, las expresiones obtenidas, con independencia del grado de precisión
adquirido, siempre representan una distribución válida, siendo ésta su principal ventaja
frente a otros métodos de aproximación clásicos basados en expansiones en series.

Aplicando este método, se obtienen simples expresiones recursivas para la función
densidad de probabilidad (PDF) y la función de distribución (CDF) de las FCGs reales
definidas positivas. En el caso de las formas complejas, esta nueva forma de análisis con-
duce a aproximaciones para los estadísticos de primer orden en términos de funciones
elementales (exponenciales y potencias), siendo más convenientes para cálculos posteri-
ores que otras soluciones disponibles en la literatura. La tratabilidad matemática de estos
resultados se ejemplifica mediante el análisis de sistemas de combinación por razón máx-
ima (MRC) sobre canales Rice correlados, proporcionando aproximaciones cerradas para
la probabilidad de outage y la probabilidad de error de bit.

Finalmente, en el contexto de modelado de canal, la metodología de análisis de vari-
ables propuesta permite obtener dos nuevas generalizaciones del conocido modelo de
desvanecimiento κ-µ shadowed. Estas dos nuevas distribuciones, nombradas Beckmann
fluctuante y κ-µ shadowed correlado, incluyen como casos particulares a la gran mayoría
de distribuciones de desvanecimientos usadas en la literatura, abarcando desde los mod-
elos clásicos de Rayleigh y Rice hasta otros más generales y complejos como el Beckmann
y el η-µ. Para ambas distribuciones, se presenta su caracterización estadística de primer
orden, i.e., función generadora de momentos (MGF), PDF y CDF; así como los estadísti-
cos de segundo orden del modelo Beckmann fluctuante.
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Chapter 1

Introduction

Gaussian random variables — both real and complex — are massively used in com-
munications and signal processing mostly as a consequence of the central limit theorem,
which states that the sum of independent random variables is asymptotically Gaussian
distributed [1]. However, this interest does not only lie in the widespread use of the Gaus-
sian distribution as a limiting case, but also in the analysis of random variables arising
from normal ones.

Among these variables, linear combinations of squares of Gaussian variables, known
as Gaussian quadratic forms (GQFs), have a remarkable relevance. Their importance is
due to their wide number of applications, not only in the communication and signal
processing fields, but also in statistics. For instance, they naturally arise in problems
related to the detection of signals in Gaussian noise [2][3, sec. 13.5], the spectral detec-
tion of normally distributed stationary processes, χ2 tests [4, sec. 7], analysis of variance
[5], performance analysis of adaptive filter algorithms [6], energy detection [7] or perfor-
mance analysis of maximum likelihood (ML) estimators [8]. In general, any statistical
test based on Euclidean distances or any application of the method of least squares when
the involved variables are Gaussian will automatically bring a GQF [4, chap. 7].

In communications, GQFs play an important role when analyzing differential modu-
lation schemes [9], non-coherent modulations [10], diversity techniques [11]–[14], orthog-
onal space time block coding (OSTBC) [15] or relay systems [16], since the signal-to-noise
ratio (SNR) at the output of these systems is given in terms of a GQF when the channel
gains are assumed to be Gaussian distributed.

Moreover, GQFs have also a considerable importance in channel modeling, although
little attention has traditionally been paid to them in this context. Classically, in wireless
channels, it has been assumed that the number of reflections arriving to the receiver is
sufficiently large so that the central limit theorem can be applied, modeling the received
complex baseband signal as Gaussian [17]–[19]. Depending on the choice of the param-
eters of this underlying Gaussian variable (mean and variance of its real and imaginary
parts), different fading models arose in the related literature, e.g., Rayleigh, Rice and
Hoyt. All these classical distributions, including some generalizations introduced tens of
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years ago such as Nakagami-mmodel (with integerm) [20], can be seen as very particular
cases of a GQF.

In the last years, with the increased interest on channel modeling due to the emer-
gence of new scenarios and technologies, as the use of millimeter waves [21]–[24], large
intelligent surfaces [25], [26] and underwater communications [27], several novel distri-
butions have been proposed [28]–[31]. Many of them, which aim to improve the fitting to
measured data in these emerging scenarios and to provide more flexibility than classical
fading models, can also be regarded as particular cases of a more general GQF. Therefore,
the analysis of GQFs would unify the vast majority of fading models nowadays available
in the literature, sometimes with slight differences between them.

Unfortunately, despite their large number of applications, no closed-form expres-
sions are known for the distribution of arbitrary GQFs, and only a few particular cases
admit a closed formulation. Therefore, inherent to GQFs is the classical problem of ap-
proximating the distribution of random variables, for which several approaches have
been given in the literature over the years. These proposed methods include, among oth-
ers, the saddle-point technique [32]–[35], Edgeworth series [35]–[38], series expansions
in terms of orthogonal polynomials [39] or approximations in terms of other random
variables [40]–[45].

Although many of these classical techniques have been applied to the analysis of
GQFs, all the derived results suffer from the same common drawback: the resulting ex-
pressions do not represent a proper distribution, i.e., the approximated probability density
functions (PDFs) may not have unit area and probabilities greater than one (or even nega-
tive) can be obtained [39, p. 731][38, sec. 2]. In addition, the accuracy of these techniques
typically depends on the parametrization of the target variable, leading in some cases to
poor approximations or rendering convergence issues.

Motivated by the aforementioned importance of GQFs in communications and signal
processing, and taking into account that deriving exact expressions for the distribution
of such an intricate variables may pose a challenge from an analytic point of view, this
thesis revisits the problem of analyzing non-central GQFs. Along this line, a new method
to characterize these variables is proposed, aiming to circumvent the major drawbacks
of classical approaches and seeking simple and tractable approximations for the PDF
and cumulative density function (CDF) of both real and complex GQFs. The proposed
approach is later leveraged to be applied to arbitrary positive random variables, showing
the potential of the method and highlighting its main advantage: it ensures, for any level
of accuracy, that the resulting expressions represent a valid distribution.

Finally, exploiting the connection between GQFs and the distinct fading models, part
of this thesis is also devoted to the analysis of fading distributions, providing very gen-
eral and versatile — albeit tractable — models that unify the majority of the existing
distributions emerging from the application of the central limit theorem.
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1.1 Objectives

This thesis has two clearly defined objectives: i) proposing a new method to approx-
imate the distribution of both real and complex non-central GQFs, and ii) unifying most
of the fading distributions available in the literature under the umbrella of very general
models. Although these objectives seem apparently unconnected, it will be later shown
that in fact they are considerably related, and both are achieved by applying the same un-
derlying methodology. More specifically, the main objectives in the context of the analysis
of GQFs are as follows:

• Derivation of novel general approximations for both the PDF and CDF of positive
random variables which guarantee that the resulting expressions represent a valid
distribution.

• Application of the proposed method to positive definite real GQFs in order to pro-
vide new simple expressions that outperform the alternative results given in the
literature.

• Providing a new approximation to the distribution of complex GQFs that are
tractable enough to be useful for analytical purposes and its application to the
performance analysis of maximal ratio combining (MRC) systems with correlated
branches over line-of-sight (LoS) channels.

Regarding the second aforementioned objective, this thesis aim to propose new fad-
ing models that generalizes the majority of fading distributions arising from the central
limit theorem. To this end, the versatile and popular κ-µ shadowed distribution will be
used as starting point due to its tractability and empirical validation, and more general
(yet tractable) expansions will be sought.

1.2 Organization

This is a compilation thesis composed by several publications and some chapters
that provide coherence to the whole document. Therefore, the organization varies with
respect to the more classical structure of a monograph thesis. Specifically, it is organized
in four main chapters and the appendix section as follows:

1. Chapter 1. The current chapter, which contains the introduction and motivation of
the thesis, along with the objectives and organization of the rest of the document.

2. Chapter 2 provides the necessary background to understand the main contributions
of the thesis. It includes some basic concepts of probability, an overview of the tech-
niques classically employed to approximate the distribution of random variables,
an introduction to GQFs and a review of their state of the art and finally a brief
summary of both the classical and some of the generalized fading models available
in the literature.
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3. Chapter 3 summarizes the distinct publications gathered in this thesis, presenting
their main contributions and discussing their results.

4. Chapter 4. The last chapter, containing the conclusions and some future research
lines arisen from this thesis.

Finally, the publications included in the compilation are attached in Appendix A.

1.3 Publications

The following is a list of publications in refereed journals and conference proceedings
included as part of the compilation of this thesis:

• [46] P. Ramírez-Espinosa, D. Morales-Jimenez, J. A. Cortés, J. F. París, and E. Martos-
Naya, “New approximation to distribution of positive RVs applied to Gaussian
quadratic forms”, IEEE Signal Process. Lett., vol. 26, no. 6, pp. 923–927, Jun. 2019.
DOI: 10.1109/LSP.2019.2912295.

• [47] P. Ramírez-Espinosa, L. Moreno-Pozas, J. F. París, J. A. Cortés, and E. Martos-
Naya, “A new approach to the statistical analysis of non-central complex Gaus-
sian quadratic forms with applications”, IEEE Trans. Veh. Technol., vol. 68, no. 7,
pp. 6734–6746, Jul. 2019. DOI: 10.1109/TVT.2019.2916725.

• [48] P. Ramírez-Espinosa, F. J. López-Martínez, J. F. París, M. D. Yacoub, and E.
Martos-Naya, “An extension of the κ-µ shadowed fading model: Statistical charac-
terization and applications”, IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 3826–3837,
May 2018. DOI: 10.1109/TVT.2017.2787204.

• [49] P. Ramírez-Espinosa, J. F. París, J. A. Cortés, and E. Martos-Naya, “The κ-
µ shadowed fading model with arbitrary intercluster correlation”, in 2018 15th
Int. Symp. Wireless Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5. DOI:
10.1109/ISWCS.2018.8491099.

Publications [46] and [47] gather the results referring to the approximation to the
distribution of random variables and the analysis of GQFs, while papers [48] and [49]
present the new general fading models.
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Chapter 2

Background

The purpose of this chapter is to introduce several preliminary results and defini-
tions, providing the necessary background to understand the results that will be later
presented.

It is organized as follows. Section 2.1 introduces the general notation, while in Section
2.2 some well-known results on random variables are introduced along with a couple of
relevant statistical distributions that will be used throughout this thesis. In addition,
some of the most classical approaches that are used to approximate the distribution of
random variables are summarized. Section 2.3 deals with Gaussian quadratic forms,
considering both the real and complex cases and providing an overview of the different
approaches given in the literature to approximate their distribution. Finally, Section 2.4
revisits several models that have been traditionally used to characterize fading in wireless
environments, along with new distributions recently proposed to that end.

2.1 General notation

Notation for common sets
j imaginary unit,

√
−1.

Re{·}, Im{·} Real and imaginary parts.

C,R,N Complex, reals and natural numbers.

R+, N+ Positive real and integers numbers excluding 0.
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Notation for used functions
ln Natural logarithm.

max,min Maximum and minimum.

lim Limit.

∀ For all.

, Defined as.

| · | Absolute value.

‖ · ‖ Modulus.

Iν(·) Modified Bessel function of first kind [50, eq. (9.6.18)].

Γ(·) Gamma function [50, eq. (6.1.1)].

γ(·, ·) Lower incomplete gamma function [50, eq. (6.5.2)].

1F1(·; ·; ·) Kummer’s hypergeometric function [51, eq. (9.210 1)].

L{·},L−1{·} Laplace transform and inverse Laplace transform.

Notation for probability and asymptotics

P{·} Probability.

E[·] Expectation operator.

∼ Statistically distributed as.

fX(x) PDF of X .

FX(x) CDF of X .

MX(s) MGF of X .

Matrix-vector notation
x,X Vectors and matrices are denoted with bold lower and upper case, respectively.

Rm×n,Cm×n Real and complex m× n matrices.

(X)i,j (i, j)-th element of the matrix X.

In n× n identity matrix.

0n×m n×m matrix of all zeroes.

(·)T , (·)† Transpose, conjugate-transpose.

2.2 Some results on random variables

This section defines some types of convergence of random variables, focusing on
the relationships between them. Moreover, the Gaussian, the χ2 and the gamma dis-
tribution are revisited, not only providing their first order statistics but also presenting
the connection between them as well as some properties that will be used later. Finally,
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this section briefly summarizes some of the most widely used techniques to approximate
the distribution of random variables, i.e., the saddle-point technique, Gram-Charlier and
Edgeworth series and expansions in terms of orthogonal polynomials and other density
functions.

2.2.1 Convergence between sequences of random variables

Many of the most relevant results in probability, e.g., the central limit theorem [1, sec.
27] or Lévy’s continuity theorem (also known as Lévy’s convergence theorem) [52, chap.
18], are related to the asymptotic behavior of distributions of random variables. The
work presented in this thesis is also partially based on the limit behavior of sequences of
random variables and the concept of convergence. Thus, different types of convergence
are defined next, as well as the relationships between them.

Weak convergence

Let {Xn : n ∈ N+} be a sequence of real random variables. Then, {Xn}1 converges
weakly, or converges in distribution, to the random variable X ∈ R if

lim
n→∞

FXn(x) = FX(x) (2.1)

at every continuity point x, with FXn(x) and FX(x) denoting the CDF of Xn and X ,
respectively [1, sec. 25]. This is expressed as {Xn} ⇒ X .

Note that weak convergence ensures that the sequence {FXn(x)} has a limit FX(x),
but it does not guarantee the convergence of the respective PDFs. The conditions under
which weak convergence also implies that of PDFs are given in [53]. Specifically, let
fXn(x) and fX(x) denote the PDFs of Xn and X , respectively. Therefore, if {Xn} ⇒ X

and

i fXn(x) and fX(x) are continuous functions,

ii fXn(x) is bounded, i.e., supn fXn(x) ≤ a <∞ for all x with a any number,

iii {fXn(x)} is equicontinuous, i.e., for each point x and y, there exists g(x, ε) and
h(x, ε) with ε > 0 such that |x − y| < g(x, ε) implies that |fXn(x)− fXn(y)| < ε

for all n ≥ h(x, ε),

then lim
n→∞

fXn(x) = fX(x). In turn, convergence of PDFs always implies that of CDFs by
virtue of Scheffe’s theorem [54].

1For simplicity, the notation for sequences of random variables is simplified when no confusion may
arise.
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Moreover, consider {Xn} ⇒ X and let g : R → R be any continuous and bounded
function. Therefore, from Helly-Bray theorem [55, sec. 1.3], we have that

lim
m→∞

E[g(Xn)] = E[g(X)]. (2.2)

Convergence in probability

Consider again a sequence of real random variables defined as {Xn : n ∈ N+}. Then,
{Xn} converges in probability to another random variable X ∈ R if

lim
n→∞

P {|Xn −X| > ε} = 0 (2.3)

for ε > 0 [56, sec. 6.2]. It is denoted by {Xn} p−→ X .

It can be proved that condition in (2.3) is more restrictive than that in (2.1). In fact, if
{Xn} p−→ X then {Xn} ⇒ X , although the converse does not hold in general [1, thm. 25.2].
Convergence in distribution implies convergence in probability when the limit random
variable is a constant, i.e., X = c. Under this condition, {Xn} ⇒ c also implies {Xn} p−→ c

[1, thm. 25.3].

Lp convergence

The last type of convergence here presented is the Lp convergence. It is said that
a sequence of real random variables {Xn : n ∈ N+} converges in Lp to a limit random
variable X ∈ R if

lim
n→∞

E [|Xn −X|p] = 0 (2.4)

for p ∈ N+ [56, sec. 6.5], and it is expressed as {Xn}
Lp−→ X .

The most common types of Lp convergence are for p = 1, 2. If {Xn}
Lp−→ X for

p = 1, then it is said that {Xn} converges in mean to X , and if it does for p = 2 then
{Xn} converges in mean square to X . Moreover, Lp convergence for a certain value of p
ensures that (2.4) holds for any p′ such that p > p′ ≥ 1.

An important remark is that Lp convergence for p ≥ 1 implies convergence in prob-
ability and, consequently, convergence in distribution. This can be straightforwardly
proved by applying Markov’s inequality [52, sec. 6.4] to (2.3):

lim
n→∞

P {|Xn −X| > ε} ≤ lim
n→∞

E[|Xn −X|p]
εp

(a)
= 0, (2.5)

where Lp convergence is assumed in (a).
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2.2.2 The Gaussian distribution

Gaussian random variables (both real and complex) appear in a multitude of appli-
cations in communications and signal processing, mainly as a limit distribution due to
the central limit theorem. Hence, the Gaussian distribution is used, e.g., to characterize
random noise [57] and channel gains in wireless communications [17], [18], to mention
but a couple of relevant examples. Its importance in this thesis is also relevant, since most
of the random variables here considered are based on the Gaussian distribution.

The real case

A real random variable X follows a Gaussian distribution with mean µ and variance
σ2, i.e., X ∼ N (µ, σ2), if its PDF is expressed as [19, eq. (2.3-8)]

fX(x) =
1√

2πσ2
e−(x−µ)2/(2σ2). (2.6)

Its CDF is calculated by integrating (2.6) as

FX(x) =

∫ x

−∞

1√
2πσ2

e−(x−µ)2/(2σ2)dx = 1−Q
(
x− µ
σ

)
(2.7)

where Q(·) is the Gaussian Q-function [18, eq. (4.1)].

The complex case

Consider now two independent real Gaussian random variablesX1 andX2 such that
X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2). Then, the random variable X = X1 + jX2 follows

a complex Gaussian distribution with mean µ = µ1 + jµ2, variance σ2 = σ2
1 + σ2

2 and
pseudovariance c2 = σ2

1 − σ2
2 , i.e., X ∼ CN (µ, σ2, c2). The PDF of X is readily obtained

due to the independence between X1 and X2 as

fX(x) =
1

π
√
σ4 − c4

exp

(
−σ

2‖x− µ‖2
σ4 − c4

+ Re

{
c2(x− µ)2

σ4 − c4

})
. (2.8)

If σ2
1 = σ2

2 = σ2/2, then (2.8) simplifies to [58, eq. (2)]

fX(x) =
1

πσ2
e‖x−µ‖

2/σ2
(2.9)

and the shorthand notation X ∼ CN (µ, σ2) is used.

Of special interest in many cases is the analysis of circularly symmetric Gaussian
variables. A complex random variable X is said to be circularly symmetric if fX(x) =

fY (y) with Y = ejφX for all φ ∈ R, requiring thus that µ = c2 = 0 [59]. However, in
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some applications (e.g., channel modeling), non-circularly symmetric Gaussian variables
are also relevant.

2.2.3 The χ2 distribution

The χ2 distribution plays an important role in many statistics applications, specially
in hypothesis and goodness-of-fit testing [60, chap. 30]. Closely related to the Gaussian
distribution, the χ2 distribution describes the statistical behavior of the sum of n inde-
pendent squared Gaussian random variables. Thus, consider

X =
n∑

i=1

Z2
i (2.10)

where Zi are independent and real Gaussian random variables. Then X follows a χ2

distribution with n degrees of freedom [19, sec. 2.3]. Depending on whether Zi have zero
mean or not, we differentiate between the central and the non-central case.

The central χ2 distribution

If Zi in (2.10) have zero mean and equal variance σ2 for all i, i.e., Zi ∼ N (0, σ2) ∀ i,
then X follows a central χ2 distribution with PDF [19, eq. (2.3-21)]

fX(x) =
1

2n/2Γ(n/2)σn
xn/2−1e−x/(2σ

2) (2.11)

where Γ(·) is the gamma function [50, eq. (6.1.1)], and it is denoted by X ∼ χ2
n(σ2). Its

CDF can be directly obtained by integrating (2.11) as

FX(x) =
2−n/2

σnΓ
(
n
2

)
∫ x

0
yn/2−1e−y/(2σ

2)dy =
1

Γ
(
n
2

)
∫ x

2σ2

0
un/2−1e−udu =

1

Γ
(
n
2

)γ
(n

2
,
x

2σ2

)

(2.12)
where γ(·, ·) is the lower incomplete gamma function [50, eq. (6.5.2)].

Finally, the moment generating function (MGF) of X is calculated using [51, eq.
(3.381 4)] as

MX(s) =

∫ ∞

0
fX(x)esxdx =

(
1− 2σ2s

)−n/2
, (2.13)

which is valid for all s ∈ C such that Re{s} < 1/(2σ2).
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The non-central χ2 distribution

In case Zi in (2.10) have non-zero mean but equal variances, i.e., Zi ∼ N (µi, σ
2) ∀ i,

then the PDF of X is given by [19, eq. (2.3-29)]

fX(x) =
1

2σ2

( x
δ2

)(n−2)/4
exp

(
−x+ δ2

2σ2

)
In/2−1

(
δ/σ2√x

)
(2.14)

where Iν(·) is the modified Bessel function of the first kind [50, eq. (9.6.18)] and δ2 =∑n
i=1 µ

2
i is the non-centrality parameter. We denote that by X ∼ χ2

n(σ2, δ2).

The MGF of X in this case can be obtained from (2.14) by using [51, eqs. (6.643 2),
(9.220 2) and (9.215 1)] as

MX(s) =

∫ ∞

0
fX(x)esxdx =

exp
(

δ2s
1−2σ2s

)

(1− 2σ2s)n/2
, Re{s} < 1/(2σ2). (2.15)

2.2.4 The gamma distribution

Due to its mathematical tractability and its connection to the exponential and Gaus-
sian distribution, the gamma distribution is extensively used in a wide variety of ap-
plications in physics, statistics and communications, e.g., waiting times in queues [61],
electromigration for submicron interconnects [62] and wireless channel modeling [18], to
mention but some relevant examples. The gamma distribution is also of special interest
to the main results derived in this thesis.

Definition and first order statistics

A random variable X follows a gamma distribution with shape parameter m ∈ R+

and scale parameter θ ∈ R+, i.e., X ∼ Γ(m, θ), if its PDF is expressed as [63, eq. (17.23)]

fX(x) =
1

Γ(m)θm
xm−1e−x/θ. (2.16)

Comparing (2.11) and (2.16), it can be observed that the gamma distribution gener-
alizes the central χ2 distribution by letting the m parameter (equivalent to the degrees
of freedom in the χ2 distribution) take any positive real value instead of only natural
numbers.

As with the χ2 distribution, the CDF of X is directly obtained by integrating (2.16) as

FX(x) =
1

Γ(m)θm

∫ x

0
tm−1e−t/θdt =

1

Γ(m)

∫ x/θ

0
ym−1e−ydy =

1

Γ(m)
γ(m,x/θ). (2.17)
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Moreover, the MGF of gamma distribution is readily calculated from (2.16) as

MX(s) =

∫ ∞

0
fX(x)esxdx, (2.18)

where the application of [51, eq. (3.381 4)] leads to

MX(s) = (1− θs)−m, Re{s} < 1/θ, (2.19)

obtaining an expression very similar to (2.13). Finally, from (2.19), the n-th moment of
the distribution are derived as

E[Xn] =
dn

dsn
MX(s)

∣∣∣∣
s=0

=
Γ(m+ n)

Γ(m)
θn. (2.20)

The gamma distribution is alternatively formulated in terms of the shape parameter
m and the rate parameter β = 1/θ, or in terms of m and Ω = E[X] = mθ. Expressions
for the MGF, PDF and CDF of the gamma distribution with the distinct formulations are
straightforwardly obtained from (2.16), (2.17) and (2.19) just by applying the equivalences
between the different parameters.

Gamma distribution with integer parameters

An interesting particular case of the gamma distribution is that in which the shape
parameter m is a positive integer, i.e., m ∈ N+. If so, then the gamma random variable
X can be generated from independent and identically distributed (i.i.d.) real Gaussian
random variables as

X =

2m∑

i=1

Z2
i , (2.21)

where Zi ∈ R follow a Gaussian distribution with zero mean and variance θ/2, i.e., Z ∼
N (0, θ/2). As stated before, this case corresponds to the central χ2 distribution with
n = 2m degrees of freedom and σ2 = θ/2.

Remarkably, the CDF of gamma distribution (and that of the central χ2 distribution
when n is even) can be simplified under the assumption of m ∈ N+ by applying [51, eq.
(3.351 1)] to the integral in (2.17), obtaining

FX(x) = 1− e−x/θ
m−1∑

k=0

xk

k!θk
(2.22)

and considerably improving the mathematical tractability of the distribution.
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FIGURE 2.1: PDF and CDF of gamma distribution for different values of m and
Ω = 1

Degeneration of the gamma distribution

Of special interest to this thesis is the property of the gamma distribution of becoming
a degenerate distribution. It is said that a distribution is degenerate if its corresponding
random variable X ∈ R has only one possible value x0 with probability P (X = x0) = 1

[64, sec. 3.1] 2. Consequently, the PDF of X is a delta function at x0.

That can be achieved in the case of the gamma distribution by letting m → ∞. To
prove that, consider first the sequence {Xm : m ∈ N+} where Xm is gamma distributed
with shape parameter m and E[Xm] = Ω and whose characteristic function (CF) is given
by

φXm(jt) = E
[
ejtXm

]
= MXm(jt) =

(
1− jΩt

m

)−m
(2.23)

where j denotes the imaginary number j =
√
−1. Taking the limit in (2.23) leads to

lim
m→∞

φXm(jt) = ejΩt, (2.24)

which correspond to the CF of the constant variable C = Ω. Therefore, by virtue of
Levy’s convergence theorem [52, chap. 18], we have that {Xm} ⇒ C. That is, increasing
the value of m leads to a reduction in the variance of the gamma distribution and, in the
limit, it becomes a constant variable whose PDF is a delta function at x = Ω (equivalently,
its CDF tends to the step function). This behavior is shown in Fig. 2.1, where both the
PDF and CDF of a gamma distribution is depicted for distinct m.

2.2.5 Classical approximations to the distribution of random variables

As introduced in Chapter 1, approximating the distribution of a random variable is
a classical problem in applied statistics, mainly because of the difficulty of deriving exact

2Note that this definition only applies for 1-dimensional distributions.
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and tractable expressions for the PDF and CDF of many random variables, e.g., GQFs [4].
Therefore, several efforts have been devoted to providing general methods that allow
to approximate the distribution of such intricate variables. Most of these techniques are
based on the knowledge of either the moments or the CF (or, equivalently, the MGF) of
the target variable. This subsection aims to present a brief overview of the most classical
methods to obtain approximations to distributions, highlighting their main flaws.

The saddle-point technique

The saddle-point technique (or method of steepest descent) is a generalization of
Laplace’s method to approximate integrals of the form

I =

∫

C
f(t)eαg(t)dt (2.25)

where C is a contour on the complex plane and α is a large number. It is extensively
used in statistics to approximate the distribution of random variables from its MGF or its
characteristic function by means of the inversion theorem [1, sec. 26]. Therefore, since
the MGF can be seen as the Laplace transform of the PDF, the latter is calculated by
performing the inverse transform as

fX(x) =
1

j2π

∫ τ+j∞

τ−j∞
e−sxMX(s)ds (2.26)

with τ ∈ R. The above integral is rewritten as

fX(x) =
1

j2π

∫ τ+j∞

τ−j∞
exp (KX(s)− sx) ds (2.27)

whereKX(s) = lnMX(s) is the cumulant generating function (CGF). ExpandingKX(s)−
sx in Taylor series around a point s = t0(x) such that K ′X(t0(x)) = x, we have

fX(x) ≈ 1

j2π
exp (KX(t0(x))− t0(x)x))

∫ τ+j∞

τ−j∞
exp

(
1

2
(s− t0(x))2K

′′
X(t0(x))

)
ds.

(2.28)

The point s = t0(x) is a saddle-point of KX(s) − sx, where the function is constant
in the imaginary direction and has an extreme in the real one [32]. Hence, choosing
τ = t0(x), the integral in (2.28) is dominated by the value of the integrand at this point,
and the approximation is tight. Solving the integral we obtain the saddle-point approxi-
mation for fX(x) as [32, eq. (21)]

fX(x) ≈ exp (KX(t0(x))− t0(t)x))

√
1

2πK
′′
X(t0(x))

. (2.29)
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Similarly, the saddle-point technique can also be used to derive approximations for
the CDF of X (see [32]–[35] for a more detailed explanation of this technique).

Despite it is widely used in statistics, the above approximation has two main draw-
backs. First, there is no guarantee that (2.29) represents a valid distribution (generally it
does not), i.e., the approximated PDF may not have unit area and probabilities greater
than one might be obtained. Second, increasing the accuracy of the approximation is not
trivial since it implies considering higher terms in the Taylor series, considerably compli-
cating the calculation of the integral in (2.28).

Gram-Charlier and Edgeworth series

Gram-Charlier and Edgeworth series are used to approximate the PDF and CDF of
a random variable, whose moments or cumulants are known, from another baseline dis-
tribution. We here present the formulation given in [35, chap. 3][36, chap. 5], although
alternative formulations can be found in other works (see e.g. [37], [38]).

Consider two random variables X and Y with PDFs fX(x) and fY (y) and MGFs
MX(s) and MY (t), respectively. The MGF of X can be expressed in terms of a power
series as [35, p. 32]

MX(s) = MY (s)
∞∑

i=0

µi
si

i!
, (2.30)

where µi are the moments of the distribution whose cumulants are given by the difference
of those ofX and Y . Hence, defining κxj and κyj as the cumulants ofX and Y respectively,
µi are calculated as [65]

µi =

i−1∑

j=0

(
i− 1

j

)
µj(κ

x
i−j − κyi−j) (2.31)

for i > 1 with µ0 = 1 and µ1 = κx1−κy1. Formally, µi are not true moments of a distribution,
since κxj − κyj do not necessarily represent the cumulants of any random variable [36, p.
153].

To obtain the approximation to fX(x) is necessary to invert (2.30) term by term, tak-
ing into account that from the definition of the MGF the first term is fY (x). For the other
terms, it can be proved that, if fY (x) is uniformly continuous, then [36, eq. (38)]

∫ ∞

−∞
esxf

(n)
Y (x)dx = sn(−1)nMY (s) (2.32)

and, therefore, the PDF of X is expanded as

fX(x) =

∞∑

i=0

f
(i)
Y (x)

(−1)iµi
i!

= fY (x)

∞∑

i=0

gi(x)
µi
i!
, (2.33)
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where gi(x) = (−1)if
(i)
Y (x)/fY (x). The complexity of the series expansions is thus deter-

mined by the computation of the derivatives of the baseline PDF, fY (x). If Y is chosen to
follow a standard Gaussian distribution, i.e., Y ∼ N (0, 1), then the expansion in (2.33) is
known as Gram-Charlier series and gi(x) is given by

gi(x) = 2−i/2Hi(x/
√

2), (2.34)

with Hi(·) the i-th order Hermite polynomial [51, eq. (8.950 1)]. Similarly, the CDF of X
can be expanded in the same way just by dividing by s both terms in (2.30).

Although useful in some cases (e.g., the sum of independent and identically dis-
tributed random variables), Edgeworths series have important flaws. First, as with the
saddle-point method, the approximated functions are not guaranteed to be proper PDFs
(in fact negative probabilities may be obtained), and the accuracy is typically low in the
tails of the distribution (the method ensures an absolute error but not a relative one) [35,
chap. 3]. Therefore, if we are interested in estimating low probabilities (as in performance
analysis in communications and signal detection), this type of approximations may lead
to large errors. Moreover, under certain conditions, increasing the number of terms that
are computed does not necessary increase the accuracy of the approximation [38, p. 14].

Orthogonal polynomials series

Another classical way of approximating the distribution of a random variable X ∈ R
is expressing its PDF as a series of the form

fX(x) = g(x)
∞∑

i=0

ωihi(x) (2.35)

where g(x) is a known function, ωi are constants and hi(x) is a sequence of orthogo-
nal polynomials. Gram-Charlier series in (2.33) belongs to these type of expansions, for
which g(x) is the standard Gaussian PDF and hi(x) are the Hermite polynomials.

Expansions of the form (2.35) in terms of Lagrange and Laguerre polynomials are de-
rived in [66, chap. 7][39] under some conditions. As with Edgeworth series, the moments
of X (or its cumulants, since they are related as proved in [65]) are needed to build these
approximations.

Specifically, consider a random variable X whose PDF has finite domain [−1, 1] and
whose n-th moment is given by µxn. Therefore, fX(x) admits the following expansion [39,
eq. (1)]

fX(x) =
∞∑

i=0

λiPi(x), (2.36)
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with Pi(x) the i-th order Legrendre polynomial [51, eq. (8.911 1)] and

λi =
2i+ 1

2i+1

di/2e∑

j=0

(−1)j
(2i− 2j)!

j!(i− j)!(i− 2j)!
µxi−2j , (2.37)

where d·e is the ceiling function, i.e., for any real number α it gives the least integer greater
than or equal to α.

The approximant in (2.36) can be generalized to any random variable Y defined in a
closed interval [a, b] with moments µyj by performing the change of variables

X̂ =
2Y − (a+ b)

b− a (2.38)

such that X̂ ∈ [−1, 1]. Using now (2.36) and reverting the change of variables the PDF of
Y is expressed as

fY (y) =
2

b− a
∞∑

i=0

λ̂iPi

(
2y − (a+ b)

b− a

)
, (2.39)

where λ̂i are calculated as in (2.37) but replacing µxj by the moments of X̂ , which are
obtained from those of Y as

µx̂j =
1

(b− a)j

j∑

k=0

(
j

k

)
2kµyk(−1)j−k(a+ b)j−k. (2.40)

Moreover, for positive random variables X ∈ R+ with moments µxn and whose PDF
has domain [0,∞), a similar expansion can be obtained for fX(x) based on Laguerre
polynomials, which is given by [39, eq. (27)]

fX(x) =
(x− a)ve−y/c

cv+1

∞∑

i=0

δiL
α
i (y/c) (2.41)

with c = (µx2 − (µx1)2)/µx1 , v = µx1/c− 1, Lαi (·) the i-th order Laguerre polynomial [51, eq.
(8.970 1)] and

δi =
i∑

k=0

(−1)k
i!µxi−k

ci−kk!(i− k)!Γ(v + i− k + 1)
. (2.42)

Expansions (2.39) and (2.41) are in general more tractable than other approximations
arising, e.g., from the application of saddle-point technique, being therefore useful for
further analytical purposes. However, once again, these series need to be truncated in or-
der to be computed, rendering expressions which do not represent a proper distribution.
In addition, the accuracy of the approximation strongly depends on the random variable
under analysis. Thus, expansions of the type (2.41) are only recommended when the tail
behavior of the target distribution is similar to that of the gamma distribution [66, p. 301].
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Series expansions as mixtures of other densities

As already stated, the main drawback of the aforementioned techniques is that the
resulting expressions do not represent proper distributions [40]. Aiming to overcome
this issue, several efforts have been devoted in the related literature to seeking alter-
native approximants that fulfill the condition of being valid PDFs themselves. In this
context, approximations based on mixture of density functions have been proposed [40]–
[45], specially to fit the distribution of empirical data, providing approximants to a target
PDF fX(x) of the form [41, eq. (1.4)]

fX(x) ≈
n∑

i=1

wig(x;θi) (2.43)

where g(x;θi) is the PDF of the baseline distribution depending on a set of parameters θi
and wi are constants such that

∑n
i=1wi = 1. The issue is now the choice of the baseline

density function and the calculation of the mixture parameters, namely n, wi and θi.
Unfortunately, due to the generality of the problem, it is remarkably difficult to provide
a general method to approximate an arbitrary distribution by (2.43).

Due to its mathematical properties and its practical importance, one of the most com-
mon choices for g(·) is the Gaussian distribution. In fact, it can be proved that any random
variable can be obtained as the limit of a linear combination of Gaussian variables [43],
[44]. However, other distributions such as gamma [42] or exponential [41, chap. 3] have
also been proposed to approximate positive variables.

Similarly, several techniques have been classically used to estimate the mixture pa-
rameters. The method of moments is perhaps the most widely-extended preference, im-
posing that the first p moments of the mixture must be equal to those of the target distri-
bution. Hence, a system of equations given by

µj =
n∑

i=1

wiµ̂j(θi), j = 1, . . . , p (2.44)

arise, where µj and µ̂j denote the exact and mixture moments, respectively. This system
can be solved to determine wi and θi for a given n, although for relatively large n it may
be extremely tedious.

When the mixture model is used to approximate the distribution of empirical data,
the distinct parameters can be estimated by solving the optimization problem that mini-
mizes the Lp distance between the empirical and the mixture PDFs, defined as

Lp = E

[∣∣∣∣∣f̂X(x)−
n∑

i=1

wig(x;θi)

∣∣∣∣∣

p]
(2.45)

where x is the observed data. Another alternative is using the ML estimation [41, chap.
1]. Bayesian estimation has also been proposed to seek the mixture parameters when
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characterizing stochastic non-linear systems [45] and linear systems with non-Gaussian
noise [40].

On the whole, although approximants based on mixtures of density functions are
a good alternative to the other techniques, the lack of a general methodology and the
difficulty in estimating the mixture parameters ultimately limit their usefulness.

2.3 Gaussian quadratic forms

Due to their vast number of applications, and because one of the main purposes of
this thesis is the analysis of GQFs, this section summarizes some of their most relevant
properties, as well as the distinct methods that have been proposed to their statistical
characterization.

2.3.1 Definition

The real case

Let x ∈ Rn×1 be a constant vector, A ∈ Rn×n be a symmetric matrix and x ∈ Rn×1

be a random vector following a multivariate normal distribution with zero mean and
covariance matrix Σ ∈ Rn×n, i.e., x ∼ Nn(0n×1,Σ). Then, the real random variable

QR = (x + x)TA(x + x) (2.46)

is a real GQF [4, eq. (3.1.1)]. If all the entries of x are zero, i.e., x = 0n×1, then QR is a
central quadratic form. In turn, if x 6= 0n×1, it is non-central. Moreover, QR is said to be
definite or indefinite depending on whether A is definite or not, respectively.

The quadratic form QR admits an alternative formulation in terms of independent
standard Gaussian variables, which can be derived by applying simple algebraic trans-
formations to (2.46). Thus, consider any decomposition of the form Σ = CCT , e.g.,
C = Σ1/2, and the vector s = Cz where z ∼ Nn(0n×1, In). It can be easily proved that s

is Gaussian distributed with

E[s] = CE[z] = 0n×1 = E[x], (2.47)

E[ssT ] = CE[zzT ]CT = Σ = E[xxT ] (2.48)

and, therefore, QR can be expressed as

QR =
(
z + C−1x

)T
CTAC

(
z + C−1x

)
. (2.49)

Since CTAC is symmetric, it can be diagonalized as CTAC = UΛUT , where U is
an orthogonal matrix and Λ is a diagonal matrix whose entries, λi for i = 1, . . . , n are



20 Chapter 2. Background

the eigenvalues of CTAC (or, equivalently, those of ΣA) [67, chap. 2]. Hence, relabeling
y = UT z and b = UTC−1x, we finally have

QR = (y + b)TΛ(y + b) =

n∑

i=1

λi(yi + bi)
2 (2.50)

where yi and bi are the entries of y and b respectively. Note that, since U is orthogonal,
the distribution of y is the same as that of z, i.e., y ∼ Nn(0n×1, In). Therefore, QR is
expressed as a linear combination of independent squared Gaussian random variables
with means bi, or equivalently, as a linear combination of independent noncentral χ2

distributions of the form

QR =
n∑

i=1

λiYi, Yi ∼ χ2
1(1, b2i ). (2.51)

Also, regarding (2.50), it can be observed that if λi = 0 for some i, then QR is equiva-
lent to another quadratic form of less order. That corresponds to the case in which either
or both A and Σ are rank deficient, and consequently the rank of CTAC is r < n and
λi = 0 for i = r + 1, . . . , n. For simplicity, and without any loss of generality, hereinafter
we will assume that both A and Σ are full-rank. Moreover, if A is positive or negative
definite then λi > 0 and λi < 0 for all i, respectively, and equivalently λi can take both
positive and negative values if A is indefinite.

The complex case

Analogously to the real case, GQFs in complex variables are defined as

QC = (v + v)†A(v + v) (2.52)

where, in this case, v ∈ Cn×1 is a constant vector representing the mean of v, A ∈ Cn×n

is an Hermitian matrix and v ∈ Cn×1 is complex multivariate Gaussian vector with zero
mean and covariance matrix Σ ∈ Cn×n, i.e. v ∼ CN n(0n×1,Σ).

By following similar steps as in the real case, QC can also be written in terms of
independent Gaussian variables. To that end, consider again any decomposition of Σ

such that Σ = CC†, e.g., the Cholesky factorization [68, p. 441], and diagonalize C†AC as
C†AC = UΛU†, where U is an unitary matrix and Λ is a diagonal matrix whose entries
are the eigenvalues of C†AC. Note that since C†AC is Hermitian, all its eigenvalues are
real [67, p. 42]. By doing so and naming h = U†C−1v, we obtain

QC = (s + h)†Λ(s + h) (2.53)

where s is a complex multivariate standard Gaussian vector, i.e., s ∼ CN n(0n×1, In).
Furthermore, denoting by si = xi+jyi and hi = pi+jqi the entries of s and h respectively,
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with xi, yi ∼ N (0, 1/2) ∀ i, QC can be finally expressed as

QC =
n∑

i=1

λi ‖si + hi‖2 =
n∑

i=1

λi
[
(xi + pi)

2 + (yi + qi)
2
]
. (2.54)

Comparing (2.54) and (2.50), it is clear that a complex quadratic form is equivalent
to a real one of double order n for which the eigenvalues λi are equal in pairs. As with
QR, QC can also be expressed as a linear combination of independent non-central χ2

distributions as

QC =

n∑

i=1

λiYi, Yi ∼ χ2
2(1/2, ‖hi‖2). (2.55)

Moreover, if pi = qi = 0 ∀ i, then (2.54) corresponds to the gamma distribution with
integer parameters in (2.21) by mapping n = m and λi = θ ∀ i. Lastly, note that as in the
real case, if C†AC is rank deficient then some λi are zero, andQC is equivalent to another
quadratic form of order r < n.

2.3.2 Statistical characterization of non-central Gaussian quadratic forms

Although the MGF of both real and complex GQFs can be straightforwardly obtain
from that of the χ2 distribution, closed-form expressions for their PDF and CDF remain
unknown for the general case. In the real case, exact closed-form expressions can only
be obtained under certain conditions (e.g., A = Σ = I, the identity matrix), remain-
ing in complicated integral form for the general case, even when the involved random
variables have zero mean. Quadratic forms in complex Gaussian variables are slightly
more tractable, allowing a simple formulation for the main statistics in the central case.
However, only approximated solutions have been given in the non-central one.

Due to the vast number of applications of both real an complex GQFs and the chal-
lenge that poses their statistical characterization, considerable efforts have been devoted
in the last decades to their study [4], [5], [11], [69]–[79]. This section aims to provide a
brief overview of the distinct approximations given in the literature to the distribution
of these type of variables, focusing on the non-central case due to its generality. The real
and complex cases are reviewed separately, although as stated before, any complex GQF
can be considered as a real one with the eigenvalues given in pairs, so the analysis for
real variables actually includes both cases.

The real case

Since any real GQF can be expressed as a linear combination of independent non-
central χ2 distributions as in (2.51), the MGF of QR is readily calculated as the product of
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the individual MGFs of the χ2 random variables. Thus, from (2.15) we obtain

MQR(s) =
n∏

i=1

exp

(
b2iλis

1− 2λis

)
(1− 2λis)

−1/2, λiRe{s} < 1/2 ∀ i. (2.56)

Note that in the central case, i.e., bi = 0 ∀ i, then the exponential term vanishes.

As for the PDF and the CDF, their analysis can be traced back to the work by Robbins
and Pitman [69], where the distribution of positive definite central quadratic forms was
expressed as a mixture of central χ2 densities. A similar expansion was proposed and
extended to the ratio of central GQFs in [5] in the context of the analysis of variances.
Ruben [80] generalized the analysis by presenting another approximation in terms of
non-central χ2 variables which is also valid in the non-central case, although the restric-
tion of positive definiteness still holds.

Other types of series expansions were proposed, e.g., by Gurland [74], who proposed
an approximant of the form (2.36) in terms of Laguerre polynomials in the positive def-
inite central case and in terms of more complicated polynomials in the non-central case.
In [72], Shah extended the work by Gurland, considering by first time the most general
case, i.e., indefinite non-central GQFs, giving expressions for the PDF and CDF in terms
of intricate orthogonal polynomials. Unfortunately, the challenging computation of such
polynomials and the complexity of the derived expressions considerably limit the useful-
ness of the proposed results. Imhof also considered the indefinite non-central case [73],
proposing the inversion of the CF by numerical integration.

All the above series expansions were unified (although restricted to the positive def-
inite case) by Kotz et al. for both the central [70] and non-central case [71], and revisited
several years later in [4], providing a general method to seek approximations for positive
definite real GQFs in terms of powers, orthogonal polynomials and χ2 densities. This
general method aims to find a series expansion for the PDF of the form [71, eq. (106)]

fQR(x) =
∞∑

k=0

ckhk(x) (2.57)

where ck are constants and {hk(x) : k ∈ N} is a sequence of known functions. Therefore,
if ∞∑

k=0

ckhk(x) ≤
∞∑

k=0

|ck||hk(x)| ≤ βeαx (2.58)

for all x ∈ R+ with α and β real constants, then the Laplace transform of fQR(x) is calcu-
lated as [4, lem. 4.2a.1]

L{fQR(x)} , f̂(s) ,
∞∑

k=0

ckĥk(s), Re{s} > α (2.59)

where ĥk(s) denotes the Laplace transform of hk(x).
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The method is then based on choosing hk(s) such that (2.58) holds and

ĥk(s) = g(s)ηk(s) (2.60)

with g(s) an analytic, non-vanishing function and η(s) is analytic for Re{s} > α and has
inverse function φ(s), i.e. η(φ(s0)) = s0.

Once the baseline sequence of functions {hk(x)} is chosen, the coefficients ck are ob-
tained from equating (2.59) with (2.56). Moreover, the CDF can be obtained by integrating
term by term (2.57). At this point, different series arise depending on this choice:

• Power series. In this case hk(s) is given by

hk(x) = (−1)k
xn/2+k−1

Γ(n/2 + k)
(2.61)

and, therefore, g(s) = s−n/2 and η(s) = (−s)−1. With this choice, the CDF of real
non-central Gaussian quadratic forms is expressed as [4, eq. (4.2b.13)]

FQR(x) =
∞∑

i=0

ck(−1)k
xn/2+k−1

Γ(n/2 + k)
(2.62)

where ck are calculated as in [4, eqs. (4.2b.5), (4.2b.8) and (4.2b.10)]. The major lim-
itation of (2.62) is the calculation of ck, since numerical issues could be significantly
relevant. The problem is that, although ck usually take small values for all k, they
are calculated as the difference of large numbers, which is a challenging task due to
the limited floating-point precision in calculation software [71, p. 840].

• Laguerre series. This particular case arises when choosing

hk(x) =
k!

2βLΓ(n/2 + k)

(
x

2βL

)n/2−1

e−x/2Ln/2−1
k

(
x

2βL

)
(2.63)

with Lαk (·) the k-th order Laguerre polynomial [51, eq. (8.970 1)] and β a real
constant such that βL > λmax/2, where λmax = maxi{λi}. With that, and us-
ing [70, eq. (47)], we can straightforwardly identify g(s) = (1 + 2sβL)−n/2 and
η(s) = 2sβL/(1 + 2sβL), obtaining an expansion for the CDF of QR of the form
[71, eq. (132)]

FQ(x) = F (n, βL, x) +

∞∑

k=1

ck
Γ(k)

Γ
(
k + n

2

)
(

x

2βL

)n/2
e−x/(2βL)L

n/2
k−1

(
x

2βL

)
(2.64)

where F (n, βL, x) is given in [4, p. 109] and coefficients ck are calculated according
to [4, eqs. (4.2b.5) and (4.2c.14)].

An important drawback of this approximation is the choice of βL, which controls
the convergence of the series. In [70], [71], a value of βL = (λmax + λmin)/2 is
recommended. However, this value may render numerical errors depending on
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the parameters of the quadratic form, preventing the series convergence. Hence, it
is not clear how to find the value of βL that yields the best approximation in each
case.

• Expansion in χ2 densities. The baseline function hk(x) is now the PDF of the cen-
tral χ2 distribution (2.11) with order n + 2k and variance βχ, where βχ is a real
parameter controlling the series convergence. Thus, from (2.13), it is readily ob-
served that g(s) = (1 + 2sβχ)−n/2 and η(s) = (1 + 2sβχ)−1. This choice leads to a
series expansion given by

FQR(x) =
∞∑

k=0

ck
1

Γ(n/2 + k)
γ

(
n

2
+ k,

x

2βχ

)
, (2.65)

which is valid for 0 < βχ < λmin with ck given by [4, eqs. (4.2b.8) and (4.2b.9)].
The choice of βχ in this case seems less problematic than in the Laguerre series,
observing that higher values in the given interval accelerate the series convergence
in all cases.

The above method also allows another types of approximants based on non-central
χ2 densities or hypergeometric functions, but the mathematical tractability of the result-
ing expressions is considerably reduced.

An alternative approximation for the distribution of real GQFs was recently given in
[11, eq. (46)], where the saddle-point technique is applied to approximate the integral
that defines the CDF. However, the results are restricted to the central case. Moreover,
it inherits the drawbacks of this type of approximations, i.e., difficulty in increasing the
accuracy of the approximation and probability values that may be greater than one.

The complex case

Although they can be seen as a particular case of the real case, complex GQFs have
interest by themselves due to their massive number of applications, specially in commu-
nications and signal detection, where most of the involved random variables are complex
(e.g. the Gaussian noise) [6]–[16]. Therefore, considerable efforts have been also devoted
to their study.

The MGF of QC can be derived from (2.55) and (2.15) in the same way as in the real
case, obtaining [76, eq. (4b)]

MQC (s) =
n∏

i=1

exp

(
µiλis

1− λis

)
(1− λis)−1, λiRe{s} < 1 ∀ i (2.66)

where µi = ‖hi‖2.

Note that, since a complex quadratic form is equivalent to a real one with the eigen-
values given in pairs, as stated in Section 2.3.1, the exponent of the terms (1 − λis) is
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always an integer number, in contrast to that in (2.56). Consequently, MQC (s) is given by
a rational function in the central case, where the exponential term vanishes, allowing to
obtain exact closed-form expressions for both the PDF and the CDF by directly inverting
MQC (s). However, in the non-central case, no closed-form expressions are known in the
general case and thus it is necessary to rely on approximations to both statistics.

Most of these approximations arise, similarly as those in the real case, by the in-
version of the MGF or, equivalently, the CF [77]–[79], rendering different approximated
expressions for the PDF and CDF of complex GQFs.

The work by Biyari and Lindsey considers a particular case of non-central quadratic
form which is of special interest in communications [77]. Specifically, it analyzes the
quadratic form resulting from the sum of L independent and identically distributed
quadratic forms of order n = 2 and inverts its MGF by solving some convolution in-
tegrals. As a result, the PDF and CDF of this specific quadratic form are given in terms
of an infinite sum of Laguerre polynomials.

A more general approximation is given by Raphaeli, where the indefinite non-central
case is considered [78]. He uses the residue theorem to invert the MGF of QC , expressing
the residues as infinite series in order to circumvent the essential singularities of MQC (s).
Therefore, the CDF of QC is calculated as [78, eq. (26)]

FQC (x) = 1 +
1

2πj

∫

C

1

s
e−sxMQC (s)ds (2.67)

where C is a contour circling the right half plane but excluding the imaginary axis if x > 0

and circling the left half plane when x < 0. Thus, applying the residue theorem we have

FQC (x) =





1 +
∑

λk>0

Res
{
F̂k(0)

}
if x > 0

−
∑

λk<0

Res
{
F̂k(0)

}
if x < 0

, (2.68)

with [78, eq. (27)]

F̂k(s) =
1

s+ λ−1
k

exp
(
−x(s+ λ−1

k )
)
MQC (s+ λ−1

k ). (2.69)

Note that, for each F̂k(s), the pole at s = λ−1
k is translated to s = 0 for convenience. Also,

this procedure assumes that all the eigenvalues λk are distinct with multiplicities mk.

The next step is expressing F̂k(s) as the product of two functions ĝk(s, x) and fk(s) as
in [78, eq. (30)], and then expanding fk(s) in Laurent series and ĝk(s, x) in Taylor series.
By doing that, the residues of F̂k(s) can therefore be computed recursively, and the CDF
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of QC is finally expressed as [78, eq. (32)]

FQC (x) = 1 + exp




N∑

j=1

µj


 ∑

λk>0

1

(−λk/2)mk−1
e−x/λk

∞∑

i=mk−1

ĝ
(i)
k (0, x/2)

(2µk/λk)
i−mk+1

i!(i−mk + 1)!

(2.70)
for x > 0 with N denoting the number of distinct eigenvalues λk. If x < 0, then the sum
is over all λk < 0 as stated in (2.68). The derivatives of ĝk(s, x) are calculated according
to [78, eqs. (18-21) and (31)] but taking into account that, due to slight differences in
the definitions of λk and µk, we should replace λk = λk/2 and µ2

k
= 2µk, where the

parameters in [78] have been underlined in order to avoid confusion. Note that these
equivalences have been already applied in (2.70).

A very similar expansion for the PDF is given in [78, eq. (25)], but due to the recursion
that involves the independent variable x the expression is not useful for further analytic
purposes, e.g., the calculation of expectations over the quadratic form. Being aware of
this issue, Raphaeli proposed an alternative approximation for the PDF [78, eq. (38)] in
terms of an infinite sum of modified Bessel functions. In this case, although the recursion
does not involve x, the Bessel functions considerably limit the tractability of the series.

Another approximation was given by Tziritas in [79], where he considered the posi-
tive definite case and proposed series expansions for the PDF and CDF in terms of other
distributions. Specifically, the gamma and the non-central χ2 distributions are consid-
ered in the central and non-central case, respectively. Remarkably, the results are valid
for both real and complex quadratic forms (with slight modifications).

Hence, focusing on the non-central case, the proposed baseline density is

f(x) =
xa/2

bca
exp

(
−x+ c2

b

)
Ia(2c

√
x/b), (2.71)

which corresponds to the PDF of X = bY/2 with Y ∼ χ2
2(a+1)(1, 2c

2/b). The parameters
a, b and c are chosen so that the first three moments of X are equal to those of QC . With
that, the resulting series expansion for the CDF is given by [79, eq. (40)]

FQC (x) =

∞∑

i=0

ci

(
a+ i

i

) i∑

k=0

(
i

k

)(−b
β

)k [
1−Qa+1

(√
2

b
c,

√
2x

b

)]
, (2.72)

where QM (α, δ) is the generalized Marcum Q function [18, eq. (4.59)], β is a real constant
that controls the series convergence and must satisfies [79, eq. (23)]

β−1 > 2(b−1 − λ−1
max) in the complex case, (2.73)

β−1 > 2(b−1 − (2λmax)−1) in the real case, (2.74)

and ci are constants that are obtained recursively according to [79, eqs. (26-28)]. The main
drawback of this approximation is its complexity, i.e., the intricate recursion of constants
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ci that involves infinite sums and the required calculation of several MarcumQ functions
undoubtedly limit the usefulness of (2.72). Moreover, when truncated, the series does not
represent a valid CDF.

Taking into account the limitations of the direct inversion methods above introduced,
since the solutions provided for the PDF and the CDF are difficult to compute and not
suitable for any further insightful analysis, very recently, Al-Naffouri et al. presented a
different approach [11]. They applied a transformation to the inequality that defines the
CDF of QC , and approximated the resulting integral by the saddle-point technique.

Hence, the starting point is the integral definition of the CDF, expressed as [11, eq.
(9)]

FQC (x) =

∫

A
fs(s)ds =

∫ ∞

−∞
fs(s)u

(
x− (s + h)†Λ(s + h)

)
ds (2.75)

where A is the area in the n-dimensional complex plane defined by the inequality QC <

x, u(·) is the unit step function whose value is 1 if the argument is non-negative and 0

otherwise, and s, h and Λ are the parameters of the quadratic form defined in (2.53).

Manipulating (2.75) and using [11, eq. (14)] we have

FQC (x) =
1

2π

∫ ∞

−∞

1

det (In + (jω + β)Λ)

ex(jω+β)

jω + β
e−c(ω)dω (2.76)

where β is a positive real constant and

c(ω) = h
†
(

In +
1

jω + β
Λ−1

)−1

h. (2.77)

Since the above integral cannot be put in closed-form, the authors in [11] applied the
saddle-point technique described in Section 2.2.5, obtaining

FQC (x) ≈ 1

2π
exp (s(ω0))

√
2π

‖s′′(ω0)‖ (2.78)

where

s(ω) = x(jω + β)− c(ω)− ln(jω + β)−
n∑

i=1

ln (1 + λi(jω + β)) (2.79)

and ω0 is a complex point such that s
′
(ω0) = 0.

Despite the compactness of the expression in (2.78), that approximation has the same
drawbacks as the previous ones, i.e., it does not represent a valid CDF. Moreover, it is
difficult to increase the accuracy of the approximation and it is not clear how to obtain
the PDF of QC by using this approach.

Finally, for reader’s convenience, a summary of the aforementioned methods to ap-
proximate the CDF of non-central complex GQFs is given in Table 2.1.
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TABLE 2.1: Summary of the distinct approximations to the CDF, FQC (x), of non-
central complex GQFs.

Reference Type of approximation Main drawbacks

[77] Infinite sum of Laguerre polynomials
Only valid for a particular complex GQF

Not a proper CDF when the series is truncated

[78] Infinite series of elementary functions
Recursion involving the independent variable x

Not a proper CDF when the series is truncated

[79] Double infinite series of Marcum functions

Coefficients involve intricate recursions

Not a proper CDF when the series is truncated

Computation of several Marcum functions is required

[11] Saddle-point approximation
Not a proper CDF

Increasing the accuracy is difficult

2.4 Fading models overview

In wireless environments, the radio signal is affected by a number of random phe-
nomena (reflection, diffraction and scattering among others) as it travels from transmitter
to receiver. Consequently, the received signal appears as a linear combination of multi-
path waves, each of which with their own (random) amplitudes and phases. This con-
structive and destructive addition of the distinct multipath waves renders strong and
rapidly-varying fluctuations in the received signal amplitude, known as fast fading. Due
to the multipath propagation, the complex based-band signal can therefore be written as
[81, eq. (1)]

Ṽ =
N∑

i=1

Vie
jφi , (2.80)

whereN denotes the number of multipath waves, Vi their amplitudes and φi their phases.

Aiming to analyze and improve the performance of wireless communication sys-
tems, considerable efforts have been devoted to the characterization of fading. Conse-
quently, a wide variety of models have been developed in the related literature in order
to describe the statistical behavior of the received signal amplitude R = ‖Ṽ ‖, including
both the classical fading models along with more general models. In the following, a brief
overview of most widely used fading distributions is given. Note that we consider only
flat-fading models, i.e., those employed to characterize fading which affects narrowband
wireless systems.

2.4.1 Classical fading models

When N is sufficiently large, the baseband voltage Ṽ in (2.80) can be regarded as a
complex Gaussian random variable because of the central limit theorem [1, sec. 27]. De-
pending on the choice of the parameters characterizing this complex Gaussian variable,
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namely the mean and variance of the in-phase and quadrature components, different
classical fading models emerge. A more detailed review of these classical models can be
found in standard reference books, e.g., [17, chap. 2] and [18, chap. 2].

Rayleigh

Rayleigh model assumes that all the multipath components in (2.80) have similar
amplitudes and independent phases which are uniformly distributed. Therefore, under
the central limit theorem assumption, the received signal envelope R is model as the
magnitude of a zero mean circularly-symmetric complex Gaussian random variable, i.e.,

R = ‖σX + jσY ‖ (2.81)

where X and Y are independent standard Gaussian random variables, i.e., X,Y ∼
N (0, 1) and σ is a positive real constant. The PDF of R is then given by

fR(r) =
2r

Ω
exp

(
−r

2

Ω

)
, (2.82)

with Ω = E[R2] = 2σ2.

Due to its mathematical simplicity, Rayleigh distribution is massively used to model
fading arising from non line of sight (NLoS) scenarios, where all the multipath compo-
nents are assumed to have the same average power.

Rice

In contrast to Rayleigh model, Rice model (also known as Nakagami-n or Rician)
considers that the complex Gaussian random variable arising from the application of the
central limit theorem has non-zero mean, i.e.,

R = ‖σX + jσY + p+ jq‖ (2.83)

with X,Y ∼ N (0, 1) and p, q and σ real constants.

The PDF of R is therefore given by [82, eq. (3.12)]

fR(r) =
2r(1 +K)e−K

Ω
exp

(
−r

2(1 +K)

Ω

)
I0

(
2r

√
K(1 +K)

Ω

)
(2.84)

where Ω = E[R2] = p2 + q2 + 2σ2 and K = (p2 + q2)/(2σ2) is the Rice factor, which
corresponds to the ratio of the power of the dominant component to the average power
of the scattering. Since for K = 0 the Rayleigh distribution is obtained, Rice model can
be seen as the natural extension of the Rayleigh model to LoS scenarios.
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Hoyt

Neither Rayleigh nor Rice models take into account the effect of the power imbalance
between the in-phase and the quadrature components of the received signal, i.e., both of
them assumes that the real and imaginary part of the complex Gaussian random variable
have equal variances. This effect is considered by the Hoyt (Nakagami-q) distribution,
according to which the received amplitude is modeled as

R = ‖σxX + jσyY ‖ (2.85)

where X,Y ∼ N (0, 1) and σx, σy ∈ R+.

The PDF of Hoyt distribution is given by [83, eq. (3.4)]

fR(r) =
(1 + η)r√

ηΩ
exp

(
−(1 + η)2r2

4ηΩ

)
I0

(
(1− η2)r2

4ηΩ

)
(2.86)

with Ω = E[R2] and η = σ2
x/σ

2
y representing the ratio of the powers of X (in-phase

component) and Y (quadrature component)3. Note that if η = 1, then (2.86) reduces to
(2.82).

Hoyt distribution is one of the distribution employed to model the so-called worse-
than-Rayleigh fading conditions, i.e., scenarios where the fading conditions are more
severe than those given by Rayleigh distribution [18], [84].

Beckmann

Although not very used due to its mathematical complexity, the Beckmann model
[85] is the most general fading model arising from the central limit theorem assumption,
taking into account not only the power imbalance between the scattering components but
also between the LoS component. Therefore, the received signal amplitude is described
as

R = ‖σxX + jσyY + p+ jq‖ (2.87)

where X,Y are independent random variables such as X,Y ∼ N (0, 1) and σx, σy ∈ R+

and p, q ∈ R are constants.
3Traditionally, η is also denoted as q2. However, we here prefer the first notation in order to be coherent

with the definition of equivalent parameters in more general fading models.
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Due to its generality, the PDF of the Beckmann distribution is only given in terms of
double infinite sums of products of Bessel functions or in integral form

fR(r) =
r(1 + η)(1 +K)

2πΩ
√
η

×

∫ 2π

0
exp


−

(
rcosθ −

√
%2KΩ

(1+%2)(1+K)

)2

2ηΩ
(1+η)(1+K)

−

(
rsinθ −

√
KΩ

(1+%2)(1+K)

)2

2Ω
(1+η)(1+K)


 dθ (2.88)

with Ω = E[R2] = σ2
x + σ2

y + p2 + q2 and

K =
p2 + q2

σ2
x + σ2

y

, η =
σ2
x

σ2
y

, %2 =
p2

q2
. (2.89)

Parameter K is directly related to the Rice factor, since it corresponds to the ratio of
the power of the dominant component to that of the scattering, and parameter η is also
equivalent to that in Hoyt distribution. Finally, % determines the power imbalance in the
dominant component. Remarkably, if η = 1 and/or K = 0, then it can be proved that %
vanishes in (2.88).

Beckmann distribution includes as particular cases the three aforementioned classical
models: Rayleigh (K = 0, η = 1, ∀%), Rice (K = KRice, η = 1, ∀%) and Hoyt (K = 0,
η = ηHoyt, ∀%).

Nakagami-m

Nakagami-m model was introduced in [20] with the aim of generalizing Rayleigh
model to improve the fitting to data measurement. Although the model accurately char-
acterize the propagation conditions in many scenarios, no physical justification is given
for its use. The PDF of Nakagami-m distribution is given by

fR(r) =
2mmr2m−1

ΩmΓ(m)
e−mr

2/Ω, (2.90)

where m > 1/2 is the Nakagami parameter and Ω = E[R2]. If m = 1, then we obtain the
Rayleigh distribution. Also, for m ∈ N+, the received signal amplitude can be obtained
from the same underlying Gaussian model than the previous distributions as

R =

(
m∑

i=1

‖σXi + jσYi‖2
)1/2

(2.91)

where Xi and Yi ∀ i are independent standard Gaussian random variables.
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Because of its good agreement with empirical data and its mathematical tractability,
the Nakagami-m distribution is one of the most employed to characterize fading condi-
tions in a wide variety of scenarios. Moreover, it can approximate both Hoyt and Rice
distribution by the mapping given in [18, eqs. (2.25) and (2.26)],.

An important remark is the connection between Nakagami-m and Gamma distribu-
tions. Specifically, if X is Nakagami-m distributed, then Y = X2 is Gamma distributed
with shape parameter m and scale parameter Ω/m, i.e., Y ∼ Γ(m,Ω/m).

2.4.2 Generalized fading models

As introduced before, aiming to provide more flexibility when attempting to char-
acterize fading conditions in more intricate scenarios (e.g. underwater acoustic or mil-
limeter wave propagation) as well as to unify the distinct classical fading distributions
under the umbrella of more general models, several distributions have been proposed in
the last years.

These general fading models not only increase the accuracy of fittings to data mea-
surement, but they also sometimes improve the mathematical tractability of the classical
models. We here revisit some of these general distributions, focusing on their connections
to other fading models.

Rician shadowed

The Rician shadowed model was originally proposed in [86] as a generalization of
Rice model to describe fading behavior in land mobile satellite link [18, chap. 2]. It
considers that the dominant (LoS) component is no longer deterministic but instead log-
normally distributed. However, Rician shadowed model inherits the complicated for-
mulation of lognormal distribution, and its PDF is only given in integral form [86, eq.
(6)].

Aiming to gain mathematical tractability but maintaining the closeness to measured
data, an alternative formulation of Rician shadowed model was given in [87], in which
the LoS component is Gamma distributed, describing the received signal amplitude as

R = ‖σX + jσY + ξ(p+ jq)‖ (2.92)

withX,Y ∼ N (0, 1), ξ2 ∼ Γ(m, 1/m) and σx, σy, p and q constants as in Rice model. Note
that all the involved random variables are independent. The PDF of R is therefore given
by

fR(r) =

(
m

m+K

)m 2r(1 +K)

Ω
e−r

2(1+K)/Ω
1F1

(
m; 1;

r2K(1 +K)

Ω(m+K)

)
(2.93)

where K = (p2 + q2)/(2σ2), Ω = E[R2] = p2 + q2 + 2σ2 and 1F1(·) is the Kummer’s
hypergeometric function [51, eq. (9.210 1)].
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The addition of the random variable ξ introduces a random fluctuation in the dom-
inant component that characterizes the shadowing. This fluctuation is controlled by pa-
rameter m, reducing its severity as m becomes larger. If m → ∞, then Rice model is ob-
tained, as can be easily proved by taking the limit in (2.93) and applying [50, eq. (13.3.1)].

κ-µ

The κ-µ model [28], [88] was introduced as a generalization of the Rice distribution
in the same way as Nakagami-m extends Rayleigh model. In [28], a physical explanation
for such generalization is given, according to which the received signal amplitude is built
out of the superposition of clusters of waves. The power of the LoS component is distinct
within each cluster, but the scattered waves of all clusters are assumed to have the same
power. Therefore, the received signal amplitude is given by [28, eq. (6)]

R =

(
µ∑

i=1

‖σXi + jσYi + pi + jqi‖2
)1/2

(2.94)

where Xi, Yi ∼ N (0, 1) ∀ i,σ ∈ R+ and pi, qi ∈ R are constants and µ ∈ N+ is the parame-
ter that effectively generalizes Rice distribution, being equivalent to m in the Nakagami-
m model.

The PDF of R is given in a similar form to that of the Rice distribution as [28, eq. (1)]

fR(r) =
2µ(1 + κ)µ/2+1/2

κµ/2−1/2eµκ
rµ

Ωµ/2+1/2
e−r

2µ(1+κ)/ΩIµ−1

(
2µr

√
κ(1 + κ)

Ω

)
(2.95)

with

κ =

∑µ
i=1 p

2
i + q2

i

2µσ2
, Ω = E[R2] =

µ∑

i=1

p2
i + q2

i + 2µσ2. (2.96)

Note that the meaning of κ is similar to that of the Rice K-factor, corresponding to
the ratio of the power of the LoS component to that of the diffuse component.

The physical model in (2.94) forces µ to be a positive integer number. However, (2.95)
is valid for µ ∈ R+ although it loses its physical meaning.

Nevertheless, the extra parameter compared to Rice model (which is obtained by
setting µ = 1 and κ = K) provides a better accuracy in fitting data measurements but
maintaining the mathematical tractability of the original model. In addition, it also in-
cludes Nakagami-m distribution as particular case (µ = m, κ = 0).

An important remark is that R2 in (2.94) can be identified as a particular case of the
complex Gaussian quadratic form in (2.52) in which A = Σ = Iµ. Therefore, the κ-µ
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model, as well as all the fading distributions derived from it, can be analyzed as part of a
more general problem.

η-µ

Similarly as the κ-µ distribution generalizes the Rice model, the η-µ distribution
arises as an extension of the Hoyt model under the same physical argument of clustering
of waves [28]. Therefore, the received signal envelope is built as

R =

(
µ∑

i=1

‖σxXi + jσyYi‖2
)1/2

(2.97)

where µ is the same parameter as in the κ-µ model, Xi, Yi ∼ N (0, 1) ∀ i and σx, σy ∈
R+ correspond to the variance of the in-phase and quadrature scattering components,
respectively. Some details should be pointed out here: (i) the author in [28] proposed two
different formats for the η-µ distribution, and the physical model in (2.97) corresponds to
what he called format one; (ii) the number of clusters in this format was originally denoted
by 2µ, but we here prefer to redefine the parameter µ in order to be coherent with that in
κ-µ fading model. Therefore, according to (2.97), the PDF of R is given by

fR(r) =

(
µ(1 + η)

2Ω

)µ+1
2 2
√
π(1− η)

1−µ
2

Γ(µ/2)
√
η

rµ exp

(
−r

2µ(1 + η)2

4Ωη

)
Iµ−1

2

(
r2µ(1− η2)

4Ωη

)

(2.98)
with η = σ2

x/σ
2
y being consistent with the corresponding parameter in Hoyt model and

Ω = E[R2] = µ(σ2
x + σ2

y).

As the κ-µ model with Rice, the η-µ distribution generalizes the Hoyt model (µ = 1,
η = ηHoyt) without penalizing the mathematical tractability. Moreover, it also includes
Nakagami-m model as a particular case (µ = m, η = 1). However, both κ-µ and η-µ
models fail when attempting to characterize the power imbalance of the LoS component
as the Beckmann distribution does.

κ-µ shadowed

The κ-µ shadowed was originally proposed in [29] as a natural extension of the κ-
µ model in which the deterministic component representing the LoS contribution is al-
lowed to randomly fluctuate, similarly as the Rician shadowed model arises from the
Rice distribution. Later, the author in [89] proposed the same distribution in the context
of device-to-device communications, although from another physical model that was fi-
nally proved to be wrong [90]. According to [29], the received signal amplitude under
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TABLE 2.2: Connections between the κ-µ shadowed fading model and others mod-
els in the literature. In order to avoid confusion, the parameters corresponding to

the κ-µ shadowed distribution are underlined.

Channels κ-µ shadowed parameters

Rayleigh κ = 0, µ = 1, ∀m

Rice κ = K, µ = 1, m→∞

Nakagami-m κ = 0, µ = m, ∀m

Hoyt κ = (1− η)/(2η), µ = 1, m = 0.5

κ-µ κ = κ, µ = µ, m→∞

η-µ κ = (1− η)/(2η), µ = 2µ, m = µ

Rician shadowed κ = K, µ = 1, m = m

κ-µ shadowed fading is given by

R =

(
µ∑

i=1

‖σXi + jσYi + ξ(pi + jqi)‖2
)1/2

(2.99)

where µ denotes the number of clusters, Xi, Yi ∼ N (0, 1) ∀ i, σ ∈ R+ and pi, qi ∈ R are
constants and ξ is a random variable such that ξ2 ∼ Γ(m, 1/m). All the involved random
variables are assumed to be independent. Note that, conditioned on ξ, (2.99) corresponds
to the physical model of the κ-µ distribution in (2.94). The PDF ofR under κ-µ shadowed
fading is therefore calculated by averaging (2.95) over all possible states of ξ, obtaining
[29, eq. (4)]

fR(r) =
2µµmm(1 + κ)µ

ΩµΓ(µ)(µκ+m)m
r2µ−1 exp

(
−µ(1 + κ)r2

Ω

)
1F1

(
m;µ;

µ2κ(1 + κ)r2

(µκ+m)Ω

)
(2.100)

where parameters κ and Ω are defined as in the κ-µ model (2.96). As in the latter, (2.100)
is a valid PDF even for µ ∈ R+, although it looses its physical meaning. Moreover, if
m → ∞, it easy to proved by taking the limit and using [50, eq. (13.3.1)] that (2.100)
reduces to κ-µ PDF (2.95).

Remarkably, the κ-µ shadowed distribution does not only include the underlying
fading models derived from the κ-µ model but also, somehow counterintuitively, the η-
µ and the Hoyt distributions [91]. Hence, it unifies most of the here presented fading
models, providing a large versatility on modeling propagation conditions [29], [89], [92].
The connections between the κ-µ shadowed fading model and the others distributions
are summarized in Table 2.2.

Furthermore, it was proved in [30] that κ-µ shadowed distribution, under the as-
sumption of µ and m being positive integers, can be given in terms of a mixture of
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Nakagami-m distributions as

fR(r|m,µ ∈ N+) =
M∑

i=0

CifN (mi,Ωimi; r) (2.101)

where fN (mi,Ωimi; r) denotes the Nakagami-m PDF (2.90) with parametermi and mean
power Ωimi, andM ,mi and Ωi are constants depending on the κ-µ shadowed parameters
as given in [30, Table 1]. Therefore, any result given in the literature for Nakagami-m
distribution can straightforwardly leveraged to the κ-µ shadowed.
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Chapter 3

Summary of Results

This chapter presents the main results obtained in this thesis. A twofold contribution
is provided: i) a new method to approximate the distribution of random variables and its
application to the statistical analysis of both complex and real non-central GQFs, and ii)
two generalizations of the already versatile κ-µ shadowed fading model. Although these
contributions seem a priori unconnected, it will be later shown that both actually share
the same underlying methodology.

The chapter is organized as follows. Section 3.1.1 introduces the proposed method to
approximate the distribution of random variables, providing general expressions for the
PDF and CDF of arbitrary positive variables. This technique is applied to both real and
complex GQFs in sections 3.1.2 and 3.1.3, respectively. Finally, the two proposed fading
models are presented in sections 3.2.1 and 3.2.2.

3.1 Analysis of random variables through confluence

Most of the approaches to approximate the distribution of random variables pre-
sented in Chapter 2 have the same main drawback: the resulting expressions does not
represent a valid distribution, i.e., the approximated PDF does not necessarily integrate
to one and the probabilities may be negative [39, p. 731][38, sec. 2]. Moreover, in the
case of the saddle-point technique, it is not obvious how to increase the accuracy of the
approximation.

The only exception are the approximants arising from mixtures of distributions,
which in fact ensure that the resulting function is a valid PDF. However, as pointed
out in Section 2.2.5, the calculation of the mixture parameters may be extremely difficult,
and the lack of a general method considerably limits its usefulness.

These limitations are also present in the distinct series expansions given for the PDF
and CDF of GQFs in Section 2.3, along with other downsides such as the numerical issues
in some cases (e.g., power series expansions), the convergence problems associated with
the introduction of artificial parameters and the strong dependence between the required
number of terms to be computed and the parameters of the quadratic form.
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Motivated by all the above-mentioned drawbacks, one of the main goals of this thesis
is to provide a new approach that circumvents these limitations, giving as a result alter-
native and more robust approximations not only for the distribution of GQFs but also for
that of any random variable.

3.1.1 Proposed approach

The new method is desired to have the following properties: i) the resulting expres-
sions always represent a valid distribution and ii) any target level of accuracy can be
achieved independently of the parameters of the random variable under analysis. Taking
into consideration these requirements, it is clear that we have to disregard any method
based on series expansions. Therefore, instead of approximating a certain statistic of a
random variable by an infinite series, we analyze a sequence of auxiliary random vari-
ables that, in the limit, converges in distribution to the target one. That is, given a random
variable X ∈ R, we aim to find a sequence {Xm : m ∈ N+} such that {Xm} ⇒ X .

Once the sequence is suitably defined, we can leverage this convergence and ap-
proximate the CDF (and the PDF if the conditions given in Section 2.2.1 hold) by that of
the auxiliary variables, ensuring that, for any value of m, the resulting expressions will
represent a valid distribution since they are the statistics of another random variable.

The problem is now how to define the auxiliary sequence. Ideally, {Xm} should be
chosen so that it converges rapidly to X and it is mathematically tractable, i.e., the PDF
and CDF of Xm should be easily obtainable for all m. To that end, we propose defining
Xm by somehow perturbing X , i.e., introducing an artificial random fluctuation in X so
that it simplifies its statistical analysis. In order to achieve the desired convergence, this
fluctuation should vanish in the limit.

Due to the mathematical tractability of the gamma distribution and its limit property
of converging to a constant, this artificial fluctuation is chosen to be gamma distributed.
Specifically, we will generate the sequence {Xm} fromX by letting its mean or variance to
randomly fluctuate according to a gamma distribution. If X is built as a function of other
random variables, an alternative way of defining {Xm} is introducing the fluctuation in
either the mean or variance of such underlying variables.

In this thesis, the above technique is used to provide very general expressions to
approximate the distribution of any positive real random variable from its MGF. The
approach, which is given below, is presented in

[46] P. Ramírez-Espinosa, D. Morales-Jimenez, J. A. Cortés, J. F. París, and E. Martos-
Naya, “New approximation to distribution of positive RVs applied to Gaussian quadratic
forms”, IEEE Signal Process. Lett., vol. 26, no. 6, pp. 923–927, Jun. 2019,

attached in Appendix A.1.
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Consider a random variable X ∈ R+ with continuous distribution, and assume that
the MGF of X is given by MX(s). In order to approximate its CDF, and according to the
proposed method, we define the auxiliary sequence of random variables {Xm : m ∈ N+}
with

Xm , X/ξm, (3.1)

where ξm is a random variable, independent of X , which follows a gamma distribution
with shape parameter m and scale parameter 1/(m − 1), i.e., ξm ∼ Γ(m, 1/(m − 1)). The
PDF of ξm is therefore given by (2.16)

fξm(u) =
(m− 1)m

Γ(m)
um−1e−(m−1)u. (3.2)

That is, we generate Xm by introducing a random fluctuation in X , whose severity
decreases as m increases. As proved in Section 2.2.4, the sequence {ξm : m ∈ N+} con-
verges in distribution to the constant C = E[ξm], which is calculated according to (2.20),
obtaining E[ξm] = 1. Therefore, we have that {ξm} ⇒ 1 and, from Slutsky’s theorem [93,
sec. 3.6][55, sec. 1.2], that {Xm} ⇒ X .

Hence, the above result allows us to approximate the CDF of X by that of Xm with
sufficiently large m, as stated in the following lemma.

Lemma 3.1 Let X be a positive random variable with continuous distribution and MGF given
by MX(s), and Xm as in (3.1). Then, the CDF of X satisfies

FX(x) = lim
m→∞

FXm(x) = lim
m→∞

m−1∑

k=0

(m− 1)k

xkk!

dk

dsk
MX(s)

∣∣∣∣
s=(1−m)/x

. (3.3)

The conditions for which convergence in distribution also implies convergence of
PDFs are stated in Section 2.2.1. In our case, these conditions are met if the PDF of X ,
namely fX(x), is uniformly continuous, i.e., for all x1, x2 ∈ [0,∞) exits δ > 0 and ε > 0

such that |x1 − x2| < δ implies |fX(x1) − fX(x2)| < ε. Therefore, if fX(x) is uniformly
continuous, we can also approximate it by the PDF of Xm. This is stated in the following
corollary.

Corollary 3.2 LetX be a positive random variable with MGFMX(s) and uniformly continuous
PDF, and Xm as in (3.1). Then, the PDF of X satisfies

fX(x) = lim
m→∞

fXm(x) = lim
m→∞

(m− 1)m

xm+1Γ(m)

dm

dsm
MX(s)

∣∣∣∣
s=(1−m)/x

. (3.4)

Lemma 3.1 and Corollary 3.2 provide a general result to approximate the distribution
of a positive random variable in terms of the derivatives of its MGF. As already high-
lighted, the main benefit of this method is that, since we approximate the distribution of
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a X by that of another variable Xm, the approximation (for any m) always represents a
valid distribution.

We also aimed that any level of accuracy could be reached independently of the tar-
get variable under analysis. This is ensured by the weak convergence of {Xm} to X , i.e.,
increasing the value of m always leads to a more accurate approximation. In fact, the
normalized mean squared error (MSE) between the target variable and Xm, which is a
good indicator of the similarity between both random variables, is a monotonic decreas-
ing function that does not depend on X , as given in the following lemma.

Lemma 3.3 Let X be a positive random variable, and Xm as in (3.1). For m > 2, the normalized
MSE admits the following compact expression:

ε2 = E
[
(X −Xm)2

]
/E
[
X2
]

= (m− 2)−1. (3.5)

From (3.5), it is clear that lim
m→∞

ε2 = 0, and thus we can achieve any target accu-
racy in the approximation by choosing m large enough. Note however that, although
informative on the closeness between Xm and X , the normalized MSE does not directly
translate into the error between the approximated CDF and the true one. An expression
for the error in probability is unfortunately difficult to obtain due to the generality of the
problem.

We consider appropriate to name this method of approximating the distribution of
random variables as analysis through confluence, since the target variable is perturbed in
order to generate an auxiliary sequence that facilitates the analysis and converge to the
original variable in the limit, achieving that confluence. Therefore, for coherence, we
denoted the auxiliary variables, Xm, as confluent variables.

As with most of the classical series expansions, where the moments are required,
the calculation of (3.3) and (3.4) may be challenging if the derivatives of the MGF of X
are difficult to compute or not expressible in closed form. Thus, large values of m imply
the computation of high-order derivatives ofMX(s), which may be tedious in some cases.
For instance, if numerical integration (e.g., Cauchy integrals) are used, the computational
cost can grow exponentially and round-off errors can lead to a total amount of error that
increases with the order of differentiation [94].

However, there are cases where these derivatives can be readily obtained. That is,
for instance, the case of those variables whose MGF is given as a product of elementary
functions, since its derivatives can be calculated recursively from the derivatives of the
logarithm of the MGF (the CGF).

Specifically, consider an arbitrary function f(s). The k-th order derivative of f(s) can
be calculated as [4, eq. (3.2b.3)]

dk

dsk
f(s) =

(
k−1∑

r1=0

(
k − 1

r1

)
gk−1−r1(s)

r1−1∑

r2=0

(
r1 − 1

r2

)
gr1−1−r2(s) . . .

)
f(s) (3.6)
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where

gk(s) =
dk

dsk
g(s) =

dk+1

dsk+1
lnf(s). (3.7)

From (3.6), the derivatives of f(s) can be calculated recursively as

dk

dsk
f(s) = f(s)Dk(s) (3.8)

with D0(s) = 1 and, for k > 1,

Dk(s) =

k−1∑

j=0

(k − 1)!

j!(k − j − 1)!
gk−1−j(s)Dj(s). (3.9)

Thus, if the MGF of X is given as a product of elementary functions, then lnMX(s)

is written in terms of a sum of such simple functions, and its derivatives could be easily
written in closed form. This allows a straightforward calculation of the derivatives of
MX(s) from (3.7) and (3.9) by replacing f(s) = MX(s).

With that, we conclude the presentation of our new method to approximate the dis-
tribution of random variables. In next sections, we apply the proposed technique to both
complex and real GQFs.

3.1.2 Application to non-central real Gaussian quadratic forms

In this section, the proposed approach is used to give a simple and efficient approxi-
mation for the distribution of non-central positive definite GQFs, i.e., we aim to provide
approximated expressions for both the PDF and CDF of the quadratic form (2.46)

QR = (x + x)TA(x + x) (3.10)

where x ∈ Rn×1 is a constant vector, A ∈ Rn×n is a positive definite symmetric matrix and
x ∼ Nn(0n×1,Σ).

These results, along with the comparison with other classical approaches listed in
Section 2.3.2, are given in

[46] P. Ramírez-Espinosa, D. Morales-Jimenez, J. A. Cortés, J. F. París, and E. Martos-
Naya, “New approximation to distribution of positive RVs applied to Gaussian quadratic
forms”, IEEE Signal Process. Lett., vol. 26, no. 6, pp. 923–927, Jun. 2019.

Distribution of QR

Since QR in (3.10) is a positive random variable, (3.3) and (3.4) can be directly used
to approximate its chief statistics, namely PDF and CDF. The only remaining task is
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calculating the derivatives of the MGF of QR, for which the approach in (3.7)-(3.9) is
employed.

Thus, from (2.56), the CGF of QR is readily written as

lnMQR(s) =

n∑

i=1

b2iλis

1− 2λis
− 1

2
ln(1− 2λis) (3.11)

and, straightforwardly, its derivatives are calculated in closed form as

gk(s) =
dk+1

dsk+1
lnMQR(s) = 2k k!

n∑

j=1

λk+1
j

[
(k + 1)b2j + 1− 2λjs

]

(1− 2λjs)k+2
. (3.12)

With the above results, approximated expressions for both the PDF and CDF of QR
are given in the next corollary.

Corollary 3.4 Consider a positive definite real GQF as in (3.10). Then, its PDF and CDF can be
approximated by

fQR(x) ≈ (m− 1)m

xm+1Γ(m)
MQR

(
1−m
x

)
Dm

(
1−m
x

)
, (3.13)

FQR(x) ≈MQR

(
1−m
x

)m−1∑

k=0

(m− 1)k

xkk!
Dk

(
1−m
x

)
, (3.14)

where MQR(s) is given in (2.56) and Dk(s) in (3.9) with gk(s) as in (3.12).

Numerical results and discussion

We now compare the proposed approximation for real GQFs in Corollary 3.4 with the
classical results in Section 2.3.2. Specifically, we consider the power series in (2.62) and
the Laguerre and χ2 expansions in (2.64) and (2.65), respectively. The other approaches
proposed in the literature are disregarded due to the drawbacks listed in Section 2.3.2.

For the sake of simplicity, both A and Σ are considered exponential matrices, i.e.,
(A)i,j = α|i−j| and (Σ)i,j = ρ|i−j| with 0 < α, ρ < 1. With this assumption, which does
not imply any loss of generality in the obtained results, our proposal is compared with
the above-mentioned techniques in Figs. 3.1-3.4.

We first consider the comparison with the power series showed in Fig. 3.1. It can be
observed that the power series renders a valid approximation only up to a certain point
in x, remarkably failing thereafter; the value of x from which the series diverges depends
on the parameters of the quadratic form. As illustrated, increasing the number of terms
in the series from N = 100 to N = 150 does not seem to solve the problem. In contrast,
our proposed solution shows an excellent agreement with simulations for all parameter
choices and all x.
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FIGURE 3.1: PDF of QR for different values of α, ρ and x. The proposed approx-
imation in (3.13) is compared with the power series expansion in and with Monte
Carlo simulations. N denotes the number of terms calculated in the power series.
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FIGURE 3.2: CDF of QR for α=0.7, ρ = 0.5 and x = (2, 1,−1, 0.6,−0.9). Our pro-
posed method in (3.14) with m = 100 is compared with the χ2 expansion in (2.65)
and with Monte Carlo simulations. N denotes the number of terms calculated in

the χ2 series expansion.

Fig. 3.2 compares our results with the χ2 densities expansion in (2.65) by plotting
in this case the CDF of QR (similar trends are observed for the PDF). As pointed out
in Section 2.3.2, the χ2 approximation artificially introduces an additional parameter
0 < βχ < minj{λj} that controls the series convergence. Since a higher value of βχ in
this interval seems to accelerate the series convergence, i.e., smaller values of βχ requires
a larger N to achieve the same accuracy, a value βχ = 0.9 minj{λj} has been chosen. Re-
garding Fig. 3.2, it is observed that the number of terms required for the χ2 expansion,N ,



44 Chapter 3. Summary of Results

0 20 40 60 80 100 120

0.6

0.7

0.8

α = 0.4, ρ = 0.3, µ = 1n

α = 0.4, ρ = 0.3, µ = 0.5n

α = 0.6, ρ = 0.4, µ = 0.5n

α = 0.5, ρ = 0.7, µ = 0n

n

F
Q

R
(1
)

Proposed, m = 150

Laguerre expansion, N = 500

Simulation

FIGURE 3.3: CDF of QR at x = 1 for distinct quadratic form order, n. Our pro-
posed expression in (3.14) is compared with the Laplace approximation in (2.64)

with βL = 10 and with Monte Carlo simulations.

is much larger than in our method (the value of m) to accurately approximate the distri-
bution of the quadratic form. Furthermore, it is important to note that the χ2 expansion
does not yield a valid CDF, as observed in the right-hand tail, where the approximated
CDF does not reach to one if N is not sufficiently large.

A comparison between (3.14) and the Laguerre series expansion in (2.64) is shown
in Fig. 3.3, where FQR(x) at x = 1 is depicted for distinct quadratic form orders, n.
Although useful in many situations, this approximation has two clear drawbacks. The
first one is that, as the previous approximations, the resulting function is not a proper
CDF if the number of terms computed, N , is not large enough (in fact, the resulting CDF
presents an oscillatory behavior). The second one is the uncertainty in the actual value
of the parameter βL, introduced to control the series convergence, that yields the best
approximation. As stated in Section 2.3.2, the convergence is mathematically ensured for
all x only if βl > maxj{λj}/2. Specifically, a value of βl > (maxj{λj} + minj{λj})/2 is
recommended in order to minimize the approximation error. However, we noticed that,
in some cases, this choice renders considerable numerical errors that prevent the series
convergence. In fact, increasing the value of N in those cases makes the approximation
even less accurate, probably due to the total increased amount of error, while maintaining
the same N and changing the value of βL lead to a tight approximation. Hence, finding
the value of βL that yields the best approximation in each case is a difficult task. For the
calculation in Fig. 3.3, a value of βL = 10 has been chosen, which seems to minimize such
numerical issues.

As shown in this figure, the series diverges when the order of QR increases, with
independence of the quadratic form parameters. Note that the considered values of n are
not particularly extreme, but rather moderate, particularly in applications such as signal
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detection where large numbers of samples are typically employed.

−20 −15 −10 −5 0
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
n = 30, α = 0.5,

ρ = 0.6, µi = 0.5 ∀ i

n = 15, α = 0.8,

ρ = 0.4, µi = 2 ∀ i

x(dB)

F
Q

R
(x
)

Proposed, m = 200

Laguerre, N = 400

χ2, N = 800

Power series, N = 300

Simulated

FIGURE 3.4: CDF of QR for different values of n, α, ρ and x. The proposed method
is compared with the power series in (2.62), the Laguerre expansion in (2.64) and
the χ2 expansion in (2.65) and contrasted with Monte Carlo simulations. Parame-

ters: βL = 9 for n = 15 and βL = 12 for n = 30.

The last comparison is shown in Fig. 3.4, where the CDF of QR is plotted in logarith-
mic scale in order to analyze the accuracy of the distinct approaches to approximate the
left tail of the distribution. As observed, the aforementioned drawbacks of the alternative
methods are also relevant when focusing on the left tail of the distribution. In turn, our
proposed technique renders again an excellent approximation with independence of the
parameters of QR.

Overall, obtained results show that the analysis through confluence is a good alter-
native to classical approaches to approximate not only the left tail, but also the complete
range of the distribution. Moreover, it has a distinctive feature over the classical ones: the
robustness. Hence, it provides accurate results with independence of the parameters of
the quadratic form, also ensuring that the resulting functions properly represent a valid
distribution independently of the number of terms (m) that are computed. Furthermore,
the goodness of the approximation does not depend on arbitrary constants as in the χ2

and the Laguerre series expansions.

3.1.3 Application to non-central complex Gaussian quadratic forms

The proposed technique is now employed to characterize non-central complex GQFs,
i.e., we seek an approximation for the PDF and CDF of the quadratic form (2.52)

QC = (v + v)†A(v + v) (3.15)
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where A ∈ Cn×n is an Hermitian matrix and v ∼ CN n(0n×1,Σ).

Since it has been proved that a complex GQF is equivalent to a real one with the
eigenvalues given in pairs (see Section 2.3.1), (3.13) and (3.14) could be directly used to
approximate the distribution ofQC in the positive definite case. However, we can exploit
the particularities of the complex case and go one step further, obtaining an alternative
approximation with two additional advantages. The first one is that it is valid not only for
positive definite complex GQFs but also in the indefinite case, providing more generality.
The second one is that the resulting expressions are more suitable for further analytical
purposes. The recursion in (3.13) and (3.14) involving the independent variable x may
pose a challenge to that end, and therefore circumventing this recursion is an additional
value due to the importance of complex GQFs in performance analysis of communica-
tions systems and signal processing applications (e.g., signal detection). These alterna-
tive approximation is achieved by defining the sequence {Xm : m ∈ N+} in a different
way as in (3.1).

The analysis of QC with the proposed technique, its comparison with other ap-
proaches given in 2.3.2 and its application to the analysis of MRC systems is presented
in

[47] P. Ramírez-Espinosa, L. Moreno-Pozas, J. F. París, J. A. Cortés, and E. Martos-
Naya, “A new approach to the statistical analysis of non-central complex Gaussian
quadratic forms with applications”, IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6734–
6746, Jul. 2019,

attached in Appendix A.2, and summarized below.

Distribution ofQC

As introduced before, in order to characterize QC , an alternative auxiliary sequence
of variables is used. Thus, instead of defining Xm by directly perturbing the quadratic
form as in the real case, we here introduce the random fluctuation in the mean of the
underlying Gaussian variables of QC . To that end, we consider the formulation in (2.53)

QC = (s + h)†Λ(s + h) (3.16)

where the distinct parameters are properly defined in Section 2.3.1. From (3.16), we de-
fine the sequence {Qm : m ∈ N+} such that

Qm = (s + Dξh)†Λ(s + Dξh), (3.17)

with Dξ ∈ Rn×n a diagonal matrix whose entries, ξm,i for i = 1, . . . , n, are independent
and identically distributed (i.i.d.) random variables such that ξ2

m,i are gamma distributed
with shape parameter m and E[ξ2

m,i] = 1, i.e., ξ2
m,i ∼ Γ(m, 1/m).
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As proved in Section 2.2.4, ξ2
m,i ⇒ E[ξ2

m,i] = 1 for all i and, from the relationship
between the CDF of ξ2

m,i and that of ξm,i, it can also be proved that ξm,i ⇒ 1. Therefore,
Dξ becomes the identity matrix when m → ∞ and, intuitively, it can be observed that
{Qm} converges to QC in the limit. Note also that, in the central case, i.e., h = 0n×1,
Qm = QC for any value of m.

However, this convergence needs to be formally proved before approximating the
distribution of QC by that of Qm. In order to do so, we first calculate the MGF of Qm by
conditioning MQ(s) on Dξ and averaging over all its possible values.

Lemma 3.5 Consider Qm as in (3.17). Then, its MGF is given by

MQm(s) =
n∏

i=1

(
1− λiµis

m(1−λis)

)−m

1− λis
, Re{s}λi (1 + µi/m) < 1 ∀ i, (3.18)

where µi = ‖hi‖2.

From (3.18), and taking into account that

lim
m→∞

(
1− λiµis

m(1− λis)

)−m
= exp

(
λiµis

1− λis

)
, (3.19)

it is clear that limm→∞MQm(s) = MQC (s) for any s = jt with t ∈ R. Therefore, from
Lévy’s continuity theorem, we have that {Qm} ⇒ QC [52, chap. 18].

An important remark is that MQm(s) does not have the exponential term present in
(2.66). This considerably eases the mathematical analysis by allowing to write (3.18) as a
rational function of the form

MQm(s) = B
n∏

i=1

(s− 1/λi)
m−1

(s− βi)m
(3.20)

where βi = [λi(1 + µi/m)]−1 and

B =

n∏

k=1

[
−λk

(
1 +

µk
m

)m]−1
. (3.21)

Assuming there can be repeated zeroes (1/λi) and poles (βi), and taking into con-
sideration that, if µi = 0 for a certain i then βi = 1/λi, the rational function in (3.20)
can be simplified. Thus, denoting as β̃i and 1/λ̃j for i = 1, . . . , nβ and j = 1, . . . , nλ the
distinct poles and zeroes resulting from this simplification with multiplicities pi and qi,
respectively, the MGF of Qm is finally expressed as

MQm(s) = B

nλ∏
j=1

(
s− 1/λ̃j

)qj

nβ∏
i=1

(
s− β̃i

)pi . (3.22)
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Observe that, in contrast to the MGF of the original quadratic form QC in (2.66), the
expression of MQm in (3.22) allows an straightforward inversion, i.e., we can directly
obtain the PDF and CDF of Qm by performing an inverse Laplace transformation as

fQm(s) =L−1 {MQm(−s)} , FQm(s) =L−1

{
1

s
MQm(−s)

}
(3.23)

and then approximating the PDF and CDF ofQC by leveraging the convergence between
both variables, as stated in the following lemma.

Lemma 3.6 Consider an indefinite non-central complex GQF as in (3.16). Then, its PDF and
CDF can be approximated by those of Qm as

fQC (x) ≈fQm(x) =

nβ∑

i=1

pi∑

j=1

αi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x), (3.24)

FQC (x) ≈FQm(x) = u(x) +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x), (3.25)

where u(·) is the unit step function, sgn(·) is the sign function and

αi,j =
(−1)n

(j − 1)!
BAi,j , ωi,j =

(−1)n

(j − 1)!
BCi,j , (3.26)

with Ai,j and Ci,j the residues arising from performing a partial fraction decomposition in (3.22)
after evaluating MQm(−s) and MQm(−s)/s, respectively.

Note that, although m does not appear explicitly in (3.24) and (3.25), both the poles
β̃i and their multiplicities pi depends on m, as well as zeroes multiplicities qi. Moreover,
in the central case, exact expressions for both fQC (x) and FQC (x) can be obtained from
(3.24) and (3.25) for any value of m, e.g., m = 1.

As for the calculation of the residues Ai,j and Ci,j , although they admit a closed for-
mulation, their computation is impractical for very large m due to the resulting combi-
natorial expressions. A more suitable approach is the algorithm proposed in [95], which
provides recursive expressions for the partial fraction residues of both proper and im-
proper rational functions. The recursion starts from the higher order residues, i.e., Ai,pi
and Ci,pi , which can be directly calculated from the definition in [96, eq. (A.36)], and
computes the other residues recursively according to [95, eqs. (11a) and (11b)].

Finally, to complete the statistical analysis of QC , we aim to characterize somehow
the approximation error. As in the real case, a closed form expression for the error be-
tween FQm(x) and FQC (x) would be desirable. However, it is difficult to obtain an useful
expression for such error. Therefore, since we are not truncating any series expansion but
instead approximating the distribution of a target variable from that of another, we resort
again on the normalized MSE as an informative measurement of the closeness between
QC and Qm.
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FIGURE 3.5: CDF of QC for n = 6, λ = (−3,−1.8,−1, 1, 2.1, 3) and µ =
(8.5, 7.4, 4, 5, 6.8, 7.9). Exact (simulated) CDF is compared with the proposed ap-
proximation in (3.25) and Raphaeli’s approach in (2.70) with N terms computed.

Lemma 3.7 ConsiderQ andQm as in (3.16) and (3.17), respectively. Then, the normalized MSE
between Q and Qm is given by

ε2 ,
E
[
(Qm −Q)2

]

E [Q2]
=

∑n
i=1 λ

2
iµi

[
4
(

1− Γ(m+1/2)

m1/2Γ(m)

)
+ µi

m

]

∑n
j=1

(
λ2
j (1 + 2µj)

)
+
(∑n

j=1 λi(1 + µi)
)2 . (3.27)

Regarding (3.27) we observe that, when µi = ‖hi‖2 = 0 for i = 1, . . . , n, then ε2 = 0

for any value of m. This is coherent with the fact that setting µi = 0 ∀ i implies having
a central quadratic form and, therefore, Dξ vanishes in (3.17). Additionally, it is easy to
prove that the error also goes to zero whenm→∞ by taking the limit in (3.27) and using
[50, eq. (6.1.39)].

Comparison with other approaches

The proposed results are now compared to other approximations given in the lit-
erature. Specifically, Raphaeli’s approach in (2.70) and the saddle-point approximation
in (2.78) are considered. Compared to these results, our proposed method provides a
twofold benefit. The first one is that approximations in (3.4) and (3.25) are useful for
further analytic purposes (e.g., calculation of expectations over QC) since they are given
in terms of elementary functions. The second one is that our approach always renders
a valid distribution (for any m), in contrast to the other methods. This is shown in Figs.
3.5 and 3.6, where the CDF of QC , calculated using the different techniques, is depicted.
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FIGURE 3.6: CDF of QC for different parameters. Exact (simulated) CDF is com-
pared with the proposed approximation in (3.25) with m = 50 and the saddle-
point approach in (2.78). Data: λ1 = [0.2, 1, 1.4, 3, 5], λ2 = [0.1, 0.6, 1], µ1 =

[0.6, 7.4, 3, 2.6, 5.5] and µ2 = [1, 0.8, 3.4].

For simplicity, the vector containing the n eigenvalues λi is denoted by λ and, analo-
gously, the vector µ is defined such that µ = (µ1, . . . , µn). The theoretical calculations are
validated through Monte Carlo simulations of QC .

Thus, Fig. 3.5 focuses on the comparison with Raphaeli’s method in (2.70). It is clear
that this approximation produces invalid CDF values for certain x if the number of terms
computed, N , is not large enough. Not until a value of N = 120 is reached that the
CDF converges for all x. Moreover, we have observed that the number of terms required
strongly depends on the eigenvalues λi. That is, the smaller the difference between the
eigenvalues the larger the value of N needed. In turn, our approach renders a valid
distribution with independence of m.

On the other hand, Fig. 3.6 compares the proposed method with the saddle-point
approach in (2.78). Although the latter arises as a very efficient approximation, it suffers
from the same drawbacks as the previous one. As observed, it gives probabilities greater
than one in the right tail. In addition, it is not suitable for further analytic purposes.

Practical example: MRC systems over correlated Rice fading channels

The usefulness of the proposed method is now exemplified through the performance
analysis of MRC systems over correlated Rice channels. To the best of the authors’ knowl-
edge, only asymptotic expressions have been given in the literature for the bit error
rate (BER) and the outage probability (Pout) for arbitrary number of branches and cor-
relation between them [97], [98] and infinite series representations when the number of



3.1. Analysis of random variables through confluence 51

branches is limited to P = 2 [99], [100]. Taking advantage of the mathematical tractability
of our derived results, we here provide expressions for these metrics.

Considering perfect synchronization and channel estimation, the SNR at the output
of the receiver when applying MRC can be written as

γ = γ g†g (3.28)

where γ is the average SNR at each branch and g ∈ CP×1 is the channel gain vector.
Since the fading at each branch is assumed to be Rice distributed with Ki factor for i =

1, . . . , P , g is a complex Gaussian vector such that g ∼ CNP (g,Σ), with g = E[g] and
Σ = E[(g − g)(g − g)†] the covariance matrix. The entries of both the mean vector and
the covariance matrix can be expressed in terms of the Rice factor as1

gi =

√
Ki

Ki + 1
, (Σ)i,j =

√
1

(1 +Ki)(1 +Kj)
(R)i,j (3.29)

with (R)i,j for i, j = 1, . . . , P the entries of the correlation matrix R of g. Note that
each element of g has unit power, i.e., E[‖gi‖2] = 1, so we consider normalized fading
channels.

It is observed that γ in (3.28) is a particular case of the quadratic form in (3.15) with
A = IP , and, therefore, we can use the proposed method to analyze the performance
of the system. To that end, the sequence {γm : m ∈ N+} is defined with γm directly
obtained by particularizing (3.17). Hence, we can approximate both Pout and the BER
from the statistical analysis of γm when m takes appropriate large values:

• Outage probability. Defining γth as the minimum SNR required for a reliable com-
munication, the outage probability is given by [101, eq. (6.46)]

Pout(γth) = P (γ < γth) ≈ P (γm < γth) =

∫ γth

0
fγm(γm) dγm, (3.30)

which corresponds to the CDF of γm. Then, from (3.25), we straightforwardly have

Pout(γth) ≈ 1 +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃iγth/γ

(
γ

γth

)−j+1

(3.31)

where ωi,j , β̃k, nβ and pi are obtained by identification with (3.25).

• BER. Since the BER is a continuous and bounded function, Helly-Bray theorem
allows to approximate the BER over the SNR variable γ through the analysis of γm,
as stated in Section 2.2.1. The probability error for an arbitrary modulation can be
obtained by averaging the BER in additive white Gaussian noise (AWGN) channels,
which is denoted by P0(·), over the distribution of the fading, which in our case is

1There is a typo in [47, eq. (34)] which has been corrected in this thesis.
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represented by γm, as [18, eq. (8.102)]

Pb (γ) ≈
∫ ∞

0
P0 (γm) fγm(γm) dγm (3.32)

where fγm(γm) is readily obtained from (3.24).

Assuming a Gray coded constellation, P0(γm) for an arbitrary M -ary square
quadrature amplitude modulation (QAM) is given by [102], finally obtaining

Pb (γ) ≈
√
M

nβ∑

i=1

pi∑

j=1

√
M−1∑

k=1

ω(k)αi,j

[
Γ(j)

2β̃ji
− δkΓ

(
j + 1

2

)

β̃
j+1/2
i

×
√

γ

2π
2F1

(
1

2
, j +

1

2
;
3

2
;
−δ2

k

2β̃i
γ

)]
(3.33)

where δk = (2k− 1)
√

3/(M − 1), constants ω(k) are given in [102, eqs. (6), (14) and
(21)] and 2F1(·) is the Gauss hypergeometric function [50, eq. (15.1.1)].

Numerical results

In the following, the influence of the channel parameters and the number of branches
of the receiver in the outage probability and the BER is assessed using (3.31) and (3.33)
and contrasted through Monte Carlo simulations. For simplicity, the vector containing
the P Rice K factors is denoted as k = (K1, . . . ,KP ) and the correlation matrix R is
assumed to be exponential, i.e., (R)i,j = ρ|i−j| with ‖ρ‖ < 1 [103], [104]. The results are
plotted in Figs. 3.7-3.9, showing a perfect match between the analytic and the simulated
values in all cases.

First, the impact of the correlation matrix and the Rice K factors in the outage prob-
ability is studied both in the low-SNR and high-SNR regime. Since Pout exhibits comple-
mentary behaviors in both regimes, a different representation is employed in each case.
Thus, Fig. 3.7 depicts the complementary outage probability (1 − Pout) for P = 2 when
the SNR takes low values compared to the threshold, whereas Fig. 3.8 show the values
of Pout in the high-SNR regime and for a larger number of branches (P = 4) in order to
enrich the system.

Regarding both Figs. 3.7 and 3.8, we observe that the strength of the LoS has an op-
posite effect in the low- and high-SNR regimes. Hence, while in the former a weak direct
component (low values for Ki) seems to be beneficial, a strong LoS achieves in general a
better performance in the latter. This behavior can be justified as follows. A strong LoS
component implies less random fluctuation in the received signal, i.e., the scattering is
less relevant. In the high SNR regime, where the mean of the instantaneous SNR is large
enough, this fluctuation represented by the scattering may occasionally lead to deep fad-
ing that makes the instantaneous SNR drops below the threshold. Therefore, increasing
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FIGURE 3.8: Pout vs. γ/γth for P = 4, different values of ρ and different values
of K at each path. Solid lines correspond to theoretical calculation while markers
correspond to Monte Carlo simulations. For theoretical calculation, m = 40 for

k = (0.5, 0.25, 0.25, 0) and m = 200 for k = (8, 7, 6, 6).

the K factor (the power of the LoS) when the mean SNR takes large values is beneficial
since it reduces such probability. In turn, in the low-SNR regime, the fluctuation in the
received signal may have the opposite effect, punctually rendering values for the instan-
taneous SNR much larger than the mean value. In that case, increasing the K factor will
reduce the probability of getting SNR values that are greater than the threshold.

Similarly, a high correlation factor gives a better performance for low values of γ,
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FIGURE 3.9: BER vs. γ for 16-QAM, P = 4 and different values of ρ and k. Solid
lines correspond to theoretical calculation with m = 40 for k = (0.5, 0.25, 0.25, 0)
and m = 150 for k = (8, 7, 6, 6), while markers correspond to Monte Carlo simula-

tions.

while the opposite behavior is observed in the high-SNR regime. Similar conclusions are
drawn in [99], [100] for large γ, but none of these works pay attention to the behavior of
Pout in the low SNR regime.

An interesting behavior is noticed in the case of strongly correlated branches and
large γ. Regarding Fig. 3.8, we can observe that for ρ = 0.9 a strong LoS implies a consid-
erable degradation of the system performance, being the outage probability asymptoti-
cally higher for large values of K. However, this effect is not observed for lower values
of ρ, i.e., less correlated branches. This behavior is deeply analyzed in [105], where it is
shown that, in multiple-input multiple-output (MIMO)-MRC systems, increasing the dis-
tinct Ki factors have a negative impact on the system performance until a certain value,
Kth, is reached, from which Pout starts to decrease as Ki increase. In fact, expressions for
this threshold are provided in [105, sec. IV-B] under the assumption of identically dis-
tributed Rice channels, observing that Kth depends on the correlation matrix. However,
despite this assumption, it is difficult to determine how an arbitrary correlation between
branches would impact this turning value of K.

Finally, the impact of the correlation and of the strength of the LoS in the BER is eval-
uated in Fig. 3.9, where Pb(γ) is depicted for 16-QAM and different values of ρ and k.
Same conclusions as with the outage probability can be given: negative effect of corre-
lated branches and better performance in general as Rice K factors increase. However,
for values of ρ close to one, we observe again that increasing the LoS power does not
always render a clear benefit. Similar results are observed for distinct values of M .
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3.2 Generalizations of the κ-µ shadowed distribution

The auxiliary (confluent) random variables defined in the previous section were used
just as simple tools to facilitate the analysis of the original random variable from which
they emerge, i.e., we were interested only in the limit behavior of their distributions.

However, these auxiliary random variables can also be interesting by themselves.
For instance, in channel modeling, the addition of a random fluctuation to a variable
representing the fading can be used to characterize shadowing at the same time. In fact,
this is the same idea from which some generalized fading model arise, e.g., the Rician
shadowed and the κ-µ shadowed models: introducing a random fluctuation in the LoS
component in order to better characterize the fluctuations produced by shadowing. To
that end, the perturbation is chosen to be gamma distributed because of two main rea-
sons: i) its mathematical tractability and ii) it has been proved that gamma distribution
can be as accurate as lognormal distribution when characterizing shadowing [87], [106].

Although both the Rician shadowed and the κ-µ shadowed models are in fact gen-
eralizations of the classical ones (Rayleigh, Rice), in the context of the analysis through
confluence, a κ-µ shadowed random variable can be seen as the confluent version of
a κ-µ one and the same relationship can be established between the Rician shadowed
model and the Rice distribution, though in these cases there is no interest in using the
confluence approach since closed-form expressions are known for the distribution of the
original variables.

With this idea, two new fading models are proposed in this thesis. The first one,
namely the fluctuating Beckmann (FB) distribution, arises as an extension of both the
κ-µ shadowed and the Beckmann distributions. From the point of view of the analysis
through confluence, the FB distribution can be seen as the auxiliary variable used to char-
acterize the classical Beckmann model, simplifying its analysis and allowing the deriva-
tion of closed-form expressions for its PDF and CDF. Compared to the κ-µ shadowed
model, the FB distribution is a natural generalization by considering the effect of power
imbalance in both LoS and non-line-of-sight (NLoS) components, as the Beckmann model
does.

The second model here introduced takes advantage of the partial results obtained
through the analysis of complex GQFs, generalizing the κ-µ shadowed distribution by
accounting for the impact of the correlation between the contributions of each cluster.

3.2.1 The fluctuating Beckmann fading model

This section introduces the very general FB fading model, providing its first and
second order statistics as well as discussing the impact of the distinct model parameters
on its distribution. A more detailed analysis of this fading model can be found in
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[48] P. Ramírez-Espinosa, F. J. López-Martínez, J. F. París, M. D. Yacoub, and E.
Martos-Naya, “An extension of the κ-µ shadowed fading model: Statistical characteri-
zation and applications”, IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 3826–3837, May
2018,

attached in Appendix A.3.

Physical model

As stated before, the physical model of the FB distribution arises as a generalization
of both the κ-µ shadowed and the Beckmann distribution. Thus, it inherits the clustering
structure, i.e., the model is built out of the sum of the square modulus of independent
random variables, together with the fluctuating LoS component already present in the
physical model of the κ-µ shadowed distribution. In addition, the FB model also takes
into account the effect of the in-phase and quadrature power imbalance in the LoS and
NLoS components. Therefore, the received signal amplitude is expressed as

R =

(
µ∑

i=1

‖σxXi + jσyYi + ξ(pi + jqi)‖2
)1/2

(3.34)

where µ ∈ N+, σx, σy ∈ R+ and pi, qi ∈ R are constants; Xi, Yi for all i are i.i.d. stan-
dard Gaussian random variables, i.e., Xi, Yi ∼ N (0, 1), and ξ is a random variable, inde-
pendent of Xi and Yi, such that ξ2 is gamma distributed2 with shape parameter m and
E[ξ2] = 1, i.e., ξ2 ∼ Γ(m, 1/m).

As in other generalized fading models, ξ in (3.34) accounts for the fluctuation of
the LoS component, being controlled by the parameter m. Thus, this fluctuation is less
severe as m increases. On the other hand, as opposed to the κ-µ shadowed model, the
FB model considers that the in-phase and quadrature components (Xi and Yi) can have
different variances, namely σ2

x and σ2
y . This allows to characterize the effect of power

imbalance in the diffuse components associated to NLoS propagation. Similarly, it can
also be considered that the power of the LoS components can be imbalanced. Hence, the
physical model in (3.34) can be also regarded as a generalization of the Beckmann fading
model through the consideration of clustering and LoS fluctuation.

Due to its generality, the FB distribution inherits the parametrization from both the
Beckmann model and the κ-µ shadowed model, being completely described by parame-
ters m, µ and

κ =

∑µ
i=1 p

2
i + q2

i

µ(σ2
x + σ2

y)
, η =

σ2
x

σ2
y

, %2 =

∑µ
i=1 p

2
i∑µ

j=1 q
2
i

. (3.35)

2or, equivalently, ξ is Nakagami-m distributed with E[ξ2] = 1.
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TABLE 3.1: Connections between the FB fading model and other models in the
literature. In order to avoid confusion, FB parameters are underlined. Note that

setting κ = 0 implies that m and % vanish.

Channels Fluctuating Beckmann Fading Parameters

Rayleigh κ = 0, µ = 1, η = 1

Rice κ = K, µ = 1, m→∞, η = 1 ,∀%

Nakagami-m κ = 0, µ = m, η = 1

Hoyt κ = 0, µ = 1, η = η

η-µ κ = 0, µ = µ, η = η

Beckmann κ = K, µ = 1, m→∞, η = η, % = %

κ-µ κ = κ, µ = µ, m→∞, η = 1, ∀%

Rician Shadowed κ = κ, µ = 1, m = m, η = 1, ∀%

κ-µ shadowed κ = κ, µ = µ, m = m, η = 1, ∀%

Parameters κ, µ and m are analogous to those in the κ-µ shadowed model, and η

and % are defined as in the Beckmann distribution in order to account for the power
imbalance in NLoS and LoS components, respectively. Thus, the FB distribution provides
the unification of a large number of important fading distributions. These connections are
summarized in Table 3.1, on which the parameters corresponding to the FB distribution
are underlined in order to avoid confusion with the parameters of any of the distributions
included as special cases.

First order statistics

A first order characterization of the FB distribution is now provided in terms of its
chief probability functions, namely MGF, PDF and CDF. Since fading distributions are
usually analyzed in terms of the SNR [18], hereinafter we will consider the random vari-
able

γ , γ
R2

E[R2]
, (3.36)

where E[R2] = µ(σ2
x +σ2

y) +
∑µ

i=1(p2
i + q2

i ) and γ , E[γ] is the average SNR, representing
the instantaneous SNR at the receiver side. Then, γ follows a FB distribution with param-
eters κ, µ, m, η and %, and for convenience we denoted it as γ ∼ FB(γ;κ, µ,m, η, %).

The MGF of the FB fading model can be obtain by conditioning the MGF of the Beck-
mann distribution [18, eq. (2.38)] on ξ, after introducing the clustering, and averaging
over all the possible values of ξ, as stated in the following lemma.
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Lemma 3.8 Let γ ∼ FB(γ;κ, µ,m, η, %). Then, the MGF of γ is given by

Mγ(s) =
(−1)µ

sµ
α
m−µ/2
2

γµαm1

(
1− µ(1 + η)(1 + κ)

2ηγs

)m−µ2
×

(
1− µ(1 + η)(1 + κ)

2γs

)m−µ2 (
1− c1

γs

)−m(
1− c2

γs

)−m
, (3.37)

where c1,2 are the roots of α1s
2 + βs+ 1 with

α1 =
4η

µ2(1 + η)2(1 + κ)2
+

2κ(%2 + η)

m(1 + %2)µ(1 + η)(1 + κ)2
, (3.38)

β =
−1

1 + κ

[
2

µ
+
κ

m

]
, (3.39)

and α2 is calculated as
α2 =

4η

µ2(1 + η)2(1 + κ)2
. (3.40)

Analytic expressions are attainable for the PDF and CDF of γ by performing the
inverse Laplace transformation to (3.37), as stated in (3.23), and given below.

Lemma 3.9 Let γ ∼ FB(γ;κ, µ,m, η, %). Then, the PDF and CDF of γ are given by

fγ(γ) =
α
m−µ/2
2 γµ−1

γ̄µΓ(µ)αm1
Φ

(4)
2

(
µ

2
−m, µ

2
−m,m,m;µ;

−γ
γ̄
√
ηα2

,
−γ√η
γ̄
√
α2
,
−γc1
γ̄

,
−γc2
γ̄

)
,

(3.41)

Fγ(γ) =
α
m−µ/2
2 γµ

γ̄µΓ(µ+ 1)αm1
Φ

(4)
2

(
µ

2
−m, µ

2
−m,m,m;µ+ 1;

−γ
γ̄
√
ηα2

,
−γ√η
γ̄
√
α2
,
−γc1
γ̄

,
−γc2
γ̄

)
,

(3.42)

where Φ
(n)
2 is the confluent form of the generalized Lauricella series defined in [107, p. 34].

As observed, the PDF and CDF of the FB distribution are given in terms of the mul-
tivariate Φ

(n)
2 function, which also appears in other fading distributions in the literature

[29], [31], [108]. Apparently, and because it is defined as an n-fold infinite summation,
its numerical evaluation may pose some challenges from a computational point of view.
However, the Laplace transform of the Φ

(n)
2 function has a comparatively simpler form in

terms of a finite product of elementary functions, which becomes evident by inspecting
the expression of the MGF in (3.37). Therefore, the Φ

(n)
2 function can be evaluated by

means of a numerical inverse Laplace transform [109], [110].

Remarkably, as with the κ-µ and η-µ models, the statistics of the FB are also valid for
µ ∈ R+, although the underlying model of random variables in (3.34) loses its meaning.
Moreover, when η = 1 the effect of the parameter % vanishes, as can be observed from
(3.38); conversely, when setting % = 1 the effect of η is still relevant.
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Simple and more tractable expressions can be obtained for the PDF and CDF of the FB
distribution under certain conditions. Specifically, ifm and µ are assumed to be an integer
number and an even number, respectively, (3.37) can be expressed in an alternative form
thanks to partial fraction expansion, allowing the derivation of PDF and CDF in terms of
elementary functions (i.e., exponentials and powers), as stated next.

Corollary 3.10 Let γ ∼ FB(γ̄;κ, µ,m, η, %) with m being an integer number and µ an even
number. Then, the PDF and CDF of γ are given by

fγ(γ) =
α
m−µ

2
2

αm1 γ̄
µ

N(m,µ)∑

i=1

e−τiγ/γ̄
|ωi|∑

j=1

Ai,jγ
j−1

(j − 1)!
, (3.43)

Fγ(γ) = 1 +
α
m−µ

2
2

αm1 γ̄
µ

N(m,µ)∑

i=1

e−τiγ/γ̄
|ωi|∑

j=1

Bi,jγ
j−1

(j − 1)!
, (3.44)

where Ai,j and Bi,j are the residues arising from performing a partial fraction decomposition in
(3.37) after evaluating Mγ(−s) and Mγ(−s)/s, respectively; N(m,µ) = 2 [1 + u (µ/2−m)]

and ωi and τi are the elements of vectors ω and τ , defined as

ω =
[
m,m,

µ

2
−m, µ

2
−m

]
, (3.45)

τ =

[
c1, c2,

µ(1 + η)(1 + κ)

2η
,
µ(1 + η)(1 + κ)

2

]
. (3.46)

Second order statistics

First-order statistics (e.g., PDF and CDF) provide valuable information about the sta-
tistical behavior of the amplitude (or, equivalently, power) of the received signal affected
by fading. However, they do not incorporate information related to the dynamic be-
havior of the fading process, which is of paramount relevance in the context of wireless
communications because of the relative motion of transmitter, receivers and scatterers
due to mobility. In the literature, two metrics are used to capture the dynamics of a
general random process: i) the level crossing rate (LCR), which measures how often the
amplitude of the received signal crosses a given threshold value, and ii) the average fade
duration (AFD), which measures how long the amplitude of the received signal remains
below this threshold.

In the calculation of both statistics (LCR and AFD), we assume that the fluctuations
in the diffuse part (i.e., NLoS) occur at a smaller scale compared to those of the LoS
component. This is the case, e.g., where such LoS fluctuation (represented by the random
variable ξ) is associated to shadowing, which is classically considered to occur at a larger
scale than fading.
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The LCR of the received signal amplitude R can be computed using Rice’s formula
[111] as

NR(u) =

∫ ∞

0
ṙfR,Ṙ (u, ṙ) dṙ, (3.47)

where Ṙ denotes the time derivative of the signal envelope and fR,Ṙ(r, ṙ) is the joint PDF
of the received signal amplitude and its time derivative. Although an analytic expression
for NR(u) have been obtained, it is given in terms of a two-fold integral which consider-
ably reduces its usefulness.

It is possible to arrive at a more tractable expression for a simpler yet general case
by considering the scenario in which in-phase and quadrature components are indepen-
dent. Independence between in-phase and quadrature components can be achieved by
assuming qi = 0 and pi 6= 0 or vice-versa in (3.34), leading to a simpler underlying model
that eases the analysis. Note, however, that such a scenario is still a FB fading model,
and does not bear any similarity with other previous models published in the literature.
Therefore, assuming the case qi = 0 ∀ i (a similar expression is obtained for pi = 0 ∀ i),
the physical model in (3.34) can be decomposed as

R2 =

µ∑

i=1

(σxXi + ξpi)
2 +

µ∑

k=1

σ2
yY

2
i , (3.48)

facilitating the calculation of the LCR, which is ultimately given by

NR(u) =
mm[µ(1 + η)(1 + κ)]µ−1/2

√
−ρ̈(0)

2µ−1Γ2(µ/2)ηµ/2(µκ(1+η)
2η +m)m

√
2π
· u(2µ−1) exp

(
−µ

2
(1 + η)(1 + κ)u2

)

×
∫ 1

0
[1 + (η − 1)x]

1
2 (1− x)µ/2−1xµ/2−1 exp

(
−µ(1− η2)(1 + κ)

2η
u2x

)

× 1F1


m,µ/2;

κµ2(1+η)2(1+κ)
4η2

µκ(1+η)
2η +m

u2x


 dx (3.49)

where Ω = E[R2] and ρ̈(0) is the second derivative of the temporal autocorrelation func-
tion evaluated at 0.

Note that, although (3.49) is also in integral form, it can be easily computed due to the
bounded integral limits and the integrand behavior. Moreover, despite the assumption
qi = 0, (3.49) is also valid for pi = 0 ∀ i and qi 6= 0 by just setting η → 1/η, since both cases
are equivalent as can be observed from (3.34).

Finally, with the knowledge of the LCR, the AFD is straightforwardly calculated as

TR(u) =
FR(u)

NR(u)
(3.50)

where FR(u) is the CDF of the received signal amplitude, which can be derived from
(3.42) after a simple change of variables.
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FIGURE 3.10: FB signal envelope distribution for different values of η and m in
weak LoS scenario (κ = 1) with % = 0.1, µ = 1 and Ω = E[R2] = 1. Solid lines cor-
respond to the exact PDF, while markers correspond to Monte Carlo simulations.

Numerical results and discussion

After attaining a full statistical characterization of the newly proposed distribution,
we now exemplify the influence of the distinct parameters of the FB model over the dis-
tribution of the received signal amplitude, R, in Figs. 3.10-3.12 and over the second order
statistics in Figs. 3.13-3.14. Note that the PDF of R can be directly obtained from (3.41) as
fR(r) = 2r γΩfγ(γr2/Ω). In addition, in order to double-check the validity of the theoreti-
cal expressions, Monte Carlo simulations are also provided.

We will focus on understanding the effect of the power imbalance in the LoS and
NLoS components (i.e., the effect of % and η), since these are the two parameters that
effectively extend the original κ-µ shadowed fading model to a more general case. To
that end, Fig. 3.10 represents the PDF of R for different values of η with mild and strong
LoS fluctuation (m = 10 and m = 1, respectively) and µ = 1. The parameter % is set to
%2 = 0.1, indicating a moderately large LoS power imbalance. In fact, %2 = 0.1 specifies
that the in-phase component of the LoS is 10 times more powerful than the quadrature
one.

With this parameters choice, it can be observed from Fig. 3.10 that the effect of in-
creasing η causes the amplitude values to be more concentrated around its mean value.
Besides, compared to the case of η = 1 (i.e., the κ-µ shadowed fading distribution), the
effect of having a power imbalance in the NLoS component clearly has an impact on the
distribution of the signal envelope. Interestingly, in contrast to the η-µ fading model, the
behavior of the distribution with respect to η is no longer symmetrical between η ∈ [0, 1]

and η ∈ [1,∞) for a fixed %2 6= 1. In fact, one interesting effect comes from the observa-
tion of the effect of increasing η: both setting η = 0.1 or η = 10 implies that the NLoS
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tions.

power is imbalanced by a factor of 10. However, it is evident that if this NLoS imbalance
goes to the component associated with a larger LoS imbalance (η = 0.1 since %2 = 0.1),
this is much more detrimental for the received signal envelope than having the NLoS
imbalance in the other component.

Fig. 3.11 focuses now on the impact of the LoS power imbalance, depicting the PDF of
the received signal amplitude for different values of % and m with κ = 10 (i.e., strong LoS
scenario), µ = 2 and η = 0.1. Because the LoS component is now much more relevant,
the effect of changing m is more noticeable. It is noticed that low values of % and m cause
the amplitude values being more sparse. Also, the same behavior as with η is observed
for varying %, i.e., having the LoS imbalance in the opposite component as in the NLoS
(in this case, since η = 0.1, it is obtained for %2 = 10) makes the amplitude values being
more concentrated around its mean value than in the case where the imbalance of both
LoS and NLoS is in the same component, i.e., η = 0.1 and %2 = 0.1.

Remarkably, a bimodal behavior is observed as the imbalance is reduced through %
or η, as observed in Fig. 3.12. When both % and η decrease, the in-phase components
have considerably less power than the quadrature components. Because κ is sufficiently
large, the distribution will mostly fluctuate close to the LoS part of the quadrature com-
ponent due to the low value m, and the first maximum on the PDF in the low-amplitude
region appears as the highly imbalanced in-phase component only is able to contribute
in this region. We must note that this bimodal behavior does not appear in the origi-
nal κ-µ shadowed or Beckmann distributions from which the FB distribution originates.
Nevertheless, such bimodality indeed appears in other fading models [31], [112].

Finally, the effect of the FB parameters in the second order statistics (LCR and AFD)
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is investigated in Figs. 3.13-3.14. We assume a time variation of the diffuse component
according to Clarke’s correlation model [17, sec. 2.1.1] with maximum Doppler shift fd,
implying that

√
−ρ̈(0) =

√
2fdπ [113, eq. (34)]. We also consider that %2 → ∞, so the

LCR and AFD are calculated as in (3.49) and (3.50). Also, a sampling period Ts >> fd

is assumed in Monte Carlo simulations in order to avoid missing level crossings at very
low threshold values.

Thus, Fig. 3.13 represents the LCR vs the normalized threshold, u, for different values



64 Chapter 3. Summary of Results

−40 −30 −20 −10 0 10
10−4

10−3

10−2

10−1

100

101

u(dB)

A
F
D
(u
)
·f
d

κ = 1, η = 0.1, µ = 1 κ = 1, η = 10, µ = 1

κ = 1, η = 0.1, µ = 4 κ = 1, η = 10, µ = 4

κ = 10, η = 0.1, µ = 1 κ = 10, η = 10, µ = 1

κ = 10, η = 10, µ = 4 κ = 10, η = 0.1, µ = 4

FIGURE 3.14: Normalized AFD vs threshold value u(dB) for different values of
κ, η and µ, with m = 1, % → ∞ and Ω = E[R2] = 1. Solid lines correspond to

theoretical calculations, while markers correspond to Monte Carlo simulations.

of the FB model parameters. Interestingly, when increasing µ, the number of crossings
at very low threshold values is drastically reduced. Similarly, the number of crossings in
this region grows when reducing κ or increasing η. This latter effect is coherent with the
fact that %→∞ in this case, so that having a value of η < 1 reduces the fading severity.

The beneficial impact of increasing µ is also observed in Fig. 3.14, in which lower
values of µ render a larger duration of deep fades. Remarkably, for very low u, the AFD
seems to be independent of the values of η.

3.2.2 The κ-µ shadowed fading model with intercluster correlation

This section introduces the second generalization of the κ-µ shadowed fading model
proposed in this thesis, showing that this new distribution is closely related to the auxil-
iary random variables in (3.17) we used to analyze complex GQFs. The physical model
of the distribution is given, along with simple closed-form expressions for its first order
statistics, namely PDF, CDF and MGF.

The results provided in the following are a summary of those given in

[49] P. Ramírez-Espinosa, J. F. París, J. A. Cortés, and E. Martos-Naya, “The κ-µ shad-
owed fading model with arbitrary intercluster correlation”, in 2018 15th Int. Symp. Wire-
less Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5,

attached in Appendix A.4.
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Physical model

The physical model of this new fading distribution arises as a generalization of the
physical model of the original κ-µ shadowed distribution in (2.99). Thus, the received sig-
nal power is modeled as the sum of the squared modulus of µGaussian random variables
(clustering structure) whose means randomly fluctuates. The power of each variable is
assumed to be the same. However, as opposed to the original model, we here assume
that these diffuse waves, i.e., the underlying Gaussian variables, are correlated, introduc-
ing an arbitrary correlation factor for the intercluster components. Hence, while the FB
model extends the κ-µ shadowed distribution by considering the power imbalance in the
LoS and NLoS, this newly proposed model maintains the restriction of equal powers for
the in-phase and quadrature components but takes into account the possibility of the dis-
tinct contributions of each cluster to be correlated. Therefore, we consider appropriate to
name this extension as correlated κ-µ shadowed fading model.

The received signal amplitude under correlated κ-µ shadowed fading can then be
written as

R =

(
µ∑

i=1

‖Zi + ξpi‖2
)1/2

, (3.51)

where µ ∈ N+ is the same parameter as in previous models, pi for i = 1, . . . , µ is a
complex number representing the LoS contribution andZi are complex Gaussian random
variables such that Zi ∼ CN (0, σ2). As in the κ-µ shadowed and the FB distributions,
ξ is a random variable, independent of Zi, such that ξ2 ∼ Γ(m, 1/m) with E[ξ2] = 1,
which accounts for the random fluctuations of the LoS component due to shadowing. The
novelty is that the distinct Zi can be correlated with correlation coefficient corr(Zi, Zj) =

ρi,j for i, j = 1, . . . , µ with

ρi,j =
E[ZiZ

†
j ]

σ2
. (3.52)

Note that, if ρi,j = 0 ∀ i 6= j, then (3.51) becomes the original κ-µ shadowed phys-
ical model. Equivalently, if we consider the vector z ∈ Cµ×1 with entries Zi, then
z ∼ CN µ(0µ×1, σ

2R) with R the correlation matrix, i.e., (R)i,j = ρi,j .

Regarding (3.51), it can be observed that, when conditioned on ξ, R2 is a particular
case of the complex quadratic form in (2.52) in which A = Iµ. Therefore, applying the
same procedure as described in Section 2.3.1 for complex GQFs, R is rewritten as

R =

(
µ∑

i=1

∥∥∥
√
λiσZ̃i + ξ

√
λip̃i

∥∥∥
2
)1/2

, (3.53)

where Z̃i ∼ CN (0, 1), p̃i are the entries of the vector p̃ = U†C−1p with p = (p1, . . . , pµ)T ,
λi are the eigenvalues of C†C (i.e., those of R) and U is an unitary matrix whose i-th
column is the eigenvector of C†C associated with λi.
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Statistical characterization

As with the FB distribution, we provide the statistical characterization of the cor-
related κ-µ shadowed fading model based on the instantaneous SNR random variable
γ = γR2/E[R2], with γ denoting the average SNR at the receiver side and E[R2] =

µσ2 +
∑µ

i=1 ‖pi‖2. Therefore, we say that γ follows a correlated κ-µ shadowed distri-
bution with parameters κ =

∑µ
i=1 ‖pi‖2/(µσ2), µ, m and R, i.e., γ ∼ CSκµ(γ;κ, µ,m,R).

Moreover, aiming to relay the mathematical complexity of the newly proposed fading
model, we assume that both m and µ are positive integer numbers, i.e., the proposed
model inherits the formulation given in [30].

We will focus first on the MGF of γ. Since, conditioned on ξ, R2 is a specific complex
GQF, the conditioned MGF is straightforwardly obtained from (2.66). Then, the uncon-
ditional MGF is derived by averaging over ξ, as given next.

Lemma 3.11 Let γ ∼ CSκµ(γ;κ, µ,m,R). Then, its MGF reads as

Mγ(s) =
µµ(κ+ 1)µ

µ∏
i=1

(µ(κ+ 1)− sλiγ)


1− 1

m

µ∑

j=1

diλisγ

µ(κ+ 1)− sλiγ



−m

(3.54)

where di = ‖p̃i‖2 /σ2.

It is easy to prove that, when no correlation is applied (R = Iµ), then λi = 1 for
i = 1, . . . , µ, so (3.54) becomes the MGF of the original κ-µ shadowed distribution in [29,
eq. (5)].

We observe that (3.54) has a very similar form to the MGF of the auxiliary variables
that were used to analyze complex GQFs in (3.18). In fact, (3.54) also admits a formulation
in terms of a rational function as

Mγ(s) =
µµ(k + 1)µ

(−γ)µ
(

1 +
µ∑
k=1

dk/m

)m µ∏
l=1

λl

µ∏
j=1

(
s− µ(κ+1)

λjγ

)m−1

nβ∏
i=1

(s− βi)qim
. (3.55)

where βi for i = 1, . . . , nβ are the distinct roots, with multiplicities qi, of the µ-th order
polynomial given by

P (s) = m

µ∏

i=1

1− λiγ

µ(κ+ 1)
s−

µ∑

j=1

djλjγ

µ(κ+ 1)
s

µ∏

k=1
k 6=j

1− λkγ

µ(κ+ 1)
s. (3.56)

Thus, from (3.55), both the PDF and CDF of γ can be obtained by following the same
steps as in previous sections, i.e., performing a partial fraction expansion and using the
Laplace transform pairs in (3.23). The results are stated in the following lemma.
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Lemma 3.12 Let γ ∼ CSκµ(γ;κ, µ,m,R). Then, its PDF and CDF are given by

fγ(γ) = α

nβ∑

i=1

qim∑

j=1

Ai,jγ
j−1e−βiγ , (3.57)

Fγ(γ) = 1 + α

nβ∑

i=1

qim∑

j=1

Ci,jγ
j−1e−βiγ , (3.58)

with

α =
µµ(κ+ 1)µ

γµΓ(j)


1 +

µ∑

j=1

dj
m



−m

µ∏

l=1

λ−1
l (3.59)

and Ai,j and Ci,j the residues arising from performing a partial fraction expansion in (3.55) after
evaluating Mγ(−s) and Mγ(−s)/s, respectively.

As can be observed, very simple expressions for the statistics of the newly proposed
model are given, being suitable for the further analytic purposes when analyzing systems
performance. Remarkably, (3.57) and (3.58) have a similar form to those presented in [30]
for the original κ-µ shadowed distribution, and hence the larger generality introduced
does not come at the price of an increased mathematical complexity.

Numerical Results

We aim now to exemplify the impact of the intercluster correlation matrix in the
distribution of the received signal amplitude since it is the parameter that effectively
extends the original κ-µ shadowed model. Note that, as with the FB distribution, the PDF
of R is easily obtained from (3.57) by applying a simple change of variables. As usually
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done throughout this thesis, we again assume that the correlation matrix R is exponential
in order to simplify the presentation of the results, i.e., (R)i,j = ρ|i−j| with 0 ≤ ‖ρ‖ <
1. With this consideration, Figs. 3.15-3.16 depict the distribution of the received signal
amplitude for different values of the model parameters.

Thus, Fig. 3.15 shows the PDF of R for distinct values of µ and ρ in a weak LoS sce-
nario (κ = 1) with heavily fluctuating dominant component (m = 1). It is observed that
large values of ρ, i.e., more correlation between the components of each cluster, always
render more sparse values of the signal amplitude, with independence of the value of µ.

A stronger LoS component is considered in Fig. 3.16, where the impact of m is also
taken into account. It can be noticed that the impact of ρ is slightly less relevant in this
case, which is a coherent result since the correlation only affects to the scattering accord-
ing to the physical model in (3.51). Moreover, the impact of ρ in the received signal
amplitude distribution seems to be independent of the value of m. However, a severe
fluctuation of the dominant component (corresponding to lower values of m) is more
detrimental for the signal envelope, as we already saw in the original model [29], [30].
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Chapter 4

Conclusions and future work

In this final chapter, the main conclusions that arise from the contributions of this
thesis are outlined. Also, some future lines and possible applications of the obtained
results are suggested.

4.1 Conclusions

A twofold objective has been achieved in this thesis. On the one hand, it has provided
simpler approximated expressions than those given in the literature for the distribution of
both real and complex GQFs. To that end, a general method to approximate the PDF and
CDF of random variables haven been derived, which has been named analysis through
confluence.

More specifically, the proposed technique allows us to obtain approximating expres-
sions for the first order statistics of a target variable, X , through the analysis of a suitably
defined sequence of variables, {Xm}. This sequence is obtained from X by perturbing it
somehow, i.e., introducing a random fluctuation in the mean or variance of the original
variable. The main advantages of this method compared to other solutions available in
the literature are: i) the resulting expressions always represent a valid distribution, and ii)
any target level of accuracy can be reached with independence of the parametrization of
the random variable under analysis.

Before directly apply the analysis through confluence to GQFs, it has been used to
provide very general expressions for the PDF and CDF of an arbitrary positive variable
in terms of the derivatives of its MGF. Also, it has been shown that these derivatives can
be recursively obtained from the derivatives of the CGF. This technique is specially useful
when the target MGF is given in terms of the product of easily differentiable functions.
In the context of the analysis of GQFs, the following results have been obtained:

• The general expressions for the statistics of positive variables have been particular-
ized to the case of positive definite non-central real GQFs, obtaining simple recur-
sive approximations for the PDF and CDF which outperform the classical solutions.
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• Simple closed-form approximants for the statistics of non-central indefinite com-
plex GQFs have been derived, rendering expressions in terms of elementary func-
tions that are suitable for further analytic purposes. Besides, this approximation
inherits the properties of the confluence method presented in the thesis.

• To the best of the author’s knowledge, very tight approximated expressions for the
BER and the outage probability in MRC systems over correlated non-identically
distributed Rice fading have been provided for the first time. The results are valid
for any number of antennas and for arbitrary correlation between branches.

On the other hand, seeking to unifying the wide variety of existing fading models,
two new distributions haven been provided. Both the novel technique to analyze random
variables and these two general fading distributions, albeit apparently unconnected, arise
in fact from the same underlying methodology. In the context of channel modeling, the
contributions are summarized below:

• The versatile Fluctuating Beckmann distribution has been introduced as a general-
ization of both the κ-µ shadowed and the Beckmann models. It accounts for the
clustering of waves and the fluctuation of the LoS component as the κ-µ shadowed
model and also for the power imbalance between the in-phase and quadrature com-
ponents, as the Beckmann distribution does. Expressions of its first and second or-
der statistics have been provided, although its PDF and CDF remains in terms of a
generalized hypergeometric function. To circumvent this issue, simple expressions
are also provided in terms of elementary functions under certain conditions.

• An alternative extension of the κ-µ shadowed model have been provided, named
correlated κ-µ shadowed fading model since it allows the distinct components aris-
ing from each cluster to be arbitrary correlated. Exact closed-form expressions of
its first order statistics have been derived, proving that the proposed model is as
tractable as Nakagami-m distribution, but much more general.

4.2 Future work

As highlighted through this thesis, the proposed method to analyze random vari-
ables renders simple and useful approximations when it is suitably applied. Therefore,
its usefulness exceeds the analysis of GQFs. In fact, the derived approximants for the
statistics of an arbitrary positive random variable could be potentially applied to a con-
siderable number of applications.

Besides, an important future line of work can be the extension of the method to the
analysis of more intricate random variables, such as those arising from the sum or prod-
uct of several variables. In these cases, obtaining expressions for the resulting distribution
usually poses a challenge, and the proposed method may simplify the analysis.
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Also, due to the fact that most of the involved variables in communications and sig-
nal processing are complex, the derived expressions for the PDF and CDF of complex
GQFs can be used to analyze multiple systems, e.g. systems with reception diversity, per-
formance analysis of ML estimators or signal detection. The tractability of the proposed
expressions can undoubtedly simplify the characterization of these systems, allowing to
obtain closed-form expressions for important metrics such as BER and probabilities of
detection and false alarm, to mention but a couple of relevant examples.

In the context of diversity systems, a possible future line of work is the extension of
the presented analysis to the case of quadratic forms in Gaussian matrices, which nat-
urally arises when multiple antennas are used both at the transmitter and the receiver
[105].

Focusing on channel modeling, the analysis through confluence can be applied to the
analysis of more general fading models that take into account the multiplicative shadow-
ing, usually referred to as composite models. The analysis of these distributions is usually
more difficult, and a general framework to study such a versatile models can simplify the
characterization of the joint impact of shadowing and fading. Some preliminary results
can already be found in [114].

Finally, the generalized fading models derived in this thesis could lead to sytems per-
formance analyses which are valid in a wide variety of propagation conditions, instead
of requiring particular expressions for each scenario. Therefore, the scientific community
seems to be interested in these type of general models and some results in this context
have already been provided [115], [116].





73

Appendix A

Publications

A.1 New approximation to distribution of positive random vari-
ables applied to Gaussian quadratic forms

[46] P. Ramírez-Espinosa, D. Morales-Jimenez, J. A. Cortés, J. F. París, and E. Martos-
Naya, “New approximation to distribution of positive RVs applied to Gaussian quadratic
forms”, IEEE Signal Process. Lett., vol. 26, no. 6, pp. 923–927, Jun. 2019.
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New Approximation to Distribution of Positive RVs
Applied to Gaussian Quadratic Forms

Pablo Ramírez-Espinosa , David Morales-Jimenez ,
José A. Cortés , José F. Paris , and Eduardo Martos-Naya

Abstract—This letter introduces a new approach to the problem
of approximating the probability density function (PDF) and the
cumulative distribution function (CDF) of a positive random vari-
able. The novel approximation strategy is based on the analysis of
a suitably defined sequence of auxiliary variables which converges
in distribution to the target variable. By leveraging such conver-
gence, simple approximations for both the CDF and PDF of the
target variable are given in terms of the derivatives of its moment
generating function (MGF). In contrast to classical approximation
methods based on truncated series of moments or cumulants, our
approximations always represent a valid distribution and the rel-
ative error between variables is independent of the variable un-
der analysis. The derived results are then used to approximate the
statistics of positive-definite real Gaussian quadratic forms, com-
paring our proposed approach with other existing approximations
in the literature.

Index Terms—Gaussian quadratic forms, random variables,
signal detection, statistical distributions.

I. INTRODUCTION

A PPROXIMATING the distribution of a random variable
(RV) is a classical problem in applied statistics, central

to a vast number of applications in signal processing and com-
munication theory, to mention but a couple of relevant fields. In
many cases, closed-form expressions for the moment generating
function (MGF) of the RV or its moments are known, but the
probability density function (PDF) and cumulative distribution
function (CDF) remain intractable or given in complicated inte-
gral forms. A natural approach is then to approximate the PDF
and CDF of a RV from its cumulants or moments, and signifi-
cant efforts have been made in this direction: Pearson curves [1],
saddle point techniques [2], Gram-Charlier and Edgeworth se-
ries [3] or orthogonal polynomial series expansions [4] are some
well-known examples of these (classical) approximations. These
have been extensively used as they are typically simple and
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provide accurate representations in many cases. Similar tech-
niques have been recently applied in [5], where approxima-
tions for the distribution of the sum of independent RVs are
investigated.

However, a major drawback of these classical results is that
the resulting expressions are not guaranteed to be proper PDFs
(in fact, they typically are not); that is, the approximated PDF
does not necessarily integrate to one and the probabilities may
be negative [4, p. 731][6, sec. 2]. Another important issue is their
accuracy, which typically depends on the parametrization of the
target RV, leading in some cases to poor approximations.

We here aim to provide an alternative approximation to
the distribution of positive RVs which circumvents the afore-
mentioned limitations (of classical approaches). Instead of di-
rectly expanding the PDF (or CDF) of the target variable
(which typically results in series involving functions of the mo-
ments/cumulants), we focus on a sequence of auxiliary RVs,
defined so that the chief probability functions (PDF and CDF)
converge to those of the target RV under certain conditions. The
proposed approach has a double benefit:� Since the PDF and CDF of the target variable are approx-

imated by those of an auxiliary variable, the resulting ex-
pressions always represent a valid distribution.� The relative error between the target variable and the aux-
iliary one can be characterized in simple closed form, and
it is independent of the variable under analysis.

The derived expressions are then used to approximate the
distribution of positive-definite quadratic forms (QFs) in real
Gaussian variables, which has been subject of study for decades
due to their numerous applications in statistics, signal process-
ing and communications [7]–[15]. Gaussian QFs appear, for in-
stance, in the detection of signals in Gaussian noise [16, sec.
13.5], the spectral detection of normally distributed stationary
processes, χ2 tests [7, sec. 7] and analysis of variance [11].
Complex Gaussian QFs, which can be regarded as a particu-
lar case of the real one [17], are also relevant in many signal
processing problems such as the performance analysis of adap-
tive filter algorithms [18], energy detection [19] or performance
analysis of maximum likelihood (ML) estimators [20]. Also,
in wireless communications, QFs naturally arise when analyz-
ing differential modulation schemes [21] or diversity techniques
[15], [22].

II. APPROXIMATING THE DISTRIBUTION OF POSITIVE RVS

Consider a positive RV X with continuous distribution, and
assume that the MGF of X is infinitely differentiable. In order

1070-9908 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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to approximate its CDF, we define the auxiliary variable

Xm = X/ξm (1)

where ξm is a Gamma-distributed RV, independent of X , with
PDF:

fξm(u) =
(m − 1)m

Γ(m)
um−1e−(m−1)u. (2)

Since the sequence {ξm : m ∈ N+} converges to one in dis-
tribution, it follows from Slutsky’s Theorem [23] that the se-
quence {Xm : m ∈ N+} converges to X in distribution. This is
stated in the following lemma, where the CDF of Xm is derived,
allowing us to approximate the CDF of X by that of Xm, with
sufficiently large m.

Lemma 1: Let X be a positive RV with infinitely differen-
tiable MGF given by MX(s), and Xm as in (1). Then, the CDF
of X satisfies

FX(x) = lim
m→∞

FXm
(x)

= lim
m→∞

m−1∑

k=0

(m − 1)k

xkk!

dk

dsk
MX(s)

∣∣∣∣
s=(1−m)/x

. (3)

Proof: The CDF of Xm can be calculated as

FXm
(x) =

∫ ∞

0

FX(ux)fξm(u)du. (4)

Performing the change of variables y = ux and integrating by
parts we obtain

FXm
(x) = 1 −

∫ ∞

0

fX(y)Fξm(y/x)dy (5)

where fX(·) is the PDF of X and Fξm(·) is the CDF of ξm,
which for integer m is given by

Fξm(u) = 1 −
m−1∑

k=0

(m − 1)k

k!
uke−(m−1)u. (6)

Substituting (6) in (5) and rewriting the integral as the expecta-
tion in X lead to

FXm
(x) =

m−1∑

k=0

(m − 1)k

k!xk
EX

[
Xke−(m−1)X/x

]
, (7)

where the expectation can be seen as that of the k-th order
derivative of esX evaluated at s = (1 − m)/x. By Leibniz’s in-
tegral rule, we can interchange the derivative and the expectation,
yielding (3). �

Generally, convergence in distribution does not imply conver-
gence of the PDFs. However, the implication holds under certain
conditions. Specifically, if the densities of X and Xm, namely
fX(x) and fXm

(x), are continuous functions and fXm
(x) is

bounded and equicontinuous, then the convergence of the CDFs
implies the convergence of the density functions [24]. In our
case, fXm

(x) is calculated as

fXm
(x) =

∫ ∞

0

ufX(ux)fξm(u)du (8)

Note that, if fX(x) is uniformly continuous, it can be easily
proved that fXm

(x) satisfies the aforementioned conditions, so
that fXm

(x) → fX(x) as m → ∞. This allows to approximate
the PDF of X by that of Xm, as stated next.

Corollary 1: Let X be a positive RV with infinitely differen-
tiable MGF MX(s) and uniformly continuous PDF, and Xm as
in (1). Then, the PDF of X satisfies

fX(x) = lim
m→∞

fXm
(x)

= lim
m→∞

(m − 1)m

xm+1Γ(m)

dm

dsm
MX(s)

∣∣∣∣
s=(1−m)/x

. (9)

Proof: Similar to the CDF, fXm
(x) is obtained from (8)

by substituting fξm(u) and rewriting the resulting integral as
the expectation of the k-th order derivative of the exponential
function. �

Finally, we formulate the relative error between Xm and X:
Lemma 2: Let X be a positive RV, and Xm as in (1). For

m > 2, the normalized mean square error (NMSE) admits the
following compact expression

ε2 = E
[
(X − Xm)2

]
/ E

[
X2

]
= (m − 2)−1. (10)

Proof: The result is straightforwardly obtained from the def-
inition of the NMSE by noticing that, since ξm ∼ Γ(m, 1/(m −
1)), then 1/ξm is inverse Gamma distributed with E [1/ξm] = 1
and E

[
(1 − 1/ξm)2

]
= 1/(m − 2). �

Lemma 1 and Corollary 1 provide a general result to approxi-
mate the distribution of a positive RV in terms of the derivatives
of its MGF. The main benefits of this approach are: (i) we ap-
proximate the distribution of a RV X by that of another RV Xm,
so that the approximation (for any m) is always a valid distri-
bution, and (ii) the NMSE between X and Xm is under control,
and easily characterized. Note however that, although informa-
tive on the closeness between Xm and X , the NMSE does not
directly translate into the error between the approximated CDF
and the true one.

As with classical series expansions, where the moments are
required, the calculation of (3) and (9) may be challenging if the
derivatives of MX(s) are difficult to compute or not expressible
in closed form. Moreover, the convergence of the proposed series
may be slow and a relatively large m may be needed, implying
the computation of high-order derivatives of MX(s), which may
be tedious in some cases.

However, there are cases where these derivatives can be read-
ily obtained. That is, for instance, the case of Gaussian QFs,
where the moments—equivalently, the derivatives of the MGF—
can be easily computed recursively. The approach would further
appeal to other cases, e.g., those where the MGF is given as a
product of elementary functions [7, eq. (3.2b.3)].

III. DISTRIBUTION OF REAL QUADRATIC FORMS

We aim to characterize the random variable

Q = (x + µ)T A(x + µ) (11)

whereµ ∈ Rn×1 is a constant vector, A ∈ Rn×n is a symmetric
and positive definite matrix and x ∈ Rn×1 is a random vector
following a multivariate normal distribution with zero mean and
covariance matrix Σ, i.e. x ∼ Nn (0,Σ).

In this case, the MGF of Q is given by [7, eq. (3.2a.5)]

MQ(s) =
n∏

j=1

exp

(
b2jλjs

1 − 2λjs

)
(1 − 2λjs)

−1/2 (12)
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where λj , j = 1, . . . , n, are the eigenvalues ofC = Σ1/2AΣ1/2

and bj are the entries of b = UT Σ−1/2µ with U the unitary
matrix resulting from the diagonalization of C.

A. Literature Review

Closed form expressions for the PDF and CDF of real QFs can
only be obtained in certain simple cases (e.g., A = Σ = I, the
identity matrix), remaining in complicated integral form for the
general case, even when the involved Gaussian variables have
zero mean. The ubiquitous relevance of Gaussian QFs has mo-
tivated a rich body of work over the last few decades, aiming at
approximating the chief probability functions of Q. Approxima-
tions for both the PDF and CDF are given in terms of infinite se-
ries of powers (Maclaurin series) [7]–[9], Laguerre polynomials
[7], [8], [10], central χ2 distributions [7], [8], [11], non-central
χ2 densities [8], [13] and Hermite polynomials [14].

However, these approximations suffer from several draw-
backs. The series in [10], [11] are restricted to the central case,
and the series coefficients in [9] involve complicated sums, being
inefficient for numerical computation. The same happens with
the result in [14], where the number of terms to be computed
depends on a combinatorial, increasing with the order of the QF.
Numerical issues are also relevant in the case of non-central χ2

expansions [8], [13], where several Marcum-Q functions need
to be computed. The approximations based on Maclaurin series
and the Laguerre polynomials and central χ2 expansions in [7],
[8] render more useful results, but they fail under a wide range
of conditions as we will see later.

Another approximation to the CDF of real QFs was recently
given in [15], where the saddle-point technique was applied.
Unfortunately, the non-central case was not analyzed.

B. Approximated PDF and CDF

By applying Lemma 1 and Corollary 1 we can approximate
the PDF and CDF of Q by a linear combination of derivatives
of the MGF of Q, which in this case can be written in closed
form in an efficient recursive way [7, pp. 51–53]. The k-th order
derivative of MQ(s) admits

dk

dsk
MQ(s) = MQ(s)Dk(s) (13)

where D0(s) = 1 and, for k ≥ 1,

Dk(s) =
k−1∑

j=0

(
k − 1

j

)
gk−1−j(s)Dj(s), (14)

gi(s) = 2i i!

n∑

t=1

λi+1
t

[
(i + 1)b2t + 1 − 2λts

]

(1 − 2λts)i+2
. (15)

Using (13) in (9) and (3) we immediately have the approxi-
mated expressions for the PDF and CDF of Q, respectively:

fQ(x) ≈ (m − 1)m

xm+1Γ(m)
MQ

(
1 − m

x

)
Dm

(
1 − m

x

)
, (16)

FQ(x) ≈ MQ

(
1 − m

x

)m−1∑

k=0

(m − 1)k

xkk!
Dk

(
1 − m

x

)
. (17)

Fig. 1. PDF of Q for different values of α, ρ and µ. The proposed method is
compared with the Maclaurin expansion in [7], [8] and with MC simulations.

Fig. 2. CDF of Q for α = 0.7, ρ = 0.5, µ = (2, 1, −1, 0.6, −0.9). Our pro-
posed method with m = 100 is compared with the χ2 expansion in [7] and with
MC simulations.

The recursion in the calculation of Dk(·) and the fact that the
derivatives of MQ(s) are positive—consequently, also Dk(·)—
allow for an efficient and numerically stable computation of
(16) and (17), with independence of the QF parameters. This
is in stark contrast to previous (existing) methods, as will be
illustrated in the next section.

IV. NUMERICAL RESULTS AND DISCUSSION

We now compare the proposed approximation for real QFs
in (16) and (17) with the results in terms of Maclaurin se-
ries, Laguerre polynomials series and χ2 densities expansion
in [7], [8]. The other classical approaches and the approxima-
tion given in [15] are disregarded due to the drawbacks listed in
Section III-A. All the calculations haven been done using MATH-
EMATICA software and validated through Monte Carlo (MC)
simulations.

For the sake of simplicity, we consider (A)i,j = α|i−j| and
(Σ)i,j = ρ|i−j|, with 0 < α, ρ < 1, and compare our proposed
approximation with previous methods in Figs. 1–4. We use dif-
ferent values of n, α, ρ and µ in the distinct representations in
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Fig. 3. CDF of Q at x = 1 for distinct QF order, n. Our proposed method is
compared with the Laplace approximation with βL = 10 in [7], [8] and with
MC simulations.

Fig. 4. CDF of Q for different values of n, α, ρ, μi. The proposed method is
compared with the Maclaurin series, the Laguerre expansion and the χ2 expan-
sion in [7], [8] and contrasted with MC simulations. βL = 9 for n = 15 and
βL = 12 for n = 30.

order to show the generality and robustness (in the parameters
range) of our proposed approximation.

Fig. 1 focuses on the comparison between our approximation
and the Maclaurin series by plotting the approximated PDF of
Q. It can be observed that the Maclaurin series renders a valid
approximation only up to a certain point in x, remarkably failing
thereafter; the value of x from which the series diverges depends
on the parameters of the QF. As illustrated, increasing the num-
ber of terms in the series from 100 to 150 does not seem to solve
the problem. In contrast, our proposed solution shows an excel-
lent agreement with simulations for all parameter choices and
all x.

Fig. 2 compares our results with the χ2 densities expansion
by plotting the CDF of Q (similar trends are observed for the
PDF). The χ2 approximation artificially introduces an additional
parameter βχ < minj{λj} that controls the series convergence
[8]. It has been observed that a high value of βχ in that range
facilitates the convergence, so we fixed βχ = 0.9 minj{λj}. We
observe that the number of terms required for the χ2 expansion
is much larger than in our method (m) to accurately approximate

the distribution of Q. Furthermore, it is important to note that
the χ2 expansion does not yield a valid CDF, as observed in the
right-hand tail.

A comparison between (17) and the Laguerre series expan-
sion is shown in Fig. 3. This approximation also introduces a
parameter βL > maxj{λj} that controls the convergence of the
series. However, we noticed that the recommended value of βL

in [8] renders considerable numerical errors that prevent the se-
ries convergence. Hence, finding the value of βL that yields the
best approximation in each case is a difficult task. For the cal-
culation in Fig. 3, a value of βL = 10 has been chosen, which
seems to minimize such numerical issues. As shown in Fig. 3
the series diverges when the order of Q increases, with indepen-
dence of the QF parameters. Note that the considered values of
n are not particularly extreme, but rather moderate, particularly
in applications such as signal detection where large numbers of
samples are typically employed.

The last comparison is shown in Fig. 4, where the CDF of
Q is plotted in logarithmic scale in order to analyze the accu-
racy of the distinct approaches to approximate the left tail of
the distribution. As observed, the aforementioned drawbacks of
the alternative methods are also relevant when focusing on the
left tail of the distribution. In turn, our proposed technique ren-
ders again an excellent approximation with independence of the
parameters of Q.

The goodness of the approximations in the previous cases
has been quantified using the Kolmogorov-Smirnov (K-S) test,
showing that the proposed method provides the same (or even
better) accuracy than the alternative ones by computing much
less terms (m) with independence of the QF parameters. For
instance, for data in Fig. 2, our technique achieves a K-S test
result of D = 0.036 for m = 100 while the χ2 expansion needs
N = 500 to get D = 0.035.

Moreover, the complexity in terms of the computation time
has also been investigated, observing that, for a given accuracy,
the proposed approximation is faster than the alternative ones
(since it needs much less computed terms).

V. CONCLUSION

This letter addresses the problem of approximating the dis-
tribution of positive RVs whose closed-form expression of the
MGF is known. A new approach based on a sequence of auxil-
iary variables that converges in distribution to the target one is
proposed, rendering approximations for the PDF and the CDF
in terms of the derivatives of the MGF of the RV under anal-
ysis. Compared to previous techniques found in the literature,
the proposed method offers a twofold benefit: (i) the resulting
expressions for the chief probability functions always represent
a valid distribution, and (ii) the NMSE between the target vari-
able and the auxiliary one admits a simple formulation which is
independent of the considered RV.

The presented approach is then applied to the study of
positive-definite real Gaussian quadratic forms, for which we
provide novel approximations for the PDF and CDF that can be
easily computed and that outperform previous ones given in the
literature in a wide range of conditions. The derived expressions
provide an accurate approximation using a moderate number
of terms even when other approaches fail (e.g., yielding CDF
values larger than one).
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A New Approach to the Statistical Analysis of
Non-Central Complex Gaussian Quadratic

Forms With Applications
Pablo Ramírez-Espinosa , Laureano Moreno-Pozas , José F. Paris , José A. Cortés ,

and Eduardo Martos-Naya

Abstract—This paper proposes a novel approach to the statis-
tical characterization of non-central complex Gaussian quadratic
forms (CGQFs). Its key strategy is the generation of an auxiliary
random variable that replaces the original CGQF and converges
in distribution to it. This technique is valid for both definite and
indefinite CGQFs and yields simple expressions of the probability
density function (PDF) and the cumulative distribution function
(CDF) that only involve elementary functions. This overcomes a
major limitation of previous approaches, where the complexity of
the resulting PDF and CDF does not allow for further analytical
derivations. Additionally, the mean square error between the origi-
nal CGQF and the auxiliary one is provided in a simple closed-form
formulation. These new results are then leveraged to analyze the
outage probability and the average bit error rate of maximal ratio
combining systems over correlated Rician channels.

Index Terms—Quadratic forms, Gaussian random vectors, cor-
relation, Rician channels, diversity techniques.

I. INTRODUCTION

COMPLEX Gaussian quadratic forms (CGQFs) play an
essential role when analyzing several wireless techniques,

including maximal ratio combining (MRC) [1], optimum
combining [2], beamforming [3], multibeam strategies [4], or-
thogonal space time block coding [5], relays [6], non-coherent
modulations [7], differential detections [8] and matched-field
processing [9].

The analysis of CGQFs has been usually restricted to cen-
tral CGQFs, i.e. quadratic forms built from zero mean complex
Gaussian vectors, which can be given in a very tractable form
[10], [11]. However, the analysis of non-central CGQFs remains
as an open problem in the literature. Hence, despite its interest
in common problems like the study of digital communications
over Rician channels, no closed-form expressions are known for
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chief probability functions like the probability density function
(PDF) and the cumulative density function (CDF), for which
only approximated solutions have been given.

The statistical analysis of non-central CGQFs can be traced
back to the work by Turin [12]. Although their characteristic
function was given in closed-form, Turin highlighted the chal-
lenge of obtaining the PDF of CGQFs built from non-zero mean
Gaussian vectors. Since then, some works made initial progress
to pave the way for the complete statistical characterization of
non-central CGQFs. To the best of the authors’ knowledge, most
of the approaches available in the literature are based on the
direct inversion of the moment generating function (MGF), or
equivalently, the characteristic function, to obtain an approxima-
tion of the PDF of CGQFs [13]–[15]. Some works apply different
series expansions to the characteristic function to allow such in-
version [13], [14], while the work by Biyari and Lindsey consid-
ers a specific non-central CGQF and inverts its MGF by solving
some convolution integrals [15]. All these works present approx-
imations for the PDF of non-central CGQFs in terms of infinite
sums of special functions. In particular, the PDF of positive-
definite and indefinite non-central CGQFs is given in terms of a
double infinite sum of modified Bessel functions in [13] and [14],
and of a double infinite sum of Laguerre polynomials in [15].

Taking into account the limitations of direct inversion meth-
ods, since the solutions provided for the PDF and the CDF of
non-central CGQFs are difficult to compute and not suitable for
any further insightful analysis, very recently, Al-Naffouri et al.
presented a different approach. They applied a transformation
to the inequality that defines the CDF of non-central CGQFs,
yielding a problem in which the well-known saddle-point tech-
nique allows expressing the CDF as the solution of a differential
equation [10].

This paper proposes a completely different approach to the
statistical analysis of indefinite non-central CGQFs, which leads
to simple expressions that approximate both the PDF and CDF
of CGQFs. It is based on appropriately perturbing the non-
zero mean components of the Gaussian vectors that build the
quadratic form. This yields an auxiliary CGQF, denoted as
confluent CGQF, which converges in distribution to the orig-
inal quadratic form and whose analysis is surprisingly simpler.
Specifically, this novel approach offers the following advantages
over the recently proposed work in [10] and the other approaches
given in the literature [13]–[15]:

0018-9545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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� The probability functions, namely PDF and CDF, are given
as a linear combination of elementary functions (exponen-
tials and powers) in a very tractable form, which are useful
for further calculations (e.g. expectations over the CGQF).� Simple closed-form expression for the mean squared er-
ror (MSE) between the CGQF and the auxiliary one is
provided, allowing the particularization of the auxiliary
variable in order to make this error drop below a certain
threshold.� Since the statistics of an auxiliary random variable are used
to characterize CGQFs, the approximated solution is al-
ways a statistical distribution. This is not the case of the
infinite series expressions of the literature, which are no
longer strict PDFs when truncated (no-unit area).

Finally, with the aim of exemplifying the tractability of the
derived expressions, they are used to further study the perfor-
mance of MRC systems over non-identically distributed Rician
fading channels with arbitrary correlation. Hence, simple ex-
pressions for the outage probability and the bit error rate (BER)
are provided for different modulation schemes.

The remainder of this paper is structured as follows. The no-
tation and some preliminary results are introduced in Section II.
Section III presents the general approach, as well as the statisti-
cal characterization of indefinite non-central CGQFs with a very
simple and precise approximation which admits a closed-form
expression for its associated MSE. In Section IV, an efficient
recursive algorithm to compute the derived expressions is intro-
duced. Section V contains a comparison between the proposed
approach and some of the aforementioned approximations given
in the literature. In Section VI, the new statistical characteriza-
tion of non-central CGQFs is applied to the performance anal-
ysis of MRC systems over correlated Rician channels. Finally,
conclusions are drawn in Section VII.

II. NOTATION AND BACKGROUND

Throughout this paper, the following notation will be used.
Vectors and matrices are denoted in bold lowercase and bold
uppercase, respectively. E[·] is the expectation operator, while
L{·} and L−1{·} denote the Laplace transform and the inverse
Laplace transform operators, respectively. The symbol ∼ signi-
fies statistically distributed as and Re{·} denotes the real part.
The superscript (·)† indicates matrix complex conjugate trans-
pose and tr(·) is the matrix trace. The matrices Ip and 0p×q

denote a p × p identity and a p × q all-zero matrix, respectively.
When diag(·) is applied to a matrix, it returns a vector whose
entries are the diagonal elements of that matrix. Additionally,
u(·) is the unit step function whose value is 1 if the argument is
non-negative and 0 otherwise. sgn(·) is the sign function whose
value is 1 for non-negative arguments and −1 otherwise. Some
relevant definitions and preliminary results, which will be used
when presenting the main contributions, are now introduced.

A. Basic Distributions

Definition 1 (Gamma distribution): Let X be a real random
variable, which follows a Gamma distribution with shape pa-
rameter m and scale parameter θ, i.e. X ∼ Γ (m, θ). Then, the

PDF of X is given by [16, eq. (17.23)]

fX(x) =
1

Γ(m)θm
xm−1e−x/θ (1)

where Γ(·) is the gamma function and m, θ ∈ R+.
Definition 2. (Non-central χ2 distribution with n degrees of

freedom):
Consider

Y =

n∑

i=1

X2
i (2)

where Xi, i = 1, . . . , n, are statistically independent real Gaus-
sian random variables with unit variance and means μi, i.e.
Xi ∼ N (μi, 1). Then, Y follows a non-central χ2 distribu-
tion with n degrees of freedom and noncentrality parameter
δ =

∑n
i=1 μ2

i , i.e. Y ∼ χ2
n (δ). The MGF of Y is therefore given

by [11, eq. (5.1.23)]

MY (s) =
1

(1 − 2s)n/2
exp

(
δs

1 − 2s

)
(3)

for all s ∈ C such that Re{s} < 1/2.

B. Complex Gaussian Quadratic Forms

Definition 3 (CGQF): Let v ∈ Cn×1 be a random vector
that follows a n-variate Gaussian distribution with mean vec-
tor v ∈ Cn×1 and non-singular Hermitian covariance matrix
L ∈ Cn×n, i.e. v ∼ CN n (v,L), and let A ∈ Cn×n be a non-
singular indefinite Hermitian matrix, i.e. A can have positive
and negative real eigenvalues. Then, the real random variable

Q = v†Av (4)

is an indefinite non-central CGQF [12, eq. (3)].
Note that assuming L is non-singular does not implies any

loss of generality. If rank(L) < n, then some components of v
are linearly related [17, chap. 1] and, consequently, Q can be
rewritten in terms of another vector with full-rank covariance
matrix. That is equivalent to assuming L is positive definite.

The expression in (4) has been classically employed in the
context of CGQF analysis [12], [14], [18]. However, in this work,
an alternative form will be used, which is equivalent to (4) and
can be deduced from it by performing some algebraic transfor-
mations. This alternative form is formally equivalent to the one
in [13, eq. (2)], but it will be derived using a different approach
that facilitates the understanding of the subsequent analysis pro-
posed in this paper.

Since the covariance matrix L is a positive definite Hermitian
matrix, a Cholesky factorization is performed such that L =
CC†, where C ∈ Cn×n is an invertible lower triangular matrix
with non-negative diagonal entries [19]. Then, the vector v can
be expressed as

v = Cz + v (5)

where z ∼ CN n (0n×1, In). Substituting (5) in (4) and after
some algebraic manipulations, one has

Q =
(
z + C−1v

)†
C†AC

(
z + C−1v

)
. (6)
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C†AC is Hermitian, so it can be diagonalized as

C†AC = UΛU† (7)

where U is an unitary matrix and Λ is a diagonal matrix whose
entries, λi for i = 1, . . . , n, are the eigenvalues of C†AC (or,
equivalently, those of LA) [20, chap. 2]. Thus, relabeling y =
U†z and h = U†C−1v, one gets

Q =
(
y + h

)†
Λ
(
y + h

)
. (8)

Since U is unitary, the distribution of y is the same as that of
z, i.e. y ∼ CN n (0n×1, In). Consequently, the quadratic form Q
is now expressed in terms of a random vector y whose elements
are independent and the diagonal matrix Λ with the eigenvalues
of LA. Depending on whether Q is definite or indefinite, all the
eigenvalues have the same sign or not. For positive definite and
negative definite CGQFs, λi > 0 and λi < 0 for i = 1, . . . , n,
respectively. In turn, when Q is indefinite, the eigenvalues can
be either positive or negative. In order to obtain the MGF of Q,
(8) is expanded as

Q =

n∑

i=1

λi

(
yi + hi

)† (
yi + hi

)
(9)

where yi and hi for i = 1, . . . , n represent the entries
of y and h, respectively. Additionally, defining Yi =

2
(
yi + hi

)† (
yi + hi

)
, the statistical independence of the el-

ements of y allows expressing Q as

Q =

n∑

i=1

λi

2
Yi (10)

with Yi ∼ χ2
2(2|hi|2). Thus, Q can be expressed in terms of

a linear combination of independent non-central χ2 variables.
Hence, its MGF can be straightforwardly obtained as the product
of the MGFs of the scaled version of Yi, which can be deduced
from (3), getting the result given in [13, eq. (7)]

MQ(s) =
n∏

i=1

exp
(

λiμis
1−λis

)

1 − λis
(11)

for every s ∈ C such that λiRe{s} < 1 ∀ i where μi = |hi|2 =

[U†C−1vv† (C−1
)†

U]i,i. Note that the distinct sign with re-
spect to [13, eq. (7)] is due to a slightly different definition of
the MGF, which in (11) is calculated as MQ(s) = E[esQ].

Closed-form expressions for some statistics of Q, e.g., the
PDF and CDF, are not known due to the exponential term in (11),
which considerably complicates performing an inverse Laplace
transformation. This issue is a direct consequence of consid-
ering a non-central Gaussian vector v. Actually, this does not
occur when v has zero mean, since the exponential term in (11)
vanishes, allowing a straightforward inversion to obtain the dis-
tribution of Q. Although the idea behind most previous con-
tributions consists in expanding such exponential function to
perform the inverse Laplace transform, the approach here pre-
sented will circumvent the need of manipulating this function,
which usually leads to complicated statistical expressions that

are not suitable for subsequent analyses [13]–[15]. It is based on
randomly perturbing the deterministic elements that originate
the non-centrality of the quadratic form, such that the exponen-
tial term in (11) disappears, thus facilitating the derivation of the
distribution of Q. This approach will be referred to as principle
of confluence in the next section.

III. CONFLUENT NON-CENTRAL COMPLEX GAUSSIAN

QUADRATIC FORM

The here proposed approach exploits the fact that the analysis
of some statistical problems is notably simplified by introduc-
ing a random fluctuation into them. A major innovation of this
paper is the determination of an adequate fluctuation to achieve
this end in the context of non-central CGQFs. To this aim, an
auxiliary CGQF is obtained by perturbing vector h in (8) with
a random variable that depends on a shape parameter. When the
latter tends to infinity, the auxiliary CGQF converges to the orig-
inal one. This section firstly formalizes this property, referred to
as principle of confluence, and then shows that the statistical
analysis of the original CGQF can be derived from that of the
auxiliary one.

A. The Principle of Confluence

In the following, the definition of confluent random variable
is given, as well as some relevant lemmas that build a general
framework that will be used to analyze non-central CGQFs.

Definition 4. (Confluent random variable): Let Xm be a real
random variable with a real and positive shape parameter m.
Then, the random variable Xm is confluent in m to another
random variable X if

lim
m→∞

MXm
(s) = MX(s) (12)

for s = it with i =
√

−1 and t ∈ R, and it is denoted as Xm �
X . Also, X is named the limit variable.

Definition 5. (Weak convergence): Let {Xn} be a sequence
of real random variables. Then, {Xn} is said to converge weakly,
or converge in distribution, to another random variable X if

lim
n→∞

FXn
(x) = FX(x) (13)

at every continuity point [21], where FX(x) is the CDF of X .
With the above definitions, the following lemmas are now

presented.
Lemma 1: Let Xm and X be two random variables such that

Xm � X . Then, Xm converges weakly to X in m.
Proof: The lemma is a consequence of Lévy’s continuity

theorem (or Lévy’s convergence theorem) [22, chap. 18]. The
confluence in m between the random variables Xm and X im-
plies that the MGF of Xm converges pointwise to MX(s) in
the imaginary axis. This is equivalent to the convergence of the
characteristic functions, fulfilling Lévy’s theorem and ensuring
the weak convergence of Xm to X . �
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Lemma 2: Let Xm and X be two random variables such that
Xm � X in m. If g : R → R is a continuous and bounded func-
tion, then

lim
m→∞

E [g(Xm)] = E [g(X)] . (14)

Proof: As Xm � X , Lemma 1 ensures the weak conver-
gence between Xm and X . According to Helly-Bray theo-
rem, this weak convergence is equivalent to the convergence
in expectations if and only if g is a continuous and bounded
function [23]. �

Definition 4 along with Lemma 1 and Lemma 2 constitute
the principle of confluence. It allows circumventing the need
of manipulating the statistics of X, working with those of Xm

instead.
As such, the principle of confluence is a novel approach to

characterize complicated random variables, by means of auxil-
iary variables which are more tractable to analyze.

B. The Principle of Confluence for CGQFs

The principle of confluence is here used to analyze non-central
CGQFs. In order to do so, it is necessary to firstly define the
auxiliary random variable, which will be referred to as confluent
CGQF.

Proposition 1: Let ξm,i for i = 1, . . . , n be a set of inde-
pendent and non-negative random variables such that ξ2

m,i ∼
Γ(m, 1/m) ∀ i. Then, ξ2

m,i � 1 and ξm,i � 1 in m ∀ i.
Proof: The confluence of ξ2

m,i is straightforwardly proved
since limm→∞ Mξ2

m,i
(s) = es. The confluence of ξm,i can be

proved from the relationship between its CDF and that of ξ2
m,i.�

Proposition 2: Consider Q the non-central CGQF in (8) and
let Dξ ∈ Rn×n be a diagonal matrix with entries ξm,i such that
ξ2
m,i ∼ Γ(m, 1/m) for i = 1, . . . , n. Then,

Qm =
(
y + Dξh̄

)†
Λ
(
y + Dξh̄

)
(15)

is a confluent non-central CGQF whose MGF is given by

MQm
(s) =

n∏

i=1

(
1 − λiμis

m(1−λis)

)−m

1 − λis
(16)

for every s ∈ C such that Re{s}λi

(
1 + μi

m

)
< 1 ∀ i. Besides,

limm→∞ MQm
(s) = MQ(s) and, therefore, Qm � Q.

Proof: The MGF in (16) is derived in Appendix A and, since

lim
m→∞

(
1 − λiμis

m (1 − λis)

)−m

= exp

(
λiμis

1 − λis

)
, (17)

then limm→∞ MQm
(s) = MQ(s), which proves that Qm is con-

fluent in m to Q. �
To give an intuitive explanation for Proposition 2, observe

(15). Since ξm,i � 1 for i = 1, . . . , n, Dξ becomes the iden-
tity matrix when m → ∞. Consequently, the confluent CQGF
in (15) becomes the original one in (8) in the limit. Note also
that, in the central case, i.e. h = 0n×1, Qm = Q for any value
of m. Additionally, the expression in (16) confirms that choos-
ing the perturbing fluctuations to follow Gamma distributions
is appropriate since this expression does no longer present the

exponential term. In fact, by performing some algebraic manip-
ulations in (16), the MGF of Qm can be written as

MQm
(s) =

n∏

k=1

[
(−λk)

(
1 +

μk

m

)m]−1 n∏

i=1

(s − 1/λi)
m−1

(s − βi)
m

(18)
where MQm

(s) is in terms of a rational polynomial whose zeroes
and poles are 1/λi and βi = [λi (1 + μi/m)]−1 for i = 1, . . . , n,
respectively. Assuming there can be repeated poles and zeroes,
and taking into account that, if μi = 0 for a certain i, then
βi = 1/λi, this rational polynomial can be simplified. Thus, de-
noting as β̃i and 1/λ̃j for i = 1, . . . , nβ and j = 1, . . . , nλ the
distinct poles and zeroes resulting from simplifying the rational
polynomial in (18) with multiplicities pi and qi, respectively, the
MGF of Qm is expressed

MQm
(s) =

n∏

k=1

[
(−λk)

(
1 +

μk

m

)m]−1
∏nλ

j=1

(
s − 1/λ̃j

)qj

∏nβ

i=1

(
s − β̃i

)pi
.

(19)
In contrast with the MGF of the original CGQF in (11), the

expression of MQm
(s) in (19) allows a straightforward inver-

sion, i.e. performing an inverse Laplace transformation in order
to obtain the PDF and the CDF of Qm. Moreover, from Propo-
sition 2, since Qm � Q, the probability functions of Q can be
obtained from those of Qm by virtue of Lemma 1. Thus, the
PDF and CDF of Qm are calculated in the following proposi-
tions, which are easily derived from (19) after expanding the
rational polynomial in partial fractions.

Proposition 3: Consider Qm the confluent CGQF defined in
(15). Then, the PDF of Qm is given by a linear combination of
elementary functions as

fQm
(x) =

nβ∑

i=1

pi∑

j=1

αi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x) (20)

where αi,j = BjAi,j with

Bj =
1

(j − 1)!

n∏

k=1

[
(−λk)

(
1 +

μk

m

)m]−1
(21)

and Ai,j are the residues that arises from performing a partial
fraction decomposition in (19) after evaluating MQm

(−s). A
closed-form expression for Ai,j is given by

Ai,j =
∑

k1+···+kN−1=pi−j
ku≤qu,u=1,...,nλ

N−1∏

s=1

(ks!)
−1Di(k1, . . . , kN−1) (22)

with Di(·) given in (23), shown at the bottom of the next page,
as proved in Appendix B. The sum in (22) is over all possible
combinations of k1, ..., kN−1, with N = nλ + nβ and ku ≤ qu

for u = 1, . . . , nλ, that meet
∑N−1

t=1 kt = pi − j.
Proof: The PDF of Qm is easily obtained from (19) as

fQm
(x) = L−1 {MQm

(−s)} by performing a partial fraction
expansion as detailed in Appendix C. �
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Proposition 4: Consider Qm the confluent CGQF defined in
(15). Then, the CDF of Qm is given by

FQm
(x) = u(x) +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x)

(24)
where ωi,j = BjCi,j with Ci,j the partial expansion residues
given by

Ci,j =
∑

k1+···+kN=pi−j
ku≤qu,u=1,...,nλ

N∏

s=1

1
ks!

kN !(−1)kN

(
−β̃i

)1+kN
Di(k1, . . . , kN−1)

(25)
as can be deduced from Appendix B.

Proof: Following the same steps as in the previous proof,
the CDF of Qm is straightforwardly calculated from (19) as
FQm

(x) = L−1 {MQm
(−s)/s}, as detailed in Appendix D. �

Propositions 3 and 4 provide simple closed-form expressions
for both the PDF and CDF of Qm in terms of elementary func-
tions, i.e. exponentials and powers. Regarding the argument of
the unit step function, it is clear that the domain of u(β̃ix), where
the function values are non-negative, will depend on the sign of
β̃i. Thus, if x < 0, then the value of u(β̃ix) will be zero for
those β̃i > 0 for i = 1, . . . , nβ . In turn, for positive values of
x, the value of the step function will be zero for those β̃i < 0.
Moreover, since μi ≥ 0 ∀ i, the sign of β̃i is the same as that of
λ̃i, so the shape of the distribution of Qm (and, equivalently, that
of Q) depends on the positive eigenvalues λ̃i for x ≥ 0, while it
depends on the negative eigenvalues for x < 0.

From (20) and (24), the PDF and CDF of Q can be approx-
imated by setting m to a sufficiently large value. Note that, al-
though m does not appear explicitly in (20) and (24), both the
poles β̃i and their multiplicities pi depends on m, as well as
zeroes multiplicities qj . In the central case, i.e. μi = 0 ∀ i, exact
expressions for both fQ(x) and FQ(x) can be obtained from
(20) and (24) for any value of m (e.g. m = 1). Additionally, in
contrast to previous approximations found in the literature, it is
possible to quantify the MSE between Q and Qm in closed-form
as given in the following proposition.

Proposition 5: Consider Q the CGQF and Qm the conflu-
ent CGQF given in (8) and (15), respectively. Then, the MSE
between Q and Qm is given by

ε2 � E
[
(Qm − Q)2

]

=

n∑

i=1

λ2
iμi

[
4

(
1 − Γ (m + 1/2)

m1/2Γ(m)

)
+

μi

m

]
. (26)

Proof: See Appendix E. �
Observe that, when μi = |hi|2 = 0 for i = 1, . . . , n then ε2 =

0 for any value of m. This is coherent with the fact that setting

μi = 0 ∀ i implies having a central CGQF. Additionally, it is
easy to prove that the error also goes to zero when m → ∞. By
applying the asymptotic formula for the gamma function given
in [24, eq. 6.1.39], which allows to write

Γ(m + τ) ≈
√

2πe−mmm+τ−1/2 (27)

for large m, it is clear that limm→∞ ε2 = 0. This implies that Qm

converges in mean square to Q, which is a more general type
of convergence between random variables. In fact, convergence
in mean square also implies convergence in probability and,
consequently, weak convergence [25].

When compared to other approximations, the novel approach
here presented renders more tractable expressions for the chief
probability functions of indefinite non-central CGQFs. The PDF
and CDF of Q can be approximated from those of Qm, which
only involves elementary functions in contrast to the more com-
plicated expressions available in the literature [10], [13]–[15].
It is only necessary to set m large enough, such that the MSE
between Qm and Q drops below a certain threshold.

IV. DISCUSSION ON THE COMPUTATION OF PARTIAL FRACTION

EXPANSION RESIDUES

The expressions of fQm
(x) and FQm

(x) have been ob-
tained as the inverse Laplace transformation of MQm

(−s)
and MQm

(−s)/s, respectively. These transformations are per-
formed by expanding the rational polynomial in (19) after eval-
uating MQm

(−s), that is

R(s) =

∏nλ

t=1

(
s + 1/λ̃t

)qt

∏nβ

i=1

(
s + β̃i

)pi
, (28)

so the constants αi,j and ωi,j in (20) and (24) depend on the
partial expansion residues of R(s) and R(s)/s, namely Ai,j

and Ci,j , respectively.
Although closed-form expressions for such constants have

been provided in (22) and (25), the computation of these ex-
pressions is impractical for very large m. Because the number
of terms that needs to be computed for those residues depends
on a combinatorial, it grows exponentially with pi and, conse-
quently, with m. As such, for m sufficiently large, the number of
combinations becomes computationally unbearable. This issue
is commonly referred to as combinatorial explosion.

Since the partial expansion residues can be defined as deriva-
tives of the rational polynomial [26, eq. (A.36)], an alternative
approach to avoid the combinatorial explosion may be the calcu-
lation of these derivatives by means of Cauchy’s differentiation
formula, which allows expressing the derivatives as contour in-
tegrals over a closed path [27]. Even though these integrals could

Di(k1, . . . , kN−1) =

nλ∏

t=1

(
λ̃−1

t − β̃i

)qt−kt

(qt!)−1(qt − kt)!

i−1∏

r=1

(−1)kr+nλ (pr)kr+nλ(
β̃r − β̃i

)pr+kr+nλ

nβ∏

l=i+1

(−1)kl+nλ−1(pl)kl+nλ−1(
β̃l − β̃i

)pr+kl+nλ−1
. (23)
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be numerically computed, they suffer from significant numeri-
cal problems as m increases. These are due to the large ampli-
tude oscillatory behavior (with positive and negative values) of
the integrands, which can be tens of orders of magnitude larger
than the actual value of the integrals, preventing the integral
convergence.

A more suitable approach for the computation of Ai,j and
Ci,j is the algorithm proposed in [28], which provides recur-
sive expressions for the partial fraction residues of both proper
and improper rational functions. According to [28, eq. (11a) and
(11b)], each residue Ai,j for i = 1, . . . , nβ and j = 1, . . . , pi is
calculated as a linear combination of the previous ones. The re-
cursion starts from Ai,pi

, which can be directly computed from
the definition in [26, eq. (A.36)] without taking any derivative.
From it, this algorithm computes Ai,pi−1, Ai,pi−2, . . . , Ai,1 re-
cursively as

Ai,j =

⎧
⎪⎪⎨
⎪⎪⎩

1
pi−j

∑pi−j
k=1 Ai,j+kρA(k,−β̃i), if 1 ≤ j ≤ pi − 1

∏nλ
t=1(λ̃−1

t −β̃i)
qt

∏nβ

l=1
l �=i

(β̃l−β̃i)
pl , if j = pi

(29)

where ρA(k, s) is given by

ρA(k, s) =

nβ∑

l=1
l �=i

pl(
−β̃l − s

)k
−

nλ∑

t=1

qt(
−λ̃−1

t − s
)k

. (30)

Analogously, Ci,j for i = 1, . . . , nβ and j = 1, . . . , pi arises
as the partial expansion residues of R(s)/s, so following the
same steps as with Ai,j one has

Ci,j =

⎧
⎪⎪⎨
⎪⎪⎩

1
pi−j

∑pi−j
k=1 Ai,j+kρC(k,−β̃i), if 1 ≤ j ≤ pi − 1

∏nλ
t=1(λ̃−1

t −β̃i)
qt

−β̃i

∏nβ

l=1
l �=i

(β̃l−β̃i)
pl , if j = pi

(31)

with

ρC(k, s) =

nβ∑

l=1
l �=i

pl(
−β̃l − s

)k
+

1
(−s)k

−
nλ∑

t=1

qt(
−λ̃−1

t − s
)k

.

(32)
In contrast to (22) and (25), the computational cost of (29)

and (31) grows linearly with m instead of exponentially, avoid-
ing the combinatorial explosion. Despite that, numerical errors
could still be relevant when computing (29) and (31) due to the
limited floating-point precision in calculation software. For very
large m, the distinct terms in the summation can still differ in
considerable orders of magnitude, which could lead to inaccurate
results. However, in contrast to the previous approach that em-
ploys Cauchy formula, this computational issue can be solved by
working with rational numbers in the software MATHEMATICA.
This suite allows the possibility of working with floating-point
number with full precision by rationalizing them using the func-
tion RATIONALIZE, allowing an error-free computation of Ai,j

and Ci,j .

Fig. 1. PDF of Q with n = 5, λ = [−3, −1.8, 2, 4, 6] and µ =
[4.3, 2.2, 5.6, 7, 1]. Exact (simulated) PDF is compared with our
approximation in (20) and Raphaeli’s approach in [14].

V. COMPARISON WITH OTHER APPROACHES

This section provides a comparison between our proposed ap-
proximations in (20) and (24) and other approaches presented
in the literature. Concretely, the works in [14] and [10] are
considered.

Raphaeli gives two different expressions for the PDF of in-
definite non-central CGQFs in terms of infinite series in [14,
eqs. (25) and (38)]. Compared to these results, our proposed ap-
proximations in (20) and (24) provides a twofold benefit. The
first one is that Raphaeli’s expressions are not useful for further
calculations, e.g. the derivation of error probabilities in com-
munications, due to the recursion that involves the independent
variable [14, eq. (25)] or the presence of modified Bessel func-
tions [14, eq. (38)]. In fact, to the best of the authors’ knowledge,
the CDF cannot be expressed in closed-form by integrating the
expressions [14, eq. (25) and (38)] of the PDF. The second ben-
efit is that our approximations always render a valid distribution
(for any value of m), in contrast to the truncated series. This
is shown in Figs. 1–2, where the PDF and CDF of non-central
CGQFs, calculated using both our approach and Raphaeli’s one,
are depicted. All the calculations have been done using MATH-
EMATICA software with rational numbers in order to avoid nu-
merical errors, which are also relevant in Raphaeli’s series. For
simplicity, the vector containing the n eigenvalues λi is denoted
by λ = [λ1, . . . , λn]. In the same manner, the vector µ is de-
fined such that µ = [μ1, . . . , μn]. Also, the number of terms
employed in Raphaeli’s series is denoted by N . The theoretical
calculations are also compared with Monte-Carlo simulations
of the indefinite non-central CGQF Q.

Thus, the PDF of CGQFs for certain values of the entries
of λ and µ is plotted in Fig. 1, observing how the proposed
method in [14] produces invalid PDF values for certain x if N
is not large enough. Specifically, for N = 40 we observe how
the resulting PDF produces incorrect values for x between zero
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Fig. 2. CDF of Q with n = 6, λ = [−3, −1.8,−1, 1, 2.1, 3] and
µ = [8.5, 7.4, 4, 5, 6.8, 7.9]. Exact (simulated) CDF is compared with our
approximation in (23) and Raphaeli’s approach in [14].

Fig. 3. CDF of Q for different parameters. Exact (simulated) CDF is
compared with our proposed approximation in (23) with m = 50 and
saddle-point approach in [10]. Data: λ1 = [0.2, 1, 1.4, 3, 5], λ2 = [0.1, 0.6, 1],
µ1 = [0.6, 7.4, 3, 2.6, 5.5] and µ2 = [1, 0.8, 3.4].

and one, approximately. Not until a value of N = 50 is reached
that the PDF converges for all x. In turn, our approach renders
a valid distribution with independence of m.

Moreover, the number of terms required in [14] strongly de-
pends on the eigenvalues λi. That is, the smaller the difference
between the eigenvalues the larger the value of N needed. This
can be observed in Fig. 2, where the CDF is depicted. Since the
entries of λ are less sparse in this case, a larger number of terms
are required. Once again, if the required value of N = 120 is
not reached, we obtain a curve that is not a CDF. Note also that
computing Raphaeli’s series for such value of N is much slower
than computing (24).

Finally, Fig. 3 compares the proposed method with the saddle-
point approach in [10]. Although the latter arises as a very effi-
cient approximation, it suffers from the same drawbacks as the
previous one. As observed, it gives probabilities greater than one
in the right tail. In addition, it is not suitable for further analytic
purposes (e.g. expectations over the CGQF).

VI. PRACTICAL EXAMPLE: MRC SYSTEMS OVER

CORRELATED RICIAN FADING CHANNELS

The usefulness of the novel results is now exemplified through
the performance analysis of MRC systems over correlated Rician
channels. To the best of the authors’ knowledge, only asymptotic
expressions have been given in the literature for the BER and
the outage probability (Pout) for arbitrary number of branches
and correlation between them [29], [30] and infinite series rep-
resentations when the number of branches is limited to P = 2
[31], [32]. In the following, expressions for both the BER and
Pout are provided using the new approach here presented.

A. System Model

Consider a MRC system with P branches at the receiver side.
Then, the received signal can be written as

r = gz + w (33)

where z is the complex transmitted symbol with E[|z|2] = Es,
w ∈ CP×1 is the noise vector, and g ∈ CP×1 is the normal-
ized channel complex gain vector. The noise at each branch
is assumed to be independent and identically distributed with
zero-mean and variance N0. Since the fading at each branch is
assumed to be Rician distributed withKi factor for i = 1, . . . , P ,
g is a complex Gaussian vector such that g ∼ CN P (g,Σ), with
g = E[g] and Σ the covariance matrix. The entries of both the
mean vector and the covariance matrix can be expressed in terms
of the Rician factors as

gi =

√
Ki

Ki + 1
, Σi,j =

√
1

KiKj
Ri,j (34)

with Ri,j for i, j = 1, . . . , P the entries of the correlation ma-
trix R of g. Note that each element of g has unit power, i.e.
E[|gi|2] = 1, so the average signal-to-noise ratio (SNR) at each
branch is given by γ = Es/N0. Considering perfect symbol syn-
chronization and channel estimation, when the MRC principle
is applied to the received signal, this yields to a post-processing
signal that can be expressed as

rout =

P∑

k=1

rk
g†

k

g†g
= z +

P∑

k=1

g†
kwk

g†g
. (35)

Thus, the post-processing SNR is given by

γ = γ g†g. (36)

Since (36) is the non-central CGQF given in (4) with A =
I, the theoretical results derived in this paper can be used to
analyze the performance analysis of such system. To that end, it
is necessary to define an auxiliary variable γm as in (15) such as

γm = γ
(
y + Dξh

)†
Λ
(
y + Dξh

)
, (37)
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where y ∼ CN P (0P×1, IP ), h = U†C−1g with U and Λ be-
ing the unitary matrix and the diagonal matrix built with the
eigenvalues of C†C, respectively, with Σ = CC†. When defin-
ing Dξ as in Section III-B, γm is confluent to γ by virtue of
Proposition 2. Therefore, the performance analysis of the sys-
tem will be based on the characterization of γm when m takes
appropriate large values.

B. Outage Probability

Defining γth as the minimum SNR required for a reliable com-
munication, the outage probability is given by [33, eq. (6.46)]

Pout(γth) = P (γ < γth) ≈ P (γm < γth)

=

∫ γth

0
fγm

(γm) dγm, (38)

which corresponds to the CDF of γm. Moreover, since Λ is pos-
itive definite, then β̃i > 0 ∀ i, such that the outage probability
is written as

Pout(γth) ≈ 1 +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃iγth/γ

(
γ

γth

)−j+1

(39)

where ωi,j , β̃k, nβ and pi can be given by identification with
expressions in Section III, e.g. n = P .

C. BER for M-QAM

Since the BER is a continuous and bounded function, by virtue
of Lemma 2 it is possible to approximate the BER over the
SNR variable γ through the analysis of the confluent variable
γm. Therefore, assuming a Gray coded constellation, the exact
BER expression conditioned to a certain γm for arbitrary M -ary
square QAM is given by [34]

Pb(γm) = L

L−1∑

i=1

ω(i) Q

(
(2i − 1)

√
3γm

M − 1

)
(40)

where ω(i) are constants defined in [34, eq. (6), (14) and (21)],
L =

√
M and Q(·) is the Gaussian Q-function [35, eq. (4.1)].

In order to obtain the BER for the system model described in
the previous section over correlated Rician channels, (40) is av-
eraged over the distribution of γm, such as

Pb (γ) ≈
∫ ∞

0
Pb (γm) fγm

(γm) dγm. (41)

From (40) and (41), and using the relation between the Gaus-
sian Q-function and the error function erf(·) given in [36, eq.
(8.250 1)], the average BER is calculated by applying [36, eq.
(3.381 4)] and [37, eq. (4.3.8)], obtaining

Pb (γ) ≈ L

nβ∑

i=1

pi∑

j=1

L−1∑

k=1

ω(k)αi,j

[
Γ(j)

2β̃j
i

− δkΓ
(
j + 1

2

)

β̃
j+1/2
i

×
√

γ

2π
2F1

(
1
2
, j +

1
2
;

3
2
;
−δ2

k

2β̃i

γ

)]
(42)

where δk = (2k − 1)
√

3/(M − 1) and 2F1(·) is the Gauss hy-
pergeometric function [24, eq. (15.1.1)].

D. Numerical Results

In the following, the influence of the channel parameters and
the number of branches of the receiver in the outage probabil-
ity and the BER is assessed using (39) and (42) and contrasted
through Monte-Carlo simulations. Although the theoretical ex-
pressions in (39) and (42) were derived using the confluent SNR
γm in (37), the original variable γ in (36) is used in the simu-
lations in order to validate the accuracy of the approximation.
For the sake of simplicity, the vector containing the P Rician
K factors is denoted as k = [K1, . . . , KP ]. Also, the correla-
tion matrix R is assumed to be exponential, i.e. (R)i,j = ρ|i−j|

with |ρ| < 1 [38]–[40]. A thorough study has been performed
by considering multiple combinations of ρ, k and the number
of branches, P , which are varied over a large range of SNR.
While a detailed analysis of the results, depicted in Figs. 4–9, is
given below, it is important to notice that there is a perfect match
between the analytical and the simulated values in all cases.

Firstly, the impact of the correlation matrix and the Rician K
factors in the outage probability is studied both in the low-SNR
and high-SNR regime. Since Pout exhibits complementary be-
haviors in both regimes, a different representation is employed
in each case. Fig. 4 depicts the complementary outage probabil-
ity (1 − Pout) when the SNR takes low values compared to the
threshold, whereas Fig. 5 show the values of Pout in the high-
SNR regime. In both cases the number of branches at the receiver
is fixed to P = 2. Note that the correlation between branches and
the strength of the line of sight (LoS) have opposite effects in the
low and high SNR regimes. Hence, while in the latter a strong
LoS achieves a better performance than a weak one, in the low
SNR range a weak direct component seems to be beneficial. This
behavior can be justified as follows. A strong LoS component
implies less random fluctuation in the received signal, i.e. the
scattering is less relevant. In the high SNR regime, where the
mean of the instantaneous SNR is large enough, this fluctuation
represented by the scattering may occasionally lead to deep fad-
ing that makes the instantaneous SNR drops below the threshold.
Therefore, increasing the K factor (the power of the LoS) when
the mean SNR takes large values is beneficial since it reduces
such probability. In turn, in the low SNR regime, the fluctuation
in the received signal may have the opposite effect, punctually
rendering values for the instantaneous SNR much larger than
the mean value. In that case, increasing the K factor will reduce
the probability of getting SNR values that are greater than the
threshold.

Similarly, while a high correlation factor gives better perfor-
mance than a low one when γ is large, the opposite behavior is
observed for low values of γ. Although similar conclusions are
given in [31], [32] for Pout in the high SNR regime, no attention
have been paid in the literature to the behavior of the outage
probability when the SNR takes very low values compared to
the threshold.

The analysis of the outage probability now focuses on the
high-SNR regime. The number of branches is extended to P = 4
to enrich the system. Fig. 6 assesses the influence of the correla-
tion factor in strong and weak LoS scenarios. It can be observed
that the impact of ρ depends on the strength of the LoS. Hence,
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Fig. 4. Complementary Pout vs. γ/γth for P = 2, different values of ρ
and different values of K at each path. Solid lines correspond to theoretical
calculation with m = 40 for k = [1, 0.5] and m = 100 for k = [6, 4], while
markers correspond to Monte Carlo simulations.

Fig. 5. Pout vs. γ/γth for P = 2, different values of ρ and different values of
K at each path. Solid lines correspond to theoretical calculation with m = 50 for
k = [1, 0.5] and m = 150 for k = [6, 4], while markers correspond to Monte
Carlo simulations.

increasing the correlation between branches implies a consid-
erable degradation of the system performance when the LoS is
strong (large Ki factors). In fact, when ρ = 0.9, the outage prob-
ability is asymptotically higher in a strong LoS scenario than in a
weak one. This effect is analyzed in more detail in Fig. 7, where
Pout is plotted for different vales of k when ρ = 0.1 (low cor-
relation between branches) and ρ = 0.9 (branches highly corre-
lated). As seen, the system behaves as expected when ρ = 0.1,
since Pout decreases as the entries of k increases. However,
when ρ = 0.9, the system performance does not monotonically
improves with the strength of the LoS. Only when the distinct
Ki factors reach a certain value, Pout decreases as the Ki fac-
tors increase. The value of this turning point seems to depend on
the number of branches and the correlation between them. This

Fig. 6. Pout vs. γ/γth for P = 4, different values of ρ and different values
of K at each path. Solid lines correspond to theoretical Pout while markers
correspond to Monte Carlo simulations. For theoretical calculation, m = 40 for
k = [0.5, 0.25, 0.25, 0] and m = 200 for k = [8, 7, 6, 6].

Fig. 7. Pout vs. γ/γth for P = 4 and different values of k with a strong
correlation factor (ρ = 0.9) and a weak correlation factor (ρ = 0.1). Solid
lines correspond to theoretical Pout while markers correspond to Monte Carlo
simulations. For theoretical calculation, m ∈ [40, 200].

behavior was deeply analyzed in [41], where a multiple-input
multiple-output maximum-ratio combining (MIMO-MRC) sys-
tem is considered, providing expressions for this threshold when
assuming identically distributed Rician channels. Despite this
assumption, it is difficult to determine how an arbitrary correla-
tion matrix between branches would impact in the turning value
of K, as stated in [41, sec. IV-B].

Here, we consider an even more general case, where we have
an arbitrary correlation matrix and non-identically distributed
fading in each branch. We believe that a similar behavior to that
of [41] is observed. However, deriving such threshold in our
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Fig. 8. BER vs. γ for 16-QAM, P = 4 and different values of ρ and k. Solid
lines correspond to theoretical BER with m = 40 for k = [0.5, 0.25, 0.25, 0]
and m = 150 for k = [8, 7, 6, 6], while markers correspond to Monte Carlo
simulations.

Fig. 9. BER vs. γ for different modulation schemes and different values of
k with P = 4 and ρ = 0.5. Solid lines correspond to theoretical BER while
markers correspond to Monte Carlo simulations. For theoretical calculation,
m ∈ [50, 150].

general case is a very challenging task, which is left for future
works.

Regarding the BER, the impact of the correlation factor and
of the strength of the LoS is firstly evaluated. Fig. 8 depicts the
BER for 16-QAM with different values of ρ in strong and weak
LoS scenarios. The influence of the modulation scheme is ap-
praised in Fig. 9, where the BER for various QAM constellations
and different values of k are represented for a fixed correlation
factor. It is interesting to observe that the BER suffers the same
relative degradation in all modulation schemes when the Ki fac-
tors decrease. Similar conclusions were drawn in [42], [43] when

Fig. 10. Normalized MSE vs. m for different values of P , ρ and k. Solid
lines correspond to theoretical MSE while markers correspond to Monte Carlo
simulations.

different reception techniques are applied over correlated Rician
channels.

Results displayed in Figs. 4–9 have been obtained with dif-
ferent values of the shape parameter m. As the latter increases,
the MSE between the confluent CGQF and the original one de-
creases, rendering a better accuracy in the approximation. How-
ever, the value of m required to achieve a given MSE depends on
the characteristics of the CGQF. Fig. 10 shows the MSE given
in (26), normalized by Ω = E

[
γ2
]
. The MSE is always below

10−2 for the values of m used in the theoretical calculations,
which justifies the good match with the simulations. Note also
that larger Ki factors and higher correlation between branches
require larger values of m to reach a certain MSE. Interestingly,
the slope of the MSE does not depend on the channel param-
eters, being the same for all the cases. Based on our result, a
practical criterion could be choosing a value of m such that the
normalized MSE between the target variable and the auxiliary
one drops below 10−2.

VII. CONCLUSION

This paper has presented a novel approach to the statistical
characterization of indefinite non-central CGQFs. Its key idea
is to perturb the non-central vector of the CGQF with a ran-
dom variable that depends on a shape parameter. The resulting
auxiliary CGQF, which converges to the original one when this
parameter tends to infinity, has simpler PDF and CDF expres-
sions. In contrast to previous approaches available in the liter-
ature, results derived herein permits further insightful analyses,
since the resulting probability functions are expressed in terms
of elementary functions (exponential and powers) that can be
used in subsequent calculations. Also, the MSE between the
auxiliary CGQF and the original one is given in closed-form,
allowing the particularization of the auxiliary CGQF in order to
make this error drop below a certain threshold.

The usefulness of the proposed method has been exemplified
by the analysis of MRC systems over non-identically distributed
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Rician fading channels with arbitrary correlation, whose outage
probability and BER expressions are given and validated through
Monte-Carlo simulations, showing a perfect match between the
theoretical calculations and the simulations.

APPENDIX A
PROOF OF PROPOSITION 2

Consider the confluent CGQF Qm defined in (15). When con-
ditioned on Dξ, its MGF is obtained from (11) as

MQm|Dξ
(s) =

n∏

i=1

exp

(
ξ2
m,iλiμis

1 − λis

)

1 − λis
, (43)

The unconditional MGF is obtained by integrating over each
variable ξ2

m,i as

MQm
(s) =

∫ ∞

0
· · ·
∫ ∞

0
MQm|Dξ

(s)

× fξ2
m,1,...ξ

2
m,n

(u1, . . . , un) du1 . . . dun. (44)

with fξ2
m,1,...,ξ

2
m,n

(·) the joint probability density function of

ξ2
m,1, . . . , ξ

2
m,n. Since ξ2

m,i for i = 1, . . . , n are independent ran-
dom variables, their joint density function can be calculated as

fξ2
m,1,...ξ

2
m,n

(u1, . . . , un) =

n∏

i=1

fξ2
m,i

(ui), (45)

where fξ2
m,i

(ui) for i = 1, . . . , n is the PDF of the Gamma distri-

bution with shape parameter m and scale parameter 1/m, given
in (1). By substituting in (44), the MGF of the confluent CGQF
is rewritten as follows

MQm
(s) =

n∏

i=1

mm

Γ(m)(1 − λis)

∫ ∞

0
· · ·
∫ ∞

0

n∏

k=1

um−1
k

× exp

(
−uk

[
m − λkμks

1 − λks

])
du1 . . . dun.

(46)

The above integral can be calculated for every s ∈ C such that
Re{s}λi

(
1 + μi

m

)
< 1 ∀ i. Due to the independence between

variables, each individual integral in (46) can be solved sepa-
rately using [36, eq. 3.381 4], which yields to (16) after some
algebraic manipulations.

APPENDIX B
DERIVATION OF Ai,j AND Ci,j

Ai,j for i = 1, . . . , nβ and j = 1, . . . , pi arise as the partial
expansion residues of the rational polynomial in (19) after eval-
uating MQm

(−s), whose general expression is given in terms
of derivatives of the rational polynomial as [26, eq. (A. 36)]

Ai,j =
1

(pi − j)!

dpi−j

dspi−j

⎛
⎜⎜⎝

∏nλ

t=1

(
s + 1/λ̃t

)qt

∏nβ

l=1
l �=i

(
s + β̃l

)pl

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
s=−β̃i

.

(47)

By using the generalization of Leibniz’s rule, the rational
polynomial derivatives can be rewritten in term of the deriva-
tives of the individual binomials as

Ai,j =
∑

k1+···+kN−1=pi−j

(
1

∏N
s=1 ks

nλ∏

t=1

[(
s + λ̃−1

)qt
](kt)

×
i−1∏

r=1

[(
s + β̃r

)−pr

](kr+n)

×
nβ∏

l=i+1

[(
s + β̃l

)−pl

](kl+n−1)
)∣∣∣∣∣

s=−β̃i

(48)

where the sum is over all possible combinations of k1, ..., kN−1,
with N = nλ + nβ , that meet

∑N−1
t=1 kt = pi − j. Thus, Ai,j for

i = 1, . . . , nβ and j = 1, . . . , pi are expressed as a finite sum
of the q-th derivative of binomials with positive and negative
exponents, which can be written in closed-form by using

dq

dxq
(x + a)ν =

{
(−1)q(−ν)q

(x+a)−ν+q , if ν < 0
ν!

(ν−q)! (x + a)ν−q, if ν > 0
. (49)

Then, the final expression for Ai,j is given in (22), which has
been obtained from (48) and (49) after evaluating at s = −β̃i.
Note that, if ν > 0, (49) is only valid for q ≤ ν since the deriva-
tive is zero otherwise. Therefore, the restriction ku ≤ qu, u =
1, . . . , nλ is imposed in (22).

Analogously, Ci,j are the partial expansion residues of
R(s)/s, so following the same steps as with Ai,j one gets (25).

APPENDIX C
PROOF OF PROPOSITION 3

The PDF of Qm is obtained by performing an inverse Laplace
transformation to the MGF such as

fQm
(x) = L−1 {MQm

(−s)} . (50)

Thus, evaluating (19) at −s and performing a partial fraction
decomposition, one has

MQm
(−s) =

n∏

k=1

[
λk

(
1 +

μk

m

)m]−1
nβ∑

i=1

pi∑

j=1

Ai,j(
s + β̃i

)j

(51)
with Ai,j the partial fraction decomposition residues given in
(22), which are deduced in Appendix B. The expression of the
PDF is easily derived from above equation just applying the
Laplace transform pair [26, p. 692]

L−1

{
1

(s + α)ν

}
=

{
tν−1

(ν−1)!e
−αtu(t), if α ≥ 0

−tν−1

(ν−1)!e
−αtu(−t), if α < 0

, (52)

which are valid for Re{s} > −α and Re{s} < −α respectively,
yielding to (20) after further algebraic manipulations.
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APPENDIX D
PROOF OF PROPOSITION 4

The CDF of Qm is obtained from the MGF as

FQm
(t) = L−1

{
1
s
MQm

(−s)

}
. (53)

Similarly as in Appendix C, after performing a partial fraction
expansion one has

1
s
MQm

(−s) =
1
s

+

n∏

k=1

[
λk

(
1 +

μk

m

)m]−1

×
nβ∑

i=1

pi∑

j=1

Ci,j(
s + β̃j

)j
. (54)

where Ci,j are the partial expansion residues given in (25),
whose proof can be deduced from that of Ai,j in Appendix B.
The final expression for the CDF in (24) is straightforwardly ob-
tained from (54) by applying the Laplace transform pair shown
in (52).

APPENDIX E
CALCULATION OF MSE

The MSE between Qm and Q is given by

ε2 = E
[
(Qm − Q)2

]
= Ey,Dξ

[((
y + Dξh̄

)†
Λ
(
y + Dξh̄

)

−
(
y + h̄

)†
Λ
(
y + h̄

))2
]

. (55)

A simple way of performing the above expectation is consid-
ering first the MSE conditioned to Dξ (or equivalently, to ξm,i

for i = 1, . . . , n). Expanding the square in (55), considering the
expectation of a CGQF given in [11, eq. (3.2b.2)] and taking into
account the fact that the entries of y are mutually independent
zero-mean complex Gaussian random variables whose real and
imaginary parts are also independent and identically distributed,
the conditioned MSE is expressed as

ε2
∣∣∣
Dξ

= tr
(
Λ (Dξ − I)hh

†
(Dξ − I)Λ

)

+ h
†
(Dξ − I)Λ2 (Dξ − I)h

+ h
† (

D2
ξ − I

)
Λhh

† (
D2

ξ − I
)
Λh. (56)

The unconditional MSE is obtained by averaging (56) as

ε2 = EDξ

[
ε2
∣∣
Dξ

]
. (57)

Considering that both Dξ and Λ are diagonal matrices and
E[D2

ξ] = In,

ε2 = 4
(
1 − ξ

) n∑

i=1

λ2
i |hi|2 + tr

(
Λhh

†
Σ
)

(58)

where ξ = E [ξm,i] for i = 1, . . . , n is the expectation of a
Nakagami-m random variable which is given by

ξ =
Γ(m + 1/2)

m1/2Γ(m)
(59)

and Σ is the covariance matrix of x = D2
ξh. Due to the statisti-

cal independence of the elements of x, xi for i = 1, . . . , n, Σ is
a diagonal matrix whose entries are the variances of the entries
of x. Since ξ2

m,i ∼ Γ (m, 1/m) ∀ i, then Var[xi] = |hi|2 /m,
where hi for i = 1, . . . , n are the entries of h. The final expres-
sion for the MSE in (26) is obtained by substituting the value of
Σ in (58) and performing some algebraic manipulations.

REFERENCES

[1] B. D. Rao, M. Wengler, and B. Judson, “Performance analysis and compar-
ison of MRC and optimal combining in antenna array systems,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (Cat. No.01CH37221),
2001, vol. 5, pp. 2949–2952.

[2] D. Lao and A. M. Haimovich, “Exact closed-form performance analysis
of optimum combining with multiple cochannel interferers and Rayleigh
fading,” IEEE Trans. Commun., vol. 51, no. 6, pp. 995–1003, Jun. 2003.

[3] C. Kim, S. Lee, and J. Lee, “SINR and throughput analysis for random
beamforming systems with adaptive modulation,” IEEE Trans. Wireless
Commun., vol. 12, no. 4, pp. 1460–1471, Apr. 2013.

[4] C. Schlegel, “Error probability calculation for multibeam Rayleigh chan-
nels,” IEEE Trans. Commun., vol. 44, no. 3, pp. 290–293, Mar. 1996.

[5] G. A. Ropokis, A. A. Rontogiannis, and P. T. Mathiopoulos, “Quadratic
forms in normal RVs: Theory and applications to OSTBC over Hoyt fading
channels,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5009–5019,
Dec. 2008.

[6] V. Havary-Nassab, S. Shahbazpanahi, and A. Grami, “Optimal distributed
beamforming for two-way relay networks,” IEEE Trans. Signal Process.,
vol. 58, no. 3, pp. 1238–1250, Mar. 2010.

[7] D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun.,
vol. 44, no. 2, pp. 172–183, Feb. 1996.

[8] V. Pauli, R. Schober, and L. Lampe, “A unified performance analysis
framework for differential detection in MIMO Rayleigh fading channels,”
IEEE Trans. Commun., vol. 56, no. 11, pp. 1972–1981, Nov. 2008.

[9] Y. L. Gall, F. X. Socheleau, and J. Bonnel, “Matched-field processing
performance under the stochastic and deterministic signal models,” IEEE
Trans. Signal Process., vol. 62, no. 22, pp. 5825–5838, Nov. 2014.

[10] T. Y. Al-Naffouri, M. Moinuddin, N. Ajeeb, B. Hassibi, and A. L.
Moustakas, “On the distribution of indefinite quadratic forms in Gaussian
random variables,” IEEE Trans. Commun., vol. 64, no. 1, pp. 153–165,
Jan. 2016.

[11] S. Provost and A. Mathai, Quadratic Forms in Random Variables: Theory
and Applications (Statistics : Textbooks and Monographs). New York, NY,
USA: Marcel Dekker, 1992.

[12] G. L. Turin, “The characteristic function of Hermitian quadratic forms
in complex normal variables,” Biometrika, vol. 47, no. 1/2, pp. 199–201,
1960.

[13] G. Tziritas, “On the distribution of positive-definite Gaussian quadratic
forms,” IEEE Trans. Inf. Theory, vol. IT-33, no. 6, pp. 895–906, Nov.
1987.

[14] D. Raphaeli, “Distribution of noncentral indefinite quadratic forms in com-
plex normal variables,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 1002–
1007, May 1996.

[15] K. H. Biyari and W. C. Lindsey, “Statistical distributions of Hermitian
quadratic forms in complex Gaussian variables,” IEEE Trans. Inf. Theory,
vol. 39, no. 3, pp. 1076–1082, May 1993.

[16] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distri-
butions (Wiley Series in Probability and Statistics), vol. 1, 2nd ed. Hobo-
ken, NJ, USA: Wiley, 1994.

[17] R. J. Muirhead, Aspects of Multivariate Statistical Theory. Hoboken, NJ,
USA: Wiley, 1982.

[18] M. P. Slichenko, “Characteristic function of a quadratic form formed by
correlated complex Gaussian variables,” J. Commun. Technol. Electron.,
vol. 59, no. 5, pp. 433–440, 2014.

[19] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1990.



6746 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 7, JULY 2019

[20] L. L. Scharf, Statistical Signal Processing, vol. 98. Reading, MA, USA:
Addison-Wesley, 1991.

[21] P. Billingsley, Probability and Measure (Wiley Series in Probability and
Statistics). Hoboken, NJ, USA: Wiley, 2012.

[22] D. Williams, Probability with Martingales (Cambridge Mathematical
Textbooks). Cambridge, U.K.: Cambridge Univ. Press, 1991.

[23] E. B. Manoukian, Mathematical Nonparametric Statistics. Boca Raton,
FL, USA: CRC Press, 1986.

[24] M. Abramowitz et al., Handbook of Mathematical Functions With For-
mulas, Graphs, and Mathematical Tables, vol. 9. New York, NY, USA:
Dover, 1972.

[25] S. Resnick, A Probability Path. Boston, MA, USA: Birkhaüser, 1998.
[26] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems,

2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[27] L. Ahlfors, Complex Analysis. New York, NY, USA: McGraw-Hill, 1966.
[28] Y. Ma, J. Yu, and Y. Wang, “Efficient recursive methods for partial fraction

expansion of general rational functions,” J. Appl. Math., vol. 2014, 2014,
Art. no. 895036.

[29] R. K. Mallik and N. C. Sagias, “Distribution of inner product of complex
Gaussian random vectors and its applications,” IEEE Trans. Commun.,
vol. 59, no. 12, pp. 3353–3362, Dec. 2011.

[30] Y. Ma, “Impact of correlated diversity branches in Rician fading channels,”
in Proc. IEEE Int. Conf. Commun., May 2005, vol. 1, pp. 473–477.

[31] P. S. Bithas, N. C. Sagias, and P. T. Mathiopoulos, “Dual diversity over
correlated Ricean fading channels,” J. Commun. Netw., vol. 9, no. 1, pp. 67–
74, Mar. 2007.

[32] M. Ilic-Delibasic and M. Pejanovic-Djurisic, “MRC dual-diversity system
over correlated and non-identical Ricean fading channels,” IEEE Commun.
Lett., vol. 17, no. 12, pp. 2280–2283, Dec. 2013.

[33] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[34] F. J. Lopez-Martinez, E. Martos-Naya, J. F. Paris, and U. Fernandez-
Plazaola, “Generalized BER analysis of QAM and its application to MRC
under imperfect CSI and interference in Ricean fading channels,” IEEE
Trans. Veh. Technol, vol. 59, no. 5, pp. 2598–2604, Jun. 2010.

[35] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channels, vol. 95. Hoboken, NJ, USA: Wiley, 2005.

[36] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products.
New York, NY, USA: Academic, 2007.

[37] E. W. Ng and M. Geller, “A table of integrals of the error functions,” J.
Res. Nat. Bur. Stand. B, vol. 73, no. 1, pp. 1–20, 1969.

[38] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, “On the mul-
tivariate Nakagami-m distribution with exponential correlation,” IEEE
Trans. Commun., vol. 51, no. 8, pp. 1240–1244, Aug. 2003.

[39] R. Subadar and R. Mudoi, “Performance of multiuser TAS/MRC-MIMO
systems over Rayleigh fading channels with exponential correlation,” in
Proc. Int. Conf. Electron. Design, Comput. Netw. Automated Verification,
Jan. 2015, pp. 165–168.

[40] S. L. Loyka, “Channel capacity of MIMO architecture using the exponen-
tial correlation matrix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371,
Sep. 2001.

[41] Y. Wu, R. H. Y. Louie, and M. R. McKay, “Asymptotic outage probability
of MIMO-MRC systems in double-correlated Rician environments,” IEEE
Trans. Wireless Commun., vol. 15, no. 1, pp. 367–376, Jan. 2016.

[42] S. Haghani and N. C. Beaulieu, “Performance of two dual-branch post-
detection switch-and-stay combining schemes in correlated Rayleigh and
Rician fading,” IEEE Trans. Commun., vol. 55, no. 5, pp. 1007–1019, May
2007.

[43] S. Haghani and N. C. Beaulieu, “Performance of s + n selection diversity
receivers in correlated Rician and Rayleigh fading,” IEEE Trans. Wireless
Commun., vol. 7, no. 1, pp. 146–154, Jan. 2008.

Pablo Ramírez-Espinosa received the M.Sc. de-
gree in telecommunication engineering in 2017 from
the University of Málaga, Málaga, Spain, where he
has been working toward the Ph.D. degree in com-
munication theory. Since 2017, he has been with
the Communication Engineering Department, Uni-
versity of Málaga, as an Associate Researcher. His
main research interests include wireless communica-
tions, channel modeling, and signal processing for
communications.

Laureano Moreno-Pozas received the M.Sc. degree
in electrical engineering in 2011 and the Ph.D. degree
in electrical engineering in 2017 from the University
of Málaga, Málaga, Spain. He has been involved in
different fields of research. In 2009, he worked on
optics with the Instituto de Astrofísica de Canarias.
From 2010 to 2013, his main research activities were
in microwave circuit design. Since 2014, he has been
working on communication theory and random ma-
trix theory to obtain the Ph.D. degree. Since January
2018, he has been a Postdoctoral Fellow with the Elec-

tronic and Computer Engineering Department, Hong Kong University of Science
and Technology, working on random matrix theory.

He was selected as one of the six Best Student Paper finalists in the National
Symposium URSI, Madrid, Spain, 2016. He was an Exemplary Reviewer of the
IEEE TRANSACTIONS ON COMMUNICATIONS in 2017. In addition, he has been
reviewer of several international journals, illustrating international recognition
in communication theory and random matrices, including IEEE TRANSACTIONS

ON INFORMATION THEORY, IEEE TRANSACTIONS ON WIRELESS COMMUNICA-
TIONS, IEEE COMMUNICATION LETTER, and Random Matrices: Theory and Ap-
plications He is also a member of the IEEE Society.

José F. Paris received the M.Sc. and Ph.D. de-
grees in telecommunication engineering from the
Universidad de Málaga, Málaga, Spain, in 1996 and
2004, respectively. From 1994 to 1996, he was with
Alcatel, mainly in the development of wireless tele-
phones. In 1997, he joined the Universidad de Málaga,
where he is currently a Professor with the Commu-
nication Engineering Department. His teaching ac-
tivities include several courses on digital communi-
cations, signal processing, and acoustic engineering.
His research interests include wireless communica-

tions, especially channel modeling and performance analysis. In 2005, he spent
five months as a Visiting Associate Professor with Stanford University, with Prof.
A. J. Goldsmith. Since 2017, he has been a Full Professor with the Communi-
cation Engineering Department. He received the 2016 Neil Shepherd Memorial
Best Propagation Paper Award by the IEEE Vehicular Technology Society. He is
an Associate Editor of the IEEE COMMUNICATIONS LETTERS and IEEE TRANS-
ACTIONS ON VEHICULAR TECHNOLOGY.

José A. Cortés received the M.S. and Ph.D. degrees in
telecommunication engineering from the Universidad
de Málaga, Málaga, Spain, in 1998 and 2007, respec-
tively. In 1999, he was with Alcatel España R&D. In
1999, he joined the Communication Engineering De-
partment, Universidad de Málaga, where he became
an Associate Professor in 2010. From 2000 to 2002,
he was with the Nokia System Competence Team,
Málaga. From 2014 to 2016, he was on a leave of
absence, working as a Consultant. As such, he col-
laborated on the development of Atmels power line

communications (PLC) solutions. His research interests include signal process-
ing for communications, channel characterization, and modeling and transmis-
sion techniques. He was the co-author of the Best Paper Award at the IEEE
International Symposium on Power Line Communications (ISPLC) 2012. He
was the TPC Co-Chair of the IEEE ISPLC in 2014 and 2019.

Eduardo Martos-Naya received the M.Sc. and Ph.D.
degrees in telecommunication engineering from the
University of Málaga, Málaga, Spain, in 1996 and
2005, respectively. In 1997, he joined the Depart-
ment of Communication Engineering, University of
Málaga, where he is currently an Associate Professor.
His research interests include digital signal process-
ing for communications, synchronization and channel
estimation, and performance analysis of wireless sys-
tems. He is currently the Leader of a project supported
by the Andalusian regional Government on coopera-

tive and adaptive wireless communications systems.





97

A.3 An extension of the κ-µ shadowed fading model: statistical
characterization and applications

[48] P. Ramírez-Espinosa, F. J. López-Martínez, J. F. París, M. D. Yacoub, and E.
Martos-Naya, “An extension of the κ-µ shadowed fading model: Statistical characteri-
zation and applications”, IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 3826–3837, May
2018.





3826 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 5, MAY 2018

An Extension of the κ-μ Shadowed Fading Model:
Statistical Characterization and Applications
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Michel Daoud Yacoub , and Eduardo Martos-Naya

Abstract—We here introduce an extension and natural gener-
alization of both the κ-μ shadowed and the classical Beckmann
fading models: the Fluctuating Beckmann (FB) fading model. This
new model considers the clustering of multipath waves on which the
line-of-sight (LoS) components randomly fluctuate, together with
the effect of in-phase/quadrature power imbalance in the LoS and
non-LoS components. Thus, it unifies a variety of important fading
distributions as the one-sided Gaussian, Rayleigh, Nakagami-m,
Rician, κ-μ, η-μ, η-κ, Beckmann, Rician shadowed, and the κ-μ
shadowed distribution. The chief probability functions of the FB
fading model, namely probability density function, cumulative dis-
tribution function, and moment generating function are derived.
The second-order statistics such as the level crossing rate and the
average fade duration are also analyzed. These results can be used
to derive some performance metrics of interest of wireless commu-
nication systems operating over FB fading channels.

Index Terms—Fading channels, Beckmann, Rayleigh, Nakagami
-m, Rician, κ-μ, Rician shadowed, κ-μ shadowed.

I. INTRODUCTION

IN WIRELESS environments, the radio signal is affected
by a number of random phenomena including reflection

(both specular and diffuse), diffraction, and scattering as they
travel from transmitter to receiver, giving rise to the so-called
multipath propagation. At the receiver, the resulting signal ap-
pears as a linear combination of the multipath waves, each of
which with their own amplitudes and phases. When the num-
ber of paths is sufficiently large, the complex baseband sig-
nal can be regarded as Gaussian because of the Central Limit
Theorem (CLT). Depending on the choice of the parameters
characterizing this complex Gaussian random variable, namely
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the mean and variance of the in-phase and quadrature com-
ponents, different fading models emerge: Rayleigh (zero-mean
and equal variances), Hoyt (zero-mean and unequal variances)
and Rice (non-zero mean, equal variances), which are per-
haps the most popular fading models arising from the CLT
assumption [1], [2].

The most general case (i.e., unequal means and variances
for the in-phase and quadrature components) was considered
by Beckmann [3], [4] when characterizing the scattering from
rough surfaces. However, its greater flexibility comes at the
price of an increased mathematical complexity; in fact, its chief
probability functions, Probability Density Function (PDF) and
Cumulative Distribution Function (CDF) are known to be given
in infinite-series form expression [5], as opposed to Rayleigh,
Hoyt and Rician models. Other models characterizing the joint
effects of imbalances in the mean and variance between in-phase
and quadrature components whose PDF and CDF are given in
infinite-series form are the so-called η-κ [6], [7] and the very
recently proposed α-η-κ-μ [8].

In order to provide a better statistical characterization of the
received radio signal in multipath environments, some alterna-
tive models have been proposed as generalizations of classical
Rayleigh, Hoyt and Rician. By means of considering the effect of
clustering of multipath waves, two new fading models arise [9]:
the η-μ fading model as a generalization of Hoyt model, well-
suited for non line-of-sight (NLoS) propagation environments,
and the κ-μ fading model as a generalization of Rice model
in line-of-sight1 (LoS) scenarios. These models have become of
widespread use in the recent years because of their flexibility and
relatively simple mathematical tractability, as their chief prob-
ability functions; PDF, CDF and Moment Generating Function
(MGF), are given in closed-form [9]–[11]. Besides, both mod-
els also include the versatile and popular Nakagami-m model
as particular case [12].

A further generalization of these models was introduced in
[13] and [14] under the name of κ-μ shadowed fading distri-
bution. This new distribution provides an additional degree of
freedom compared to the κ-μ distribution by allowing the LoS
component to randomly fluctuate. Notably, the κ-μ shadowed
fading model includes both the κ-μ and η-μ models [15] as
special cases, as well as the Rician shadowed fading model
[16]. Thus, most popular fading models in the literature for LoS
and NLoS conditions are unified under the umbrella of the κ-μ
shadowed fading channel model. This greater flexibility does
not come at the price of an increased mathematical complexity;
in fact, in some cases its PDF and CDF admit a representation

1Line-of-sight is used here to mean the more precise phenomenon concerning
the presence of dominant components.

0018-9545 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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in terms of a finite number of powers and exponentials, thus be-
coming even as tractable as the Nakagami-m distribution [17].

Even though the κ-μ shadowed fading model succeeds on
capturing different propagation phenomena such as clustering
and LoS fluctuation, it fails when it comes to accounting for the
effect of power imbalance in the LoS and NLoS components
as originally considered by Beckmann [3], [4]. Motivated by
this issue, in this paper we introduce an extended κ-μ shadowed
fading model which effectively captures such propagation con-
ditions. This new model can be regarded as a generalization of
the original fading model in [13], but also as a generalization of
Beckmann fading model by also including the effects of clus-
tering and LoS fluctuation. For this reason, and for the sake of
notational brevity, we deem appropriate to name it as the Fluc-
tuating Beckmann (FB) fading model (or equivalently, fading
distribution).

The FB model includes as special cases an important set
of fading distributions as the one-sided Gaussian, Rayleigh,
Nakagami-m, Rician, κ-μ, η-μ, η-κ, Beckmann, Rician shad-
owed and the κ-μ shadowed distributions.

Interestingly, the CDF and PDF of the FB fading model are
given in terms of a well-known function in the context of com-
munication theory, having a functional form similar to the orig-
inal κ-μ shadowed fading model. The randomization of the LoS
component allows for including an additional degree of free-
dom when compared to the Beckmann model. We provide a
full statistical characterization of the FB fading model in terms
of its first-order statistics (PDF, CDF and MGF) and second-
order statistics (level crossing rate and average fade duration),
and then exemplify its applicability to wireless performance
analysis.

The remainder of this paper is structured as follows: the physi-
cal model of the FB fading distribution is described in Section II.
In Section III the PDF, CDF and MGF of this distribution are
derived. Then, in Section IV the level crossing rate (LCR) and
average fade duration (AFD) are computed. These statistical
results are then used to derive some performance metrics of in-
terest in Section V. Finally, the main conclusions are outlined
in Section VI.

II. PHYSICAL MODEL

The physical model of the FB distribution arises as a general-
ization of the physical model of the κ-μ shadowed distribution
[13], [18]. The received radio signal is built out of a superposi-
tion of radio waves grouped into a number of clusters of waves,
and the received signal power W can be expressed in terms of
the in-phase and quadrature components of the received signal
affected by fading as follows

W =

μ∑

i=1

(Xi + piξ)
2 + (Yi + qiξ)

2 , (1)

where μ is a natural number indicating the number of clusters,
Xi and Yi are mutually independent Gaussian random processes
with E[Xi ] = E[Yi ] = 0, E[X2

i ] = σ2
x , E[Y 2

i ] = σ2
y , pi and qi

are real numbers and ξ is2 a Nakagami-m distributed random
variable with shape parameter m and E[ξ2] = 1 which accounts
for the fluctuation of the LoS component.

2or equivalently, ξ2 is a Gamma random variable with E [ξ2] = 1, shape
parameter m and scale parameter 1/m.

As opposed to the κ-μ shadowed fading model, we here con-
sider that Xi and Yi can have different variances. Thus, the
effect of power imbalance in the diffuse components associated
to non-LoS propagation is considered. Similarly, we also as-
sume that the power of the LoS components can be imbalanced,
i.e., p2 �

∑μ
i=1 p2

i �= q2 �
∑μ

i=1 q2
i . Hence, the physical model

in (1) can be regarded as a generalization of the Beckmann
fading model through the consideration of clustering and LoS
fluctuation.

III. FIRST ORDER STATISTICS

We will now provide a first-order characterization of the FB
distribution in terms of its chief probability functions; as we
will later see, tractable analytical expressions are attainable for
its MGF, PDF and CDF. Hereinafter, we will consider the ran-
dom variable γ

Δ
= γ̄W/W , where W = E[W ], representing the

instantaneous SNR at the receiver side.

A. Initial Definitions

Definition 1: Let γ be a random variable characterizing the
instantaneous SNR for the physical model in (1). Then, γ is said
to follow a Fluctuating Beckmann (FB) distribution with mean
γ̄ = E[γ] and non-negative real shape parameters κ, μ, m, η and
�, i.e., γ ∼ FB(γ̄;κ, μ,m, η, �), with

κ =
p2 + q2

μ
(
σ2

x + σ2
y

) , �2 =
p2

q2
, η =

σ2
x

σ2
y

, (2)

μ representing the number of clusters and m accounts for the
fluctuation of the LoS component.

B. First Order Statistics for the General Case

With the above definition, we now calculate the MGF of γ in
the following lemma.

Lemma 1: Let γ ∼ FB(γ̄;κ, μ,m, η, �). Then, the MGF of
γ is given at the bottom of the next page in (4).

Proof: See Appendix A. �
Lemma 1 provides a simple closed-form expression for the

MGF of the FB fading distribution. From (4), we will now
show that the PDF and CDF of the FB fading distribution
have a similar functional form as the κ-μ shadowed fading
distribution [13].

Lemma 2: Let γ ∼ FB(γ̄;κ, μ,m, η, �). Then, the PDF of γ
is given by (5) at the bottom of the next page, where cx and αx ,
with x = {1, 2} depend on the parameters of the FB distribution
as described in the sequel, and Φ

(n)
2 is the confluent form of the

generalized Lauricella series defined in [19, eq. (7.2), pp. 446].
Proof: Manipulating (4) it is possible to write the MGF ex-

pression as follows

Mγ (s) =
(−1)μ

sμ

α
m−μ/2
2

γ̄μαm
1

(
1−

μ ( 1+ η ) ( 1+ κ )
2η γ̄

s

)m− μ
2

×
(

1 −
μ ( 1+ η ) ( 1+ κ )

2γ̄

s

)m− μ
2 (

1− c1
γ̄ s

)−m(
1− c2

γ̄ s

)−m

,

(3)
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where c1,2 are the roots of α1s
2 + βs + 1 with

α1 =
4η

μ2(1 + η)2(1 + κ)2
+

2κ(�2 + η)

m(1 + �2)μ(1 + η)(1 + κ)2
,

(7)

β =
−1

1 + κ

[
2
μ

+
κ

m

]
, (8)

and α2 is given by

α2 =
4η

μ2(1 + η)2(1 + κ)2
. (9)

The expression for the PDF can be derived from (3) as
fγ (γ) = L−1{Mγ (−s)} using [20, eq. (9.55)], yielding (5). �

Lemma 3: Let γ ∼ FB(γ̄;κ, μ,m, η, �). Then, the CDF of
γ is given by (6) at the bottom of this page.

Proof: Following the same steps as in the previous proof, the
CDF expression is given by Fγ (γ) = L−1{Mγ (−s)

s }, yielding
(6) directly from [20, eq. (9.55)]. �

Note that the CDF and PDF of the received signal enve-
lope can be directly derived from (5) and (6) straightforwardly
through a change of variables. Thus, we get fR (R) = 2Rfγ (R2)
and FR (R) = Fγ (R2), with γ̄ being replaced by Ω = E{R2}.

The PDF and CDF of the FB distribution are given in terms
of the multivariate Φ2 function, which also appears in other fad-
ing distributions in the literature [10], [13], [21]. Apparently,
and because it is defined as an n-fold infinite summation, its
numerical evaluation may pose some challenges from a com-
putational point of view. However, the Laplace transform of the
Φ2 function has a comparatively simpler form in terms of a fi-
nite product of elementary functions, which becomes evident
by inspecting the expression of the MGF in (4). Therefore, the
Φ2 function can be evaluated by means of a numerical inverse
Laplace transform [22], [23].

As previously mentioned, the FB distribution provides the
unification of a large number of important fading distributions.
These connections are summarized in Table I, on which the pa-
rameters corresponding to the FB distribution are underlined
in order to avoid confusion with the parameters of any of
the distributions included as special cases. Notably, the Beck-
mann distribution arises as a special case of the more general
FB distribution for μ = 1 and sufficiently large m. Thus, the ad-
ditional degrees of freedom of the FB distribution also facilitates
the anaytical characterization of the Beckmann distribution.

TABLE I
CONNECTIONS BETWEEN THE FLUCTUATING BECKMANN FADING MODEL AND

OTHER MODELS IN THE LITERATURE

Channels Fluctuating Beckmann Fading Parameters

One-sided Gaussian κ = 0, μ = 1, η = 0
Rayleigh κ = 0, μ = 1, η = 1
Nakagami-m κ = 0, μ = m, η = 1
Hoyt κ = 0, μ = 1, η = q
η-μ κ = 0, μ = μ, η = η
Rice κ = K , μ = 1, m → ∞, η = 1 , ∀�
Symmetrical η-κ κ = κ, μ = 1, m → ∞, η = η, � = η
Asymmetrical η-κ κ = κ, μ = 1, m → ∞, η = η, � = 0
Beckmann κ = K , μ = 1, m → ∞, η = q, � = r
κ-μ κ = κ, μ = μ, m → ∞, η = 1, ∀�
Rician Shadowed κ = κ, μ = 1, m = m, η = 1, ∀�
κ-μ shadowed κ = κ, μ = μ, m = m, η = 1, ∀�

Note that setting κ = 0 implies that m and � vanish.

Interestingly, when η = 1 the effect of the parameter � van-
ishes; conversely, when setting � = 1 the effect of η is still rel-
evant. This is in coherence with the behavior of the Beckmann
distribution as observed in [24].

Under certain conditions, the PDF and CDF expressions
shown in (5) and (6) can be rewritten in a much simpler way.
Specifically, if the m parameter is assumed to be an integer
number and the μ parameter to be an even number, (3) can
be expressed in an alternative form thanks to partial fraction
expansion, allowing the derivation of PDF and CDF in terms
of elementary functions (i.e., exponentials and powers). This
particular case is detailed in the following subsection.

C. First Order Statistics for the Special Cases

As introduced before, considering the special case in which
m parameter is an integer number and μ parameter is an even
number, the PDF and the CDF of the FB fading distribution
can be expressed in an alternative way which can be useful
in that it simplifies further analytical purposes. Under such
assumption, more tractable expressions for PDF and CDF in
terms of elementary functions are calculated in the following
corollaries.

Corollary 1: Let γ ∼ FB(γ̄;κ, μ,m, η, �) with m being an
integer number and μ an even number. Then, the PDF of γ is

Mγ (s) =
1

(
1 − 2η

μ(1+η )(1+κ) γ̄s
)μ/2 (

1 − 2
μ(1+η )(1+κ) γ̄s

)μ/2

×

⎡
⎣1 − 1

m

⎛
⎝

μκ
(

�2

1+�2

)
(1 + η)γ̄s

(1 + η)(1 + κ)μ − 2ηγ̄s
+

μκ
(

1
1+�2

)
(1 + η)γ̄s

(1 + η)(1 + κ)μ − 2γ̄s

⎞
⎠
⎤
⎦

−m

. (4)

fγ (γ) =
α

m−μ/2
2 γμ−1

γ̄μΓ(μ)αm
1

Φ
(4)
2

(
−m +

μ

2
,−m +

μ

2
,m,m;μ;

−γ

γ̄
√

ηα2
,
−γ

√
η

γ̄
√

α2
,
−γc1

γ̄
,
−γc2

γ̄

)
. (5)

Fγ (γ) =
α

m−μ/2
2 γμ

γ̄μΓ(μ + 1)αm
1

Φ
(4)
2

(
−m +

μ

2
,−m +

μ

2
,m,m;μ + 1;

−γ

γ̄
√

ηα2
,
−γ

√
η

γ̄
√

α2
,
−γc1

γ̄
,
−γc2

γ̄

)
. (6)
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given by

fγ (γ) =
α

m− μ
2

2

αm
1 γ̄μ

N (m,μ)∑

i=1

e−τi γ /γ̄

|ωi |∑

j=1

Aijγ
j−1

(j − 1)!
, (10)

where Aij are the residues of partial fraction decomposition
given by (51), constants ωi and τi are the elements of vector ω
and τ , defined as

ω =
[
m,m,

μ

2
− m,

μ

2
− m

]
, (11)

τ =

[
c1, c2,

μ(1 + η)(1 + κ)

2η
,
μ(1 + η)(1 + κ)

2

]
, (12)

and N(m,μ) is defined as

N(m,μ) = 2
[
1 + u

(μ

2
− m

)]
, (13)

where u(·) is the unit step function whose value is 1 if the
argument is non-negative and 0 otherwise.

Proof: See Appendix B. �
Corollary 2: Let γ ∼ FB(γ̄;κ, μ,m, η, �) with m being an

integer number and μ an even number. Then, the CDF of γ is
given by

Fγ (γ) = 1 +
α

m− μ
2

2

αm
1 γ̄μ

N (m,μ)∑

i=1

e−τi γ /γ̄

|ωi |∑

j=1

Bijγ
j−1

(j − 1)!
. (14)

Proof: See Appendix C. �
We here provide more tractable expressions for both PDF and

CDF of FB distribution in terms of a finite sum of elementary
functions, avoiding the use of multivariate Φ2 function. How-
ever, this simplification comes at the price of a mild loss of
generality in that both m and μ parameters are restricted to be
an integer and even number, respectively.

IV. SECOND ORDER STATISTICS

First-order statistics such as the PDF, CDF or MGF provide
valuable information about the statistical behavior of the am-
plitude (or equivalently power) of the received signal affected
by fading. However, they do not incorporate information re-
lated to the dynamic behavior of the fading process, which is
of paramount relevance in the context of wireless communi-
cations because of the relative motion of transmitter, receivers
and scatterers due to mobility. In the literature, two metrics are
used to capture the dynamics of a general random process: the
level crossing rate (LCR), which measures how often the am-
plitude of the received signal crosses a given threshold value,
and the average fade duration (AFD), which measures how
long the amplitude of the received signal remains below this
threshold [1].

A. Level Crossing Rate

The LCR of the received signal amplitude R can be computed
using Rice’s formula [1] as

NR (u) =

∫ ∞

0
ṙfR,Ṙ (u, ṙ) dṙ, (15)

where Ṙ denotes the time derivative of the signal envelope and
fR,Ṙ (r, ṙ) is the joint PDF of the received signal amplitude and

its time derivative. Thus, in order to characterize the LCR of
R, we must calculate the joint distribution of R and Ṙ. In our
derivations, we will assume that the fluctuations in the diffuse
part (i.e., NLoS) occur at a smaller scale compared to those of
the LoS component in the fluctuating Beckmann fading model.
This is the case, for instance, on which such LoS fluctuation can
be associated to shadowing.

Let us express the squared signal envelope as

R2 = R2
1 + R2

2. (16)

where R1 and R2 are defined as

R2
1 =

μ∑

k=1

(Xk + ξpk )2, R2
2 =

μ∑

k=1

(Yk + ξqk )2, (17)

Note that both variables, when conditioned to ξ, are independent.
After normalizing by Ω = E[R2], we have that R1 and R2 are
distributed as a κ-μ random variables, with PDF given by

fRk
(rk )=

Ωμ/4+1/2

σ2
k (ξdk )μ/2−1

r
μ/2
k e

−
Ω r 2

k
2σ 2

k

−
ξ 2d 2

k
2σ 2

k Iμ/2−1

(
Ω1/2rk ξdk

σ2
k

)
,

(18)

where d2
1 = p2 =

∑μ
k=1 p2

k , d2
2 = q2 =

∑μ
k=1 q2

k , Iν (·) is the
modified Bessel function of the first kind and ξ is a Nakagami-
m distributed random variable with PDF given by

fξ (ξ) =
2mm

Γ(m)
ξ2m−1 exp(−mξ2). (19)

The derivative of R with respect to time, Ṙ, can be expressed
as

Ṙ =
Ṙ1R1 + Ṙ2R2

R
. (20)

Conditioned to R1, R2 and R, the derivative of R is a zero-mean
Gaussian variable with variance

σ2
Ṙ

=
σ2

Ṙ1
R2

1 + σ2
Ṙ2

R2
2

R2
=

σ2
Ṙ1

R2
1 + σ2

Ṙ2
R2

2

R2
1 + R2

2

. (21)

Hence, the distribution of Ṙ conditioned to R1 and R2 is

fṘ |R1,R2
(ṙ, r1, r2) =

1√
2π

(
σ 2

˙r 1
r 2

1+σ 2
˙r 2

r 2
2

r 2
1+r 2

2

) · e
− ( r 2

1
+ r 2

2
) ṙ 2

2(σ 2
˙r 1

r 2
1
+ σ 2

˙r 2
r 2

2
)
,

(22)
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The LCR can be obtained as

NR (u) =

∫ ∞

0
ṙfR,Ṙ (u, ṙ)dṙ

=

∫ ∞

0
ṙ

(∫ u

0
fṘ |R,R1(ṙ, u, r1)fR,R1(u, r1)dr1

)
dṙ

=

∫ u

0
fR,R1(u, r1)

(∫ ∞

0
ṙfṘ |R,R1

(ṙ, u, r1)dṙ

)
dr1.

Using the PDF of Ṙ conditioned to R and R1 in (22),

∫ ∞

0
ṙfṘ |R,R1

(ṙ, u, r1)dṙ =

√
σ2

Ṙ

2π
. (23)

The joint distribution of R1 and R2 can be obtained as

fR1,R2(r1, r2) =

∫ ∞

0
fR1|ξ (r1, ξ)fR2|ξ (r2, ξ)fΞ(ξ)dξ

=
2mm Ωμ/2+1

Γ(m)σ2
1σ

2
2(pq)μ/2−1

r
μ/2
1 r

μ/2
2 exp

(
−r2

1
Ω

2σ2
1

− r2
2

Ω

2σ2
2

)

×
∫ ∞

0

{
ξ2m−μ+1 exp

(
−ξ2

(
p2

2σ2
1

+
q2

2σ2
2

+ m

))

× Iμ/2−1

(
Ω1/2r1ξp

σ2
1

)
Iμ/2−1

(
Ω1/2r2ξq

σ2
2

)
dξ

}
. (24)

In the general case, the last integral cannot be solved analyt-
ically in closed-form, to the best of the authors’ knowledge.

B. Level Crossing Rate for Independent In-Phase and
Quadrature Components

As can be seen, the LCR obtained in the previous section
involves the calculation of two integrals. It is possible to arrive
at a more tractable expression for a simpler yet general case
by considering the scenario in which in-phase and quadrature
components are independent. We note, however, that such a
scenario is still a FB fading model, and does not bear any simi-
larity with any other previous model published in the literature.
Independence between in-phase and quadrature components can
be achieved by assuming qi = 0 and pi �= 0 or vice-versa in (1).

Assuming the special case of qi = 0 (the case of pi = 0 can
be solved similarly) in which R1 and R2 are independent, the
distribution of fR,R1(r, r1) can be obtained as

fR,R1(u, r1) = |Jr1,r2(u, r1)|fR1,R2

(
r1,
√

u2 − r2
1

)

= |Jr1,r2(u, r1)|fR1(r1)fR2

(√
u2 − r2

1

)

=
mm Ωμu · rμ−1

1 · (u2 − r2
1)

μ/2−1

2μ−2Γ2(μ/2)σμ
1 σμ

2 ( p2

2σ 2
1

+ m)m

× e
− Ω (u 2−r 2

1
)

2σ 2
2

− Ω r 2
1

2σ 2
1 · 1F1

⎛
⎝m,μ/2;

Ω p2

4σ 4
1

p2

2σ 2
1

+ m
r2

1

⎞
⎠,

(25)

for 0 ≤ r1 ≤ r, where |Jr1,r2(·, ·)| denotes the Jacobian of the
transformation of random variables and 1F1(·) is the confluent

hypergeometric function [25]. In this particular case, the LCR
of the normalized envelope R can be expressed as

NR (u) =
mm Ωμu

2μ−2Γ2(μ/2)σμ
1 σμ

2 ( p2

2σ 2
1

+ m)m
√

2π

×
∫ u

0

(
σ2

Ṙ1
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) 1
2
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⎛
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Ω p2

4σ 4
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1

⎞
⎠ dr1, (26)

and after a change of variables we have

NR (u) =
mm Ωμu(2μ−1)

2μ−1Γ2(μ/2)σμ
1 σμ

2 ( p2

2σ 2
1

+ m)m
√
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2

×
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1
σ 2

2 1F1
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dx, (27)

where σ2
Ṙ1

=
−ρ̈(0)σ 2

1
Ω and σ2

Ṙ2
=

−ρ̈(0)σ 2
2

Ω from (21), and ρ̈(0) is
the second derivative of the autocorrelation function evaluated
at 0.

Finally, (26) can be expressed in terms of the parameters of
the FB distribution3, yielding

NR (u) =
mm [μ(1+η )(1+κ)]μ −1/ 2

√
−ρ̈(0)

2μ −1Γ2(μ/2)ημ / 2(
μ κ ( 1+ η )

2η +m )m
√

2π
· u(2μ−1)

× e−μ/2(1+η )(1+κ)u2
∫ 1

0
[1+(η − 1)x]

1
2 (1 − x)(μ/2−1)x(μ/2−1)

× e− μ ( 1−η 2) ( 1+ κ )
2η u2x

1F1

⎛
⎝m,μ/2;

κμ2(1+η )2(1+κ)
4η 2

μκ(1+η )
2η + m

u2x

⎞
⎠ dx.

(28)

Note that, although above result for the LCR has been derived
for the special case qi = 0, it is fully equivalent to the case with
pi = 0 just setting η → 1/η, since both cases are actually the
same, as can be seen in (1).

C. Average Fade Duration

With the knowledge of the LCR and the CDF of the FB
distribution, the AFD can be directly obtained as

TR (u) =
FR (u)

NR (u)
, (29)

where FR (u) is the CDF of the fading amplitude envelope de-
rived in (6), after a proper change of variables.

V. NUMERICAL RESULTS AND APPLICATIONS

A. First Order Statistics

After attaining a full statistical characterization of the newly
proposed Fluctuating Beckmann fading distribution, we aim to

3Note that, because of the assumption of qk = 0, this implies that the param-
eter � → ∞.
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Fig. 1. FB signal envelope distribution for different values of η and m in weak
LoS scenario (κ = 1) with �2 = 0.1, μ = 1 and Ω = E{R2} = 1. Solid lines
correspond to the exact PDF, markers correspond Monte Carlo simulations.

Fig. 2. FB signal envelope distribution for different values of η and m in strong
LoS scenario (κ = 10) with �2 = 0.1, μ = 1 and Ω = E{R2} = 1. Solid lines
correspond to the exact PDF, markers correspond Monte Carlo simulations.

exemplify the influence of the parameters of this fading model
over the distribution of the received amplitude. We will first
focus on understanding the effect of the power imbalance in the
LoS and NLoS components (i.e., the effect of � and η), since
these are the two parameters that effectively extend the original
κ-μ shadowed fading model to a more general case. Monte Carlo
simulations are provided in order to double-check the validity
of the derived expressions.

In Figs. 1 and 2, the PDF of the received signal amplitude
is represented for different values of NLoS power imbalance η
and LoS fluctuation severity m. The values m = 1 and m = 10
correspond to the cases of heavy and mild fluctuation of the LoS
component, respectively. The parameter � is set to �2 = 0.1,
indicating a moderately large LoS power imbalance, and μ = 1.
Let us first focus on Fig. 1, where we set κ = 1 to indicate

Fig. 3. FB signal envelope distribution for different values of η and � in strong
LoS scenario (κ = 10) with m = 1, μ = 1 and Ω = E{R2} = 1. Solid lines
correspond to the exact PDF, markers correspond Monte Carlo simulations.

a weak LoS scenario on which the LoS and NLoS power is
the same. We observe that the effect of increasing η causes
the amplitude values to be more concentrated around its mean
value. Besides, compared to the case of η = 1 (i.e., the κ-μ
shadowed fading distribution), the effect of having a power
imbalance in the NLoS component clearly has an impact on
the distribution of the signal envelope. Differently from the η-μ
fading model, the behavior of the distribution with respect to η is
no longer symmetrical between η ∈ [0, 1] and η ∈ [1,∞) for a
fixed � �= 1. One interesting effect comes from the observation
of the effect of increasing η: both setting η = 0.1 or η = 10
implies that the NLoS power is imbalanced by a factor of 10.
However, it is evident that if this NLoS imbalance goes to the
component associated with a larger LoS imbalance (η = 0.1
since we have �2 = 0.1), this is way more detrimental for the
received signal envelope than having the NLoS imbalance in the
other component.

Fig. 2 now considers a strong LoS scenario on which κ = 10.
The rest of the parameters are the same ones as in the previous
figure. Because the LoS component is now much more relevant,
the effect of changing m is more noticeable. We observe that
for m = 10, which corresponds to a mild fluctuation on the LoS
component, the shape of the PDF is only slightly altered when
changing η. Conversely, the shape of the PDF is more affected
by η for low values of amplitude when m = 1. This is further
exemplified in Fig. 3, on which a bimodal behavior is observed
as the imbalance is reduced through � or η. When both {�, η}
decrease, the in-phase components have considerably less power
than the quadrature components. Because κ is sufficiently large,
the distribution will mostly fluctuate close to the LoS part of
the quadrature component due to m, and the first maximum
on the PDF in the low-amplitude region appears as the highly
imbalanced in-phase component only is able to contribute in
this region. We must note that this bimodal behavior does not
appear in the original κ-μ shadowed or Beckmann distributions
from which the FB distribution originates. Nevertheless, such
bimodality indeed shows in other fading models such as the α-
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Fig. 4. FB signal envelope distribution for different values of � and m in
weak LoS scenario (κ = 1) with η = 0.1, μ = 2 and Ω = E{R2} = 1. Solid
lines correspond to the exact PDF derived, markers correspond Monte Carlo
simulations.

Fig. 5. FB signal envelope distribution for different values of � and m in
strong LoS scenario(κ = 10) with η = 0.1, μ = 2 and Ω = E{R2} = 1. Solid
lines correspond to the exact PDF, markers correspond Monte Carlo simulations.

η-κ-μ [8], the two-wave with diffuse power [26], the fluctuating
two-ray [21] and some others [18], [27].

We represent in Figs. 4 and 5 the PDF of the received signal
amplitude for different values of LoS power imbalance � and
LoS fluctuation severity m. We first consider the weak LoS
scenario with κ = 1, and setting μ = 2 and η = 0.1. We observe
that low values of � and m cause the amplitude values being
more sparse. When the LoS component is stronger, i.e., κ = 10
in Fig. 5 the effect of increasing m (i.e., eliminating the LoS
fluctuation) or � is more relevant.

Figs. 6 and 7 are useful to understanding the effect of the pa-
rameters � and η over the CDF. Spefically, in Fig. 6 we compare
the shape of the CDF in weak and strong LoS scenarios as η
varies. The LoS fluctuation parameter is set to m = 10 in order
to eliminate its influence, whereas �2 = 0.1 and μ = 1. We ob-
serve that increasing either η or κ makes the slope of the CDF
rise close to x = 1. A similar observation can be made when

Fig. 6. FB signal envelope CDF for different values of κ and η with �2 = 0.1,
μ = 1, m = 10 and Ω = E{R2} = 1. Solid lines correspond to the exact CDF,
markers correspond Monte Carlo simulations.

Fig. 7. FB signal envelope CDF for different values of κ and � with η = 0.1,
μ = 2, m = 10 and Ω = E{R2} = 1. Solid lines correspond to the exact CDF,
markers correspond Monte Carlo simulations.

inspecting Fig. 7. We see that having the LoS and NLoS imbal-
ances in the same component (�2 = η = 0.1) is more detrimen-
tal for the signal envelope, and the probability of having very
low values of signal level is higher.

B. Second Order Statistics

We will now investigate the effect of the FB fading parameters
on the second-order statistics of the distribution. We assume that
a time variation of the diffuse component according to Clarke’s
correlation model [28] with maximum Doppler shift fd ; this
implies that

√−ρ̈ =
√

2fdπ [29]. As argued in Section IV, we
consider that � → ∞ and hence the LCR and AFD are given
by (28) and (29). Monte Carlo simulations are also included,
by generating a sampled fluctuating Beckmann random process
with sampling period Ts >> fd in order to avoid missing level
crossings at very low threshold values [30].



RAMIREZ-ESPINOSA et al.: EXTENSION OF THE κ-μ SHADOWED FADING MODEL: STATISTICAL CHARACTERIZATION AND APPLICATIONS 3833

Fig. 8. Normalized LCR vs threshold value x (dB) normalized to Ω for
different values of κ, η and μ, with m = 1 and � → ∞. Solid lines correspond
to the exact LCR, markers correspond Monte Carlo simulations.

Fig. 9. Normalized AFD vs threshold value x (dB) normalized to Ω for
different values of κ, η and μ, with m = 1 and � → ∞. Solid lines correspond
to the exact AFD, markers correspond Monte Carlo simulations.

Fig. 8 represents the LCR vs the normalized threshold for
different sets of fading parameter values. When increasing μ,
i.e., the number of multipath clusters, the number of crossings
at very low threshold values is drastically reduced. Similarly,
the number of crossings in this region grows when reducing κ
or increasing η. This latter effect is coherent with the fact that
� → ∞ in this case, so that having a value of η < 1 is benefi-
cial in terms of fading severity. Thus, the maximum number of
crossings for low threshold values in the investigated scenarios
is attained for low μ and κ, and large η.

Fig. 9 represents the AFD vs the normalized threshold for the
same set of fading parameter values as in Fig. 8. Interestingly,
we see that the duration of deep fades is not affected by η.
We also observe that a larger AFD is associated with a lower
value of μ and a larger value of κ; this is in coherence with the
observations in [31] for the particular case of the κ-μ fading
model.

C. Error Probability Analysis

We now exemplify how the performance analysis of wire-
less communication systems operating under FB fading can be

Fig. 10. SEP vs. γ for different values of κ and η and different modula-
tion schemes. Parameter values are m = 4, μ = 2 and �2 = 0.2. Solid lines
correspond to the exact SEP, markers correspond Monte Carlo simulations.

carried out. For the sake of simplicity, we here focus on the sym-
bol error probability (SEP) analysis for a number of well-known
modulation schemes.

The SEP in the presence of fading is known to be given by

Ps(γ̄) =

∫ ∞

0
PAW GN (γ)fγ (γ)dγ, (30)

where PAW GN (γ) is the symbol error probability in the AWGN
case, which is given by [5, eq. (8.85)] when using coherent
DBPSK (Differential Binary Phase-Shift Keying) modulation.
Since the SEP of DBPSK modulation has exponential form,
introducing this in the above equation yields

Ps(γ̄) =
1
2

∫ ∞

0
e−γ fγ (γ)dγ, (31)

which is fully equivalent to

Ps(γ̄) =
1
2
Mγ (s)|s=−1. (32)

Thus, the SEP of DPBSK when assuming the FB fading model
is given in (34) at the top of the next page.

In the case of assuming orthogonal M -ary FSK (Frequency-
Shift Keying) signals and non-coherent demodulation, the sym-
bol error probability over AWGN channels is given in [5, eq.
(8.67] as

Ps(γ̄) =

M −1∑

n=1

(−1)n+1

(
M − 1

n

)
1

n + 1
Mγ (s)

∣∣∣∣
s= −n

n + 1

, (33)

yielding the expression given in (35) at the top of the next page
when assuming the FB fading model.

The SEP is evaluated in Fig. 10, assuming coherent DBPSK,
and non-coherent 2-FSK and 4-FSK. We observe that the SEP
performance of DBPSK is much better than the non-coherent
schemes, especially when the fading severity is reduced (i.e.,
large κ and η, for � < 1).

VI. CONCLUSION

We presented an extension of the κ-μ shadowed fading dis-
tribution, by including the effects of power imbalance between
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⎝

μκ
(

�2

1+�2

)
(1 + η)γ̄

(
n

n+1

)

(1 + η)(1 + κ)μ + 2ηγ̄
(

n
n+1

) +
μκ
(

1
1+�2

)
(1 + η)γ̄

(
n

n+1

)

(1 + η)(1 + κ)μ + 2γ̄
(

n
n+1

)

⎞
⎠
⎤
⎦

−m

. (35)

the LoS and NLoS components through two additional parame-
ters, � and η, respectively. This generalization also includes the
classical and notoriously unwieldy Beckmann fading distribu-
tion as special case, with the advantage of admitting a relatively
simple analytical characterization when compared to state-of-
the-art fading models. Thus, we are able to unify a wide set of
fading models in the literature under the umbrella of a more
general model, for which we suggest the name of Fluctuating
Beckmann fading model.

We observed that when the LoS and NLoS imbalances are
both large for the same component (i.e., � < 1 and η < 1 for
the in-phase component, or � > 1 and η > 1 for the quadrature
component), the fading severity is increased. Conversely, when
the LoS imbalance is larger in one component (e.g., � < 1) it is
beneficial that its NLoS part has less power (i.e., η > 1 in this
case) in order to reduce fading severity. Strikingly and some-
how counterintuitively, the FB distribution exhibits a bimodal
behavior in some specific scenarios, unlike the distributions
from which it originates.

APPENDIX A
PROOF OF LEMMA I

Let us consider the physical model in (1). Specializing for
μ = 1, the conditional MGF of the signal power W given
ξ follows a Beckmann distribution with MGF given by [5,
eq. (2.38)]

MW (s|ξ) =
1

(1 − 2σ2
xs)1/2(1 − 2σ2

y s)1/2

× exp

(
p2

1ξs

1 − 2σ2
xs

+
q2

1ξs

1 − 2σ2
y s

)
. (36)

Since the Gaussian processes within (1) are mutually inde-
pendent, then the conditional moment-generating function of
the FB distribution can be obtained by multiplying the μ terms
of the sum. Thus, the conditional MGF of the signal power W
is given by

MW (s|ξ) =
1

(1 − 2σ2
xs)μ/2(1 − 2σ2

y s)μ/2

× exp

(
p2ξs

1 − 2σ2
xs

+
q2ξs

1 − 2σ2
y s

)
, (37)

where p2 =
∑μ

i=1 p2
i and q2 =

∑μ
i=1 q2

i .

With the definitions in (2), the conditional MGF in (37) can
be rewritten as:

Mγ (s|ξ) =
1

(
1− 2η

μ(1+η )(1+κ) γ̄s
)μ/2(

1− 2
μ(1+η )(1+κ) γ̄s

)μ/2

× exp

⎛
⎝

μκ
(

�2

1+�2

)
(1+ η)ξγ̄s

(1+ η)(1+ κ)μ −2ηγ̄s
+

μκ
(

1
1+�2

)
(1+ η)ξγ̄s

(1+ η)(1+ κ)μ −2γ̄s

⎞
⎠.

(38)

Finally, the unconditional MGF for the FB fading model can be
obtained by averaging (38) as

Mγ (s) =

∫ ∞

0
Mγ (s|ξ) fξ (ξ) dξ, (39)

where fξ (ξ) is the Nakagami-m PDF, yielding (4).

APPENDIX B
PROOF OF COROLLARY I

The expression for the PDF can be derived as fγ (γ) =
L−1 {Mγ (−s)} as in the general case. Manipulating (3) and
evaluating it at s = −s it is possible to write

Mγ (−s) =
α

m− μ
2

2

αm
1 γ̄μ

(
s + μ(1+η )(1+κ)

2η γ̄

)m− μ
2

×
(
s+ μ(1+η )(1+κ)

2γ̄

)m− μ
2
(
s + c1

γ̄

)−m(
s + c2

γ̄

)−m

,

(40)

where, taking partial fraction expansion the expression for
Mγ (−s) yields

Mγ (−s) =
α

m− μ
2

2

αm
1 γ̄μ

N (m,μ)∑

i=1

|ωi |∑

j=1

Aij

(s + τi/γ̄)j
, (41)

with ωi and τi the elements of vectors ω and τ given by (11)
and (12), N a constant defined in (13) and Ai,j the partial frac-
tion decomposition residues given by (51), whose calculation is
detailed in D.
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Aij =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k1+ ...k3=m−j
k1,k2≤m−μ/2

[
1∏ 3

t = 1 kt !

2∏
l=1

(m− μ
2 )!

(m− μ
2 −kl )!

(
τl

γ̄ − τi

γ̄

)m− μ
2 −kl 4∏

z=3
z �=i

(−1)k3(m)k3

(
τz

γ̄ − τi

γ̄

)−m−k3

]
if m ≥ μ

2

∑
k1+ ...k3=ωi −j

[
1∏ 3

t = 1 kt !

i−1∏
z=1

(−1)k z (ωz )k z

( τ z
γ̄ − τ i

γ̄ )
ω z + k z

4∏
l=i+1

(−1)k l −1 (ωl )k l −1

( τ l
γ̄ − τ i

γ̄ )
ω l + k l −1

]
if m < μ

2

(51)

Thanks to this new expression for the MGF, the PDF can be
obtained directly using the Laplace transform pair [32]

L−1

{
1

(s + ν)n

}
=

tn−1

(n − 1)!
e−ν t , (42)

yielding the expression for the PDF shown in (10).

APPENDIX C
PROOF OF COROLLARY II

Proceeding analogously to the PDF case, the CDF expression

is given by Fγ (γ) = L−1
{

Mγ (−s)
s

}
. From MGF expression

shown in (3), it is possible to write

Mγ (−s)

s
=

α
m− μ

2
2

αm
1 γ̄μ

1
s

(
s + μ(1+η )(1+κ)

2η γ̄

)m− μ
2

×
(
s + μ(1+η )(1+κ)

2γ̄

)m− μ
2
(
s + c1

γ̄

)−m(
s + c2

γ̄

)−m

,

(43)

where partial expansion leads us to

Mγ (−s)

s
=

α
m− μ

2
2

αm
1 γ̄μ

⎛
⎝Bs

s
+

N (m,μ)∑

i=1

|ωi |∑

j=1

Bij

(s + τi/γ̄)j

⎞
⎠ , (44)

where constants ωi , τi and N are the same as in PDF case,
which are defined in (11)–(13), respectively. As before, Bs and
Bi,j are the partial fraction decomposition residues given by
(50) and (52), whose derivation is detailed in Appendix D.
Applying the Laplace transform pair listed in (42), and after
some algebraic manipulations, we arrive to the CDF expression
given in (14).

APPENDIX D
DERIVATION OF PARTIAL FRACTION EXPANSION RESIDUES

The general expression for partial expansion residues is given
in [32, eq. (A.36)], which allows us to write Aij and Bij as

Aij = 1
(|ωi |−j )!

d|ωi |−j

ds|ωi |−j

⎡
⎢⎣

4∏

k=1
k �=i

(
s + τk

γ̄

)−ωk

⎤
⎥⎦

∣∣∣∣∣∣∣
s=

−τ i
γ̄

, (45)

Bij = 1
(|ωi |−j )!

d|ωi |−j

ds|ωi |−j

⎡
⎢⎣1

s

4∏

k=1
k �=i

(
s + τk

γ̄

)−ωk

⎤
⎥⎦

∣∣∣∣∣∣∣
s=

−τ i
γ̄

, (46)

where each one is obtained as a |ωi | − j-th order derivative,
which can be tedious of computing. In the following, a closed-
form expression for the residues is presented.

Focusing on Aij residues, (45) can be rewritten using the
general Leibniz rule, which gives

Aij =
1

(|ωi | − j)!

⎛
⎝ ∑

k1+ ...k3= |ωi |−j

(|ωi | − j

k1 . . . k3

)

×
4∏

z=1
z �=i

[
(s + τz /γ̄)−ωz

](kz )

⎞
⎟⎠

∣∣∣∣∣∣∣
s=−τi /γ̄

, (47)

where
(|ωi |−j
k1...k3

)
= (|ωi |−j )!

k1!k2!k3!
. The sum condition k1 + . . . k3 =

|ωi | − j represents that there are as many terms as combina-
tions of k1, k2 and k3 exist that fulfil

∑3
t=1 kt = |ωi | − j.

General Leibniz rule has allowed us to express derivatives of
the rational polynomial as the product of the binomials deriva-
tives. Moreover, closed-form expressions for binomial deriva-
tives are given below

dq

dsq
(s + α)ν =

{
(ν )!

(ν−q)! (s + α)ν−q if ν ≥ 0

(−1)q (−ν)q (s + α)ν−q if ν < 0
. (48)

We see that the number of poles the MGF (and consequently
the closed-form expression for each binomial derivative) is a
function of m and μ parameters. Thus, it is necessary to dis-
tinguish between the cases where m ≥ μ/2, and m < μ/2, re-
spectively. Taking this into consideration, and introducing the
above equation in (47), the final expression for the residues Aij

is given in (51) at the top of this page.
Following the same steps as with Aij residues, the final result

for Bij constants after applying the general Leibniz rule and in-
troducing the closed-form derivatives expressions is also shown
in (52) at the top of the next page, where the same cases has
been considered.

Finally, the residue Bs is given by

Bs =

(
4∏

k=1

(s + τk/γ̄)−ωk

)∣∣∣∣∣
s=0

, (49)

which immediately leads to

Bs =

4∏

k=1

(τk/γ̄)−ωk . (50)
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Bij =
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(52)
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Abstract—In this paper, we propose a generalization of the
well-known κ-µ shadowed fading model. Based on the clustering
of multipath waves as the baseline model, the novelty of this
new distribution is the addition of an arbitrary correlation for
the scattered components within each cluster. It also inherits
the random fluctuation of the dominant component, which is
assumed to be the same for all clusters. Thus, it unifies a wide
variety of models: Rayleigh, Rician, Rician shadowed, Nakagami-
m, κ-µ and κ-µ shadowed as well as multivariate Rayleigh,
Rician and Rician shadowed. The main statistics of the newly
proposed model, i.e. moment generating function, probability
density function and cumulative density function, are given in
terms of exponentials and powers, and some numerical results
are provided in order to analyze the impact of the arbitrary
intercluster correlation.

I. INTRODUCTION

The statistical characterization of the received radio signal
is a classical problem in wireless communications, where
the transmitted radio waves are affected by several random
phenomena. As a result, the received signal can be seen as
a linear combination of multipath waves with random ampli-
tudes and phases. By applying the central limit theorem, the
baseband signal is modeled using complex Gaussian processes,
rendering the widely-used fading models, namely Rayleigh,
Rice, Hoyt and Nakagami-m [1].

In order to provide a better statistical characterization in in-
tricate multipath environments, several distributions have been
proposed in the literature as generalizations of the classical
ones. In [2], Yacoub introduces two new models based on the
effect of clustering of multipath waves: the η-µ fading model
as a generalization of the Hoyt model and the κ-µ fading
model, which arises as a generalization of the Rician model.
Due to the small number of parameters along with the compar-
atively simple mathematical tractability, a lot of attention has
been paid to the κ-µ model in the last years [3–5]. Although a
more general model was introduced in [6], its larger flexibility
comes at the price of an increased mathematical complexity,
ultimately affecting its practical applicability.

A further generalization of the κ-µ distribution was pre-
sented in [7] where the line of sight (LoS) component is
affected by a random fluctuation representing the shadowing,

This work has been funded by the Spanish Government and the European
Fund for Regional Development FEDER (project TEC2014-57901-R) and also
by the Campus de Excelencia Internacional Andalucı́a TECH, Universidad de
Málaga.

rendering the well-known κ-µ shadowed model. This fading
distribution has applications in mobile satellite (LMS) com-
munications and underwater acoustic communications (UAC),
including a wide variety of models as special cases: Rayleigh,
Rice, Rician shadowed [8], Nakagami-m, κ-µ and Hoyt.

However, all of the aforementioned fading models assume
the statistical independence between the radio signal com-
ponents of all clusters. Attempting to consider the effect of
the correlation, Bhatnagar characterizes in [9] the sum of κ-µ
shadowed variables with correlated LoS fluctuation, providing
the PDF in terms of infinite series. Nonetheless, the scattered
components are still mutually uncorrelated.

In order to account for the impact of such intercluster cross
correlation, we here introduce a novel extension of the κ-µ
shadowed fading model which considers an arbitrary corre-
lation between the scattered components. Thus, we consider
appropriate to name this new distribution as correlated κ-
µ shadowed distribution. Aiming to relay the mathematical
complexity of the newly proposed fading model, we take
the formulation of the κ-µ shadowed model with integer
parameters as starting point [10]. Interestingly, despite being
more general than the original κ-µ shadowed distribution,
this new model inherits its simple mathematical tractability.
Hence, the main statistics of the proposed model: Moment
Generating Function (MGF), Probability Density Function
(PDF) and Cumulative Distribution Function (CDF) are given
in simple closed-form involving only elementary functions
(exponentials and powers). Notably, in contrast to the original
one, the correlated κ-µ shadowed fading model also includes
as particular cases the multivariate Rayleigh, Rician and Rician
shadowed distributions [11–14].

Throughout this paper, we will use the following notation.
The symbol ∼ means statistically distributed as. Matrices and
vectors are represented with upper-case boldface and lower-
case boldface, respectively. The superscript (·)† denotes matrix
complex conjugate transpose. Additionally, In represents the
n×n identity matrix and 0n×p a n×p all-zero matrix. Finally,
(a)b is the Pochhammer symbol and E[·] is the expectation
operator.

This paper is structured as follows. In Section II, we de-
scribe the physical model of the proposed fading distribution.
Then, the first order statistics (MGF, PDF and CDF) are
derived in Section III, while we provide some numerical
results in Section IV to exemplify the impact of the distribution
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parameters. Finally, main conclusions are given in Section V.

II. PHYSICAL MODEL

The physical model of the correlated κ-µ shadowed fading
distribution arises as a generalization of the original one in [7].
The received radio signal is modeled as the superposition of
radio waves structured in clusters of waves, where we consider
that the scattered component has the same power within each
cluster. The same applies to the dominant components, which
are assumed to have equal power for all clusters. As opposed to
the κ-µ shadowed distribution, we here introduce an arbitrary
correlation factor for the intercluster scattered components.
Thus, the received signal power W can be formulated using
complex random variables as

W =

µ∑

i=1

|Zi + ξp|2 (1)

where µ is a natural number indicating the number of clusters
and Zi for i = 1, . . . , µ are complex Gaussian random
variables such that Zi ∼ CN (0, σ2). Additionally, p is a
complex number and ξ is a real random variable such that
ξ2 is Gamma distributed with shape parameter m and scale
parameter 1/m, i.e. ξ2 ∼ Γ(m, 1/m) with E

[
ξ2
]

= 1.
As with the original κ-µ shadowed model, ξ represents the
random fluctuation of the dominant component of all clusters
of waves. The distinct variables Zi in (1) are assumed to be
correlated with correlation factor given by corr (Zi, Zj) = ρi,j
for i, j = 1, . . . , µ with

ρi,j =
E
[
ZiZ

∗
j

]

σ2
. (2)

Therefore, the novelty of the model here introduced is
the addition of such arbitrary intercluster correlation factor.
Note that, if we impose ρi,j = 0 ∀ i 6= j, then (1)
becomes the κ-µ shadowed physical model in [7, eq. (1)].
Since this correlation implies a considerable difficulty in the
statistical characterization of the physical model in (1), we will
reformulate W in terms of statistically independent random
variables as follows.

The summation in (1) can be written in matrix form as a
non-central complex Gaussian quadratic form as

W = (z + ξp)
†

(z + ξp) (3)

where z ∈ Cµ×1 and p ∈ Cµ×1 are column vectors whose
entries are Zi and p for i = 1, . . . , µ, respectively. As such,
z follows a complex multivariate normal distribution with
zero mean and correlation matrix Σ with entries [Σ]i,j = ρi,j ,
i.e. z ∼ CN µ

(
0µ×1, σ

2Σ
)
. The correlation matrix Σ is

Hermitian, so it can be decomposed as Σ = CC† where
C ∈ Cµ×µ is a lower triangular matrix with non-negative
diagonal entries (Cholesky decomposition)[15].

Then, z can be expressed as z = σCz̃, with z̃ a
standard complex multivariate Gaussian vector, i.e. z̃ ∼
CN µ (0µ×1, Iµ). By doing so, (3) is rewritten as

W =
(
σz̃ + ξC−1p

)†
C†C

(
σz̃ + ξC−1p

)
. (4)

Since C†C is clearly Hermitian, it can be diagonalized
as C†C = UΛU†, where Λ is a diagonal matrix whose
entries, λi, are the eigenvalues of C†C (or, equivalently, those
of Σ) and U is an unitary matrix whose i-th column is
the eigenvector associated with λi. Therefore, (4) is finally
expressed in a similar way to (1) as

W =

µ∑

i=1

∣∣∣
√
λiσZ̃i + ξ

√
λip̃i

∣∣∣
2

(5)

where Zi are statistically independent complex Gaussian ran-
dom processes with zero mean and unit variance, i.e. Zi ∼
CN (0, 1), and p̃i are the entries of the vector p̃ = U†C−1p
for i = 1, . . . , µ.

Thus, we have proved that the physical model in (1) is
equivalent to another one where all the involved random
variables are independent. Consequently, the power of each
Gaussian variable Zi in (5) is rescaled by the eigenvalues of Σ
and, in contrast with (1), the power of the dominant component
is not the same for all clusters. This new representation of the
physical model in terms of independent random variables will
lead us to simple expressions of the main statistics (MGF, PDF
and CDF) of the here proposed model.

III. STATISTICAL CHARACTERIZATION

We will now provide the first-order statistics of the corre-
lated κ-µ shadowed distribution where its MGF, PDF and CDF
will be given in closed-form in terms of elementary functions.
Hence, as usually done in the related literature, hereinafter we
will consider the random variable γ ∆

= γW/W representing
the instantaneous SNR at the receiver side, where γ ∆

= E[γ]

and W = E[W ] = µ
(
|p|2 + σ2

)
.

Therefore, let γ be a random variable characterizing the
instantaneous SNR for the physical model in (1) or, equiv-
alently, that in (5). Then, γ follows a correlated κ-µ shad-
owed distribution with parameters µ, m, κ and Σ, i.e. γ ∼
CSκµ(γ;κ, µ,m,Σ) with κ = |p|2 /σ2.

Lemma 1: Let γ ∼ CSκµ(γ;κ, µ,m,Σ). Then, its MGF is
given by

Mγ(s) =
µµ(κ+ 1)µ

µ∏
i=1

µ(κ+ 1)− sλiγ

×


1− 1

m

µ∑

j=1

diλisγ

µ(κ+ 1)− sλiγ



−m

(9)

where di = |p̃i|2 /σ2 =
[
U†C−1K

(
C−1

)†
U
]
i,i

with K ∈
Rµ×µ a constant matrix whose entries are given by [K]i,j = κ
for i, j = 1, . . . , µ.

Proof: See Appendix A.
Lemma 1 provides a closed-form expression for the MGF

of γ. It is easy to prove that, when no correlation is applied,
then λi = 1 and di = κ for i = 1, . . . , µ. If so, then (9)
becomes the MGF of the κ-µ shadowed distribution given in
[7, eq. (5)].
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Di(k1, . . . , kN−1) =

µ∏

t=1

(
µ(k+1)
λtγ

− βi
)m−kt−1

Γ(m)−1Γ(m− kt)
i−1∏

r=1

(−1)kr+µ(qrm)kr+µ

(βr − βi)qrm+kr+µ

n∏

l=i+1

(−1)kl+µ−1(qlm)kl+µ−1

(βl − βi)qlm+kl+µ−1
. (8)

From Mγ(s), we now calculate the PDF and the CDF of γ.
In order to do so, it is necessary to perform some algebraic
manipulations in (9). Hence, Mγ(s) is rewritten in terms of a
rational polynomial as follows:

Mγ(s) =
1

µ∏
i=1

1− λiγ
µ(κ+1)s




µ∏
j=1

1− λjγ
µ(κ+1)s

P (s)




m

(10)

where P (s) is the µ-th order polynomial given by

P (s) = m

µ∏

i=1

1− λiγ
µ(κ+1)s−

µ∑

j=1

djλjγ
µ(κ+1)s

µ∏

k=1
k 6=j

1− λkγ
µ(κ+1)s.

(11)

Therefore, denoting as βi for i = 1, . . . , n the distinct roots
of P (s) with multiplicity qi, the rational function in (10) is
expressed as

Mγ(s) =
(−γ)−µµµ(k + 1)µ(
1 +

µ∑
k=1

dk
m

)m µ∏
l=1

λl

µ∏
j=1

(
s− µ(κ+1)

λjγ

)m−1

n∏
i=1

(s− βi)qim
.

(12)
From (12), the PDF and CDF of γ are provided in the

following lemmas.
Lemma 2: Let γ ∼ CSκµ(γ;κ, µ,m,Σ). Then, its PDF is

given by

fγ(γ) = α
n∑

i=1

qim∑

j=1

Ai,jγ
j−1e−βiγ (10)

with

α =
µµ(κ+ 1)µ

γµΓ(j)


1 +

µ∑

j=1

dj
m



−m

µ∏

l=1

λ−1
l , (11)

Ai,j =
∑

k1+...+kN−1=qim−j
k1,...,kµ≤m−1

1
N−1∏
p=1

kp!

Di(k1, . . . , kN−1) (12)

where N = n + µ and Di(k1, . . . , kN ) is given in (8) at the
top of this page. The sum in (12) is over all combinations
of k1, . . . , kN−1 that satisfy

∑N−1
p=1 kp = qim − j and

k1, . . . , kµ ≤ m− 1.
Proof: The PDF of γ is obtained by means of an inverse

Laplace transform as fγ(γ) = L−1 {Mγ(−s)}. By performing
a partial fraction expansion of the rational polynomial in (12),
Mγ(−s) is rewritten as

Mγ(−s) = α
n∑

i=1

qim∑

j=1

Ai,j

(s+ βi)
j

(13)

where Ai,j are the partial fraction expansion residues given
in (12) as proved in Appendix B. Finally, (10) is obtained by
applying the Laplace transform pair given in [16, eq. (5.4.1)].

Lemma 3: Let γ ∼ CSκµ(γ;κ, µ,m,Σ). Then, its CDF is
given by

Fγ(γ) = 1 + α
n∑

i=1

qim∑

j=1

Ci,jγ
j−1e−βiγ , (12)

with

Ci,j =
∑

k1+...+kN=qim−j
k1,...,kµ≤m−1

Di(k1, . . . , kN−1)kN !(−1)kN

N∏
p=1

kp! (−βi)1+kN

.

(13)
Proof: Following the same steps as in the previous proof,

the CDF of γ is derived from (12) as Fγ(γ) = L−1
{

1
sMγ(s)

}

by performing a partial fraction decomposition and applying
[16, eq. (5.4.1)] with Ci,j the residues given in (13) as deduced
from the proof of Ai,j in Appendix B.

Lemmas 2 and 3 provide simple closed-form expressions
for the PDF and CDF of γ in terms of a finite number of
elementary functions, i.e. exponentials and powers. In fact,
these expressions have a similar form to those presented in
[10] for the PDF and the CDF of the original κ-µ shadowed
distribution with integer parameters. This is an important
result, since the larger generality introduced in this paper does
not come at the price of an increased analytical complexity.

As introduced before, the correlated κ-µ shadowed dis-
tribution arises as a generalization of a wide variety of
fading models, thus unifying the statistical characterization
of all these underlying models. The tractability of the here
derived expressions make them useful for further analytical
purposes, specially in the case of multivariate distributions
(Rayleigh, Rician and Rician shadowed) for which the results
are generally scarce due to their mathematical complexity.

Note that, although we here give expressions for the main
statistics of the instantaneous SNR, the PDF and the CDF
of the signal envelope R are straightforwardly obtained from
(10) and (12) as fR(r) = 2rfγ(r2) and FR(r) = Fγ(r2),
respectively, with γ being replaced by E[R2].

IV. NUMERICAL RESULTS

We will now provide some numerical results with the aim
of exemplifying the influence of the parameters of the newly
proposed model over the distribution of the received signal
amplitude R. Since the novelty of this model is the addition
of a correlation between clusters, we will here focus on the
analysis of the impact of such correlation matrix Σ. For the
sake of simplicity, we consider an exponential correlation
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Fig. 1. Signal envelope distribution for different values of µ and ρ with
κ = 1, m = 1 and E[R2] = 1. Solid lines correspond to the exact PDF
while markers correspond to Monte Carlo simulations.
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Fig. 2. Signal envelope distribution for different values of µ and ρ with
κ = 10, m = 1 and E[R2] = 1. Solid lines correspond to the exact PDF
while markers correspond to Monte Carlo simulations.

matrix whose entries are given by [Σ]i,j = ρ|i−j| with
0 ≤ |ρ| < 1, where a value of ρ = 0 implies uncorrelated
scattered components.

Thus, we show in Figs. 1 and 2 the PDF of the received
signal envelope for different values of ρ and µ in a weak
(κ = 1) and a strong (κ = 10) LoS scenario, respectively. The
value of m is fixed to m = 1, corresponding to the case of
heavy random fluctuation of the dominant component of each
cluster. Regarding both figures, it is easy to notice that the
influence of ρ is less relevant for large κ. This is a coherent
result, since the correlation factor only affects to the scattered
component (NLoS) according to the physical model in (1).
We also observe in Fig. 1 that low values of ρ render more
sparse values of the signal amplitude. Besides, the effect of
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Fig. 3. Signal envelope distribution for different values of µ, ρ and m with
κ = 4 and E[R2] = 1. Solid lines correspond to the exact PDF while markers
correspond to Monte Carlo simulations.
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Fig. 4. CDF of the signal envelope for different values of κ and ρ with
µ = 2, m = 5 and E[R2] = 1. Solid lines correspond to the exact PDF
while markers correspond to Monte Carlo simulations.

that correlation has a larger impact as µ grows, which seems
to be logical since we are increasing the number of clusters.

Fig. 3 depicts the PDF of the received signal amplitude for
different values of ρ, µ and m for a fixed LoS power. We
compare the effect of m in the cases of low correlation (ρ =
0.3) and high correlation (ρ = 0.9). Nonetheless, the impact of
the correlation factor seems to be independent of the value of
m. However, a severe fluctuation of the dominant component
(m = 1) is more detrimental for the signal envelope, as we
already saw in the original model [7, 10]. Finally, we represent
in Fig. 4 the shape of the CDF of R in a weak (κ = 1) and a
strong (κ = 10) for low and high intercluster correlation. We
fix µ = 2 and m = 5 in order to minimize the influence of the
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LoS fluctuation, observing that low values of κ and ρ makes
the slope of the CDF rise slowly, as expected from the results
of the previous figures.

V. CONCLUSIONS

We here presented the correlated κ-µ shadowed fading
model, which arises as a generalization of the original κ-µ
shadowed distribution. This new model considers an arbitrary
correlation between the scattered components of each cluster,
represented by the matrix parameter Σ. The MGF, PDF and
CDF of the proposed model are given in closed-form in
terms of elementary functions, being appropriated for further
theoretical calculations and providing a simple framework for
the analysis of the underlying fading models. The correlated
κ-µ shadowed statistics are also useful for characterizing the
multivariate Rayleigh, Rician and Rician shadowed distribu-
tions, which are particular cases of the here proposed model.

The influence of the arbitrary correlation is of relevant
interest specially in weak LoS scenarios, rendering more
sparse values of the fading amplitude as the correlation factor
increases. This effects remains even vanishing the fluctuation
of the dominant component.

APPENDIX A
PROOF OF LEMMA 1

Let us consider the physical model in (5). When conditioned
on ξ, the received signal power can be seen as the summa-
tion of µ independent and non-identically distributed Rician
random variables whose MGFs are given in [1, eq. (2.17)]
by setting n2 = ξ2 |p̃i|2 /σ2 and γ = λi

(
ξ2 |p̃i|2 + σ2

)
for

i = 1, . . . , µ. As such, the conditional MGF of W is obtained
as the product of the MGFs of each Rician variable in (5).
By performing some algebraic manipulations, the conditional
MGF of the the instantaneous SNR γ is given as

Mγ|ξ(s) = µµ (κ+ 1)
µ

µ∏

i=1

exp
(

ξ2diλiγs
µ(κ+1)−λiγs

)

µ(κ+ 1)− λiγs
. (14)

Finally, the unconditional MGF of γ is obtained by averaging
(14) as

Mγ(s) =

∫ ∞

0

Mγ|ξ(s)fξ2(x) dx (15)

with fξ2(x) the PDF of the Gamma distribution, yielding (9).

APPENDIX B
DERIVATION OF PARTIAL FRACTION EXPANSION RESIDUES

Residues Ai,j arise from performing a partial fraction
expansion in (12) after evaluating Mγ(−s). Then, Ai,j for
i = 1, . . . , n and j = 1, . . . , qim are defined as

Ai,j =
1

(q̃i,j)!

dq̃i,j

dsq̃i,j




µ∏
l=1

(
s+ µ(κ+1)

λlγ

)m−1

n∏
k=1,k 6=i

(s+ βk)
qkm




∣∣∣∣∣∣∣∣
s=−βi

(16)

with q̃i,j = qim − j. By applying the generalization of
Léibniz’s rule, the derivatives in (16) can be expressed as a

linear combination of the derivatives of the distinct binomials.
Therefore, since the k-th derivative of a binomial is a well-
known expression which is given by

dq

dxq
(x+ a)ν =





(−1)q(−ν)q
(x+ a)−ν+q

if ν < 0

ν!

(ν − q)! (x+ a)ν−q if ν > 0

, (17)

the final expression for Ai,j is obtained by applying (17) in
(16), yielding (12). By following the same steps as with Ai,j ,
we obtain (13) as the residues resulting from performing a
partial fraction expansion of Mγ(−s)/s.
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Appendix B

Resumen en Castellano

Según el reglamento de doctorado de la Universidad de Málaga, si la memoria de
tesis se redacta al completo en inglés, se requiere incluir un breve resumen en castellano
donde se reflejen las principales contribuciones de la misma. Nótese, sin embargo, que
este anexo no es el propio manuscrito de la tesis sino un sólo resumen para mostrar los
resultados más relevantes.

B.1 Introducción y motivación

El análisis de FCG, o combinaciones lineales de variables gaussianas al cuadrado,
es de gran interés en el ámbito de las comunicaciones y el procesado de señal debido al
incontable número de aplicaciones de este tipo de variables no sólo en dichos campos
sino en estadística en general. Por ejemplo, las FCG aparecen en problemas de detección
[2], [3], pruebas χ2 [4], análisis de filtros adaptativos [6] y problemas de estimación [8].

Las FCG también juegan un papel fundamental en comunicaciones, surgiendo de
manera natural en el estudio de distintos esquemas de modulación [9], [10] así como
en el análisis de sistemas con diversidad [11]–[14], debido a que la relación señal a ruido
(SNR, signal-to-noise ratio) a la salida de estos sistemas viene dada por una FCG cuando se
asumen ganancias gaussianas en los distintos canales. De hecho, la mayoría de modelos
de canal empleados actualmente pueden verse como casos particulares de una forma
cuadrática más general, incluyendo tanto los modelos clásicos que surgen de la aplicación
del teorema central del límite [17]–[19] como nuevas distribuciones presentadas en los
últimos años con el fin de otorgar mayor flexibilidad y un mejor ajuste en escenarios
emergentes [28]–[31]. Por tanto, el análisis de las FCG aparece como una solución para el
estudio unificado de la mayoría de modelos de canal existentes.

Desafortunadamente, a pesar de su gran número de aplicaciones, no se conocen ex-
presiones cerradas para la distribución de las FCG en el caso general. Es por ello que a
lo largo de los años se han ido desarrollando distintas aproximaciones para la función
densidad de probabilidad (PDF, probability density function) y la función de distribución
(CDF, cumulative distribution function) de este tipo de variables [4], [5], [11], [69]–[79]. Sin
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embargo, todas estas aproximaciones tienen la misma desventaja presente en la mayoría
de técnicas clásicas para aproximar la distribución de variables aleatorias: las funciones
resultantes no representan una distribución válida, i.e., la PDF aproximada puede no tener
área unidad y se pueden obtener probabilidades mayores a uno e incluso negativas.

En este contexto, esta tesis tiene un doble objetivo. En primer lugar, se pretende
obtener un nuevo método para el análisis de FCG, con el propósito de derivar aprox-
imaciones simples y cerradas para sus estadísticos de primer orden que no presenten
el principal inconveniente de los métodos clásicos anteriormente citados. Igualmente,
sacando partido de la relación entre los distintos modelos de desvanecimiento y este tipo
de variables, se buscan nuevos modelos de canal que generalicen y unifiquen la gran
variedad de distribuciones presentes en la literatura.

B.2 Análisis de variables aleatorias por confluencia

En esta sección se presenta el nuevo método para análisis de variables aleatorias y su
aplicación a las variables de interés en esta tesis: las FCG tanto reales como complejas.

B.2.1 Método propuesto

La mayoría de métodos clásicos para aproximar la distribución de variables aleato-
rias, entre los que se incluyen la técnica del saddle-point [32]–[35], las series de Edge-
worth [35]–[38] o las expansiones en términos de polinomios ortogonales [39], presentan
el problema anteriormente comentado: no se garantiza que las expresiones obtenidas
representen distribuciones válidas. Otras técnicas, como las aproximaciones basadas en
mixturas [40]–[45] solventan ese inconveniente, pero la falta de un método general y la
complejidad de su aplicación limitan su utilidad.

La técnica aquí propuesta busca, en vez de aproximar los estadísticos de la variable
en cuestión por expansiones en series, analizar una secuencia de variables auxiliares que
converjan a la variable objetivo en el límite. De esta forma, se garantiza que las fun-
ciones obtenidas para cualquier grado de precisión representen distribuciones válidas.
Específicamente, dada una variable X , se busca una secuencia {Xm : m ∈ N+} tal que
{Xm} ⇒ X , donde Xm se obtiene introduciendo alguna perturbación aleatoria en X de
modo que se simplifique su análisis.

Como primer ejemplo, se aplicará el método propuesto a la caracterización estadís-
tica de variables positivas. Considérese por tanto una variable aleatoria X ∈ R+ con
distribución continua y función generadora de momentos (MGF, moment generating func-
tion) MX(s). Con el fin de aproximar su CDF, se define la secuencia {Xm : m ∈ N+} tal
que

Xm , X/ξm, (B.1)
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donde ξm es una variable aleatoria independiente de X siguiendo una distribución
gamma con parámetros m y 1/(m − 1), i.e. ξm ∼ Γ(m, 1/(m − 1)). Es sencillo com-
probar que {ξm : m ∈ N+} ⇒ 1 y por tanto, aplicando el teorema de Slutsky [93, sec.
3.6][55, sec. 1.2], se tiene que {Xm} ⇒ X . Es decir, es posible aproximar la CDF de X por
la de Xm

FX(x) = lim
m→∞

FXm(x) = lim
m→∞

m−1∑

k=0

(m− 1)k

xkk!

dk

dsk
MX(s)

∣∣∣∣
s=(1−m)/x

. (B.2)

En general, la convergencia en CDF no implica el mismo comportamiento para la
PDF. Sin embargo, bajo ciertas condiciones [53], la convergencia en distribución tam-
bién garantiza que las funciones de densidad converjan. En el caso bajo consideración,
puede comprobarse como dichas condiciones son válidas, pudiendo por tanto extender
el método para aproximar también la PDF de X como

fX(x) = lim
m→∞

fXm(x) = lim
m→∞

(m− 1)m

xm+1Γ(m)

dm

dsm
MX(s)

∣∣∣∣
s=(1−m)/x

. (B.3)

Finalmente, el error cuadrático medio (MSE, mean squared error) normalizado entreX
y la variable auxiliar viene dado por

ε2 = E
[
(X −Xm)2

]
/E
[
X2
]

= (m− 2)−1, (B.4)

viéndose claro que limm→∞ ε2 = 0. Nótese, sin embargo, que el MSE no equivale di-
rectamente a una medida del error cometido al aproximar la CDF o la PDF, aunque no
obstante da información de la similitud entre la variable objetivo y la auxiliar. Por ende,
una reducción en el MSE también conlleva una disminución del error cometido al aprox-
imar los estadísticos de X .

Este método general de análisis de variables basado en secuencias auxiliares
obtenidas introduciendo un perturbación en la variable original ha sido denominado
como análisis por confluencia, ya que se lleva al límite la secuencia auxiliar de variables
(nombradas confluentes) para converger o confluir a la variable original.

La principal dificultad para aplicar esta nueva técnica vendría dada por la compleji-
dad en el cálculo de las derivadas de la MGF. Sin embargo, hay situaciones donde estas
derivadas pueden obtenerse de manera sencilla, como es el caso donde MX(s) venga
dada por el producto de funciones elementales. Bajo estas condiciones, las derivadas de
la MGF pueden calcularse recursivamente a partir de las derivadas de su logaritmo como

dk

dsk
MX(s) = MX(s)Dk(s) (B.5)
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con D0(s) = 1 y

Dk(s) =

k−1∑

j=0

(k − 1)!

j!(k − j − 1)!
gk−1−j(s)Dj(s), k > 1, (B.6)

gk(s) =
dk

dsk
g(s) =

dk+1

dsk+1
lnMX(s). (B.7)

B.2.2 Aplicación a FCG reales no centrales

Una vez presentando el método de análisis por confluencia, se va a proceder a su
aplicación para el estudio de las FCG, comenzando por el caso de formas reales definidas
positivas. Es decir, se buscan expresiones aproximadas para la PDF y CDF de la forma
cuadrática

QR = (x + x)TA(x + x) (B.8)

donde x ∈ Rn×1 es un vector constante, A ∈ Rn×n es una matriz simétrica y definida
positiva y x ∼ Nn(0n×1,Σ).

Dado que QR es definida positiva, es posible aplicar directamente (B.2) y (B.3) para
aproximar sus estadísticos, obteniéndose

fQR(x) ≈ (m− 1)m

xm+1Γ(m)
MQR

(
1−m
x

)
Dm

(
1−m
x

)
, (B.9)

FQR(x) ≈MQR

(
1−m
x

)m−1∑

k=0

(m− 1)k

xkk!
Dk

(
1−m
x

)
, (B.10)

donde

MQR(s) =
n∏

i=1

exp

(
b2iλis

1− 2λis

)
(1− 2λis)

−1/2, λiRe{s} < 1/2 ∀ i, (B.11)

gk(s) =
dk+1

dsk+1
lnMQR(s) = 2k k!

n∑

j=1

λk+1
j

[
(k + 1)b2j + 1− 2λjs

]

(1− 2λjs)k+2
. (B.12)

con λi para i = 1, . . . , n los autovalores de la matrix Ã = CTAC y bi los elementos del
vector b = UTC−1x, donde U es la matriz ortogonal resultante de la diagonalización de
Ã.

Con el fin de resaltar las ventajas de las aproximaciones propuestas en (B.9) y (B.10),
éstas se van a comparar con otros métodos disponibles en la literatura. En concreto,
se consideran las aproximaciones en términos de series infinitas de potencias, de poli-
nomios de Laguerre y de funciones de densidad χ2 [4], [70], [71]. Por simplicidad en la
presentación de los resultados, se asume que tanto A como Σ son matrices exponenciales,
i.e., (A)i,j = α|i−j| y (Σ)i,j = ρ|i−j| con 0 < α, ρ < 1.
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FIGURA B.1: PDF de QR para distintos valores de α, ρ y x. El método propuesto
se compara con distintas técnicas alternativas y con simulaciones de Monte Carlo.
N denota el número de términos computados en cada una de las aproximaciones.

Como se observa en la Fig. B.1, las aproximaciones clásicas divergen a partir de de-
terminados valores de x, obteniendo resultados que claramente no son una CDF válida.
Específicamente, las series de potencias tienden a infinito a partir de cierto valor, mien-
tras que la expansión en χ2 satura en un determinado valor de probabilidad distinto de
uno y la serie en polinomios de Laguerre presenta un carácter oscilatorio para valores de
probabilidad cercanos a la unidad. En cambio, la aproximación propuesta en esta tesis se
muestra suficientemente precisa con independencia de los valores de los parámetros de
la forma cuadrática y del punto donde evaluemos su CDF.

Los comportamientos anteriormente descritos para las aproximaciones clásicas
siguen siendo visibles aún aumentando el número de términos de las series, y mostrando
una fuerte dependencia con la parametrización de la variable bajo análisis. A ello, se
suma la presencia de ciertos parámetros artificiales en las expansiones en términos de χ2

y Laguerre que son introducidos para controlar la convergencia de las series, y cuyo valor
óptimo se ha comprobado difícil de elegir y dependiente una vez más de los parámetros
de la forma cuadrática.

En conclusión, la técnica aquí propuesta se muestra como una opción más robusta
que los distintos métodos disponibles en la literatura, permitiendo aproximaciones pre-
cisas y garantizando que los resultados obtenidos representan distribuciones válidas.
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B.2.3 Aplicación a FCG complejas no centrales

En esta sección, nuestro método va a aplicarse al análisis de FCG complejas in-
definidas y no centrales, i.e. se buscan expresiones para la PDF y CDF de

QC = (v + v)†A(v + v) (B.13)

donde v ∈ Cn×1 es un vector constante, A ∈ Cn×n es una matriz hermítica y v ∼
CN n(0n×1,Σ).

Distribución deQC

Sacando partido de las particularidades del caso de formas complejas frente a las
reales, se va a aplicar el método de análisis por confluencia de una forma ligeramente
distinta, de modo que las expresiones resultantes no sean recursivas y sean válidas más
allá del caso definido positivo, a diferencia de (B.9) y (B.10).

Con este fin, se adopta una formulación distinta de QC , la cual se obtiene aplicando
transformaciones algebraicas a (B.13), resultando

QC = (s + h)†Λ(s + h), (B.14)

donde s ∼ CN n(0n×1, In), h = U†C−1v con CC† = Σ y U, Λ son las matrices resultantes
de la diagonalización de C†AC.

A partir de (B.14), se define la secuencia de variables auxiliares (confluentes) intro-
duciendo la perturbación aleatoria en la media de las gaussianas subyacentes, en lugar
de introducirlas en la varianza como en el caso de las formas cuadráticas reales. Así pues,
se define {Qm : m ∈ N+} con

Qm = (s + Dξh)†Λ(s + Dξh), (B.15)

donde Dξ ∈ Rn×n es una matriz diagonal cuyos elementos, ξm,i para i = 1, . . . , n,
son variables aleatorias independientes e idénticamente distribuidas tal que ξ2

m,i ∼
Γ(m, 1/m).

A partir de la MGF de Qm, es posible demostrar que {Qm} ⇒ QC , pudiendo aproxi-
mar nuevamente los estadísticos de QC por los de sus variables confluentes, con la ven-
taja adicional de que Qm admite expresiones cerradas para su PDF y CDF. Con el fin de
derivar dichas expresiones, la MGF de Qm necesita ser formulada en términos de una
función racional, obteniendo

MQm(s) = B
n∏

i=1

(s− 1/λi)
m−1

(s− βi)m
(B.16)
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con βi = [λi(1 + µi/m)]−1 y

B =
n∏

k=1

[
−λk

(
1 +

µk
m

)m]−1
, (B.17)

donde λi para i = 1, . . . , n son los elementos de Λ y µi = ‖hi‖2.

Simplificando la función racional de (B.16) y denotando por β̃i y 1/λ̃j para i =

1, . . . , nβ y j = 1, . . . , nλ a los distintos polos y ceros resultantes de dicha simplificación,
la PDF y la CDF de Qm se obtienen directamente aplicando la transformada inversa de
Laplace a MQm(−s) y MQm(−s)/s, respectivamente, llegando a

fQC (x) ≈fQm(x) =

nβ∑

i=1

pi∑

j=1

αi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x), (B.18)

FQC (x) ≈FQm(x) = u(x) +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃ixxj−1u

(
β̃ix
)

sgn(x). (B.19)

En dichas expresiones, u(·) representa la función escalón unitario, sgn(·) denota la
función signo y

αi,j =
(−1)n

(j − 1)!
BAi,j , ωi,j =

(−1)n

(j − 1)!
BCi,j , (B.20)

con Ai,j y Ci,j los residuos resultantes de descomponer en fracciones simples la función
racional en (B.16), una vez evaluada la MGF en los puntos anteriormente indicados.

Para finalizar la caracterización estadística de las FCG complejas no centrales, al
igual que se hizo en el caso de variables reales, se proporciona una métrica para el er-
ror cometido en la aproximación. En este caso, dado la dificultad de extraer expresiones
y cotas útiles para el error cometido entre la CDF real y la aproximada, se proporciona
nuevamente el MSE normalizado como medida de la similitud entre la variable original
y las confluentes, el cual viene dado por

ε2 ,
E
[
(Qm −Q)2

]

E [Q2]
=

∑n
i=1 λ

2
iµi

[
4
(

1− Γ(m+1/2)

m1/2Γ(m)

)
+ µi

m

]

∑n
j=1

(
λ2
j (1 + 2µj)

)
+
(∑n

j=1 λi(1 + µi)
)2 . (B.21)

Aplicación a sistemas MRC sobre canales Rice correlados

La utilidad de los resultados derivados en la sección anterior se va a ejemplificar a
través de su aplicación para el análisis de sistemas MRC (maximal ratio combining) sobre
canales Rice correlados, obteniendo precisas aproximaciones para la probabilidad de out-
age y la probabilidad de error (BER, bit error rate). Bajo estas condiciones, sólo se conocen
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resultados asintóticos [97], [98] o resultados parciales limitados a un número de antenas
P = 2 [99], [100].

Asumiendo que tanto la sincronización como la estimación del canal son ideales, la
SNR a la salida del receptor tras aplicar MRC viene dada por

γ = γ g†g, (B.22)

donde γ es la SNR media en cada rama y g ∈ CP×1 es el vector de ganancias del canal.
Dado que los desvanecimientos en cada rama siguen una distribución Rice con parámetro
Ki para i = 1, . . . , P , entonces g ∼ CNP (g,Σ). Los elementos del vector de medias y de
la matriz de covarianzas pueden obtenerse a partir de las relaciones

gi =

√
Ki

Ki + 1
, (Σ)i,j =

√
1

(1 +Ki)(1 +Kj)
(R)i,j (B.23)

con R la matriz de coeficientes de correlación entre las distintas antenas. Nótese que se
están considerando canales normalizados, i.e. E[‖gi‖2] = 1.

Como puede observarse, (B.22) es un caso particular de la forma cuadrática en (B.13),
y por tanto podemos aplicar los resultados anteriormente derivados para caracterizar γ.
Por consiguiente, definiendo γth como la SNR mínima requerida para una comunicación
fiable, la probabilidad de outage puede aproximarse por

Pout(γth) ≈ 1 +

nβ∑

i=1

pi∑

j=1

ωi,je
−β̃iγth/γ

(
γ

γth

)−j+1

(B.24)

donde ωi,j , β̃k, nβ y pi se obtienen por identificación con (B.19).

Igualmente, dado que la BER es una función continua y acotada, se puede explotar la
convergencia en distribución entre γ y la variable confluente empleada para su análisis y
obtener una expresión para la BER gracias al teorema de Helly-Bray [55, sec. 1.3], la cual
viene dada por

Pb (γ) ≈
√
M

nβ∑

i=1

pi∑

j=1

√
M−1∑

k=1

ω(k)αi,j

[
Γ(j)

2β̃ji
− δkΓ

(
j + 1

2

)

β̃
j+1/2
i

×
√

γ

2π
2F1

(
1

2
, j +

1

2
;
3

2
;
−δ2

k

2β̃i
γ

)]
, (B.25)

donde δk = (2k − 1)
√

3/(M − 1), las constantes ω(k) vienen dadas en [102, eqs. (6), (14)
and (21)] y 2F1(·) es la función hipergeométrica de Gauss [50, eq. (15.1.1)].
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FIGURA B.2: Pout en función de γ/γth para P = 4 y distintos valores de ρ y
Ki. Las líneas sólidas corresponden con los resultados teóricos mientras que los
marcadores representan los resultados simulados. Para los cálculos teóricos se ha
empleado un valor de m = 40 para k = (0.5, 0.25, 0.25, 0) y de m = 200 para

k = (8, 7, 6, 6).

Resultados numéricos

A continuación, se va a estudiar el impacto del parámetro Rice en cada rama y de la
matriz de coeficientes de correlación en ambas métricas (probabilidad de outage y BER).
Para comprobar la precisión de los resultados teóricos, éstos se comparan nuevamente
con el resultado de las simulaciones. Por simplicidad, se denota como k = (K1, . . . ,KP )

al vector que contiene los P parámetros Rice, K, e igualmente se asume que la matriz de
coeficientes de correlación R es exponencial, i.e. (R)i,j = ρ|i−j| con |ρ| < 1 [103], [104].

En primer lugar, en la Fig. B.2 se estudia el efecto de los parámetros del canal en
la probabilidad de outage. Fijándonos en primer lugar en el efecto de los parámetros K
(equivalentemente, la potencia de la componente directa), se observa cómo generalmente
un incremento en estos parámetros conlleva una mejora de prestaciones del sistema. Sin
embargo, para valores muy elevados de ρ (correlación muy alta entre antenas), vemos
que el comportamiento del sistema es opuesto; un aumento de la potencia de la línea de
visión directa conlleva a una mayor probabilidad de outage para valores altos de γ. Este
mismo efecto es analizado con más detalle en [105].

Finalmente, en la Fig. B.3 se evalúa el impacto de la correlación y la potencia de la
componente directa en la BER, extrayéndose las mismas conclusiones que para la proba-
bilidad de outage: efecto negativo de la correlación y mejor rendimiento en general para
valores de K elevados.



128

5 10 15 20 25 30
10−6

10−5

10−4

10−3

10−2

10−1

ρ = 0.9ρ = 0.5

ρ = 0.1

γ(dB)

B
E
R

k = [0.5, 0.25, 0.25, 0]

k = [8, 7, 6, 6]

FIGURA B.3: BER para una constelación 16-QAM para P = 4 y distintos valores
de ρ yKi. Las líneas sólidas corresponden con los resultados teóricos mientras que
los marcadores representan los resultados simulados. Para los cálculos teóricos se
ha empleado un valor de m = 40 para k = (0.5, 0.25, 0.25, 0) y de m = 150 para

k = (8, 7, 6, 6).

B.3 Generalizaciones del modelo de desvanecimientos κ-µ
shadowed

Las variables aleatorias confluentes definidas en secciones anteriores han sido usadas
simplemente como herramientas matemáticas para estudiar otras variables cuyo análisis
es complejo. Es decir, el interés recaía únicamente en el comportamiento límite de su
distribución.

Sin embargo, estas variables pueden tener utilidad por sí mismas. Un ejemplo de
ello es el caso del modelado de canal, donde la introducción de una fluctuación aleatoria
en la variable original puede usarse para caracterizar el shadowing. De hecho, esta es
la misma idea de la que surgen distintos modelos de canal generalizados, tales como el
Rician shadowed [86], [87] y el κ-µ shadowed [29].

Aunque estas distribuciones son generalizaciones de los modelos clásicos, desde el
punto de vista del análisis por confluencia una variable Rician shadowed puede verse
como la versión confluente de una variable Rice, y la misma relación puede establecerse
entre los modelos κ-µ [28], [88] y κ-µ shadowed.

Con esta idea, y sacando partido del análisis de las FCG, en esta tesis se presentan
dos nuevos modelos de canal, los cuales buscan unificar a la mayoría de distribuciones
de desvanecimientos existentes en la literatura.
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B.3.1 El modelo Beckmann fluctuante

El primero modelo aquí presentado es el Beckmann fluctuante (BF), el cual es una
generalización tanto de la distribución Beckmann [85] como de la κ-µ shadowed. En el
contexto del análisis por confluencias, el modelo BF puede verse como la variable auxiliar
para analizar la distribución Beckmann. Si se compara con el κ-µ shadowed, el modelo BF
es su extensión natural considerando el efecto del desequilibrio de potencia entre las
componentes en fase y cuadratura.

Modelo físico

De acuerdo con el modelo BF, la amplitud de la señal recibida se expresa como

R =

(
µ∑

i=1

|σxXi + jσyYi + ξ(pi + jqi)|2
)1/2

(B.26)

donde µ ∈ N+, σx, σy ∈ R+ y pi, qi ∈ R son constantes; Xi, Yi para todo i son variables
gaussianas estándar independientes e idénticamente distribuidas, i.e. Xi, Yi ∼ N (0, 1), y
ξ es una variable aleatoria, independiente de Xi y Yi, tal que ξ2 ∼ Γ(m, 1/m).

Este nuevo modelo queda totalmente caracterizado por los parámetros m, µ y

κ =

∑µ
i=1 p

2
i + q2

i

µ(σ2
x + σ2

y)
, η =

σ2
x

σ2
y

, %2 =

∑µ
i=1 p

2
i∑µ

i=1 q
2
i

. (B.27)

Debido a su generalidad y flexibilidad, la mayoría de distribuciones de desvanec-
imientos presentes en la literatura quedan recogidas como casos particulares del modelo
BF, tal y como se indica en la Tabla B.1.

Caracterización estadística

Una vez presentado el modelo físico de la nueva distribución, se procede a la carac-
terización estadística de primer orden, i.e. la obtención de expresiones para su PDF, CDF
y MGF. Dado que es habitual analizar los modelos de desvanecimientos en términos de
la SNR [18], de aquí en adelante se considera la variable aleatoria

γ , γ
R2

E[R2]
, (B.28)

donde E[R2] = µ(σ2
x + σ2

y) +
∑µ

i=1(p2
i + q2

i ) y γ , E[γ] es la SNR media. Por tanto,
γ representa la SNR instantánea en el receptor, la cual sigue una distribución BF, i.e.
γ ∼ FB(γ;κ, µ,m, η, %).
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TABLE B.1: Relación entre el modelo BF y distintas distribuciones de desvanec-
imientos dadas en la literatura. Para evitar confusión, los parámetros del BF están

subrayados. Nótese que κ = 0 implica que m y % desaparecen.

Modelo de canal Parámetros del modelo Beckmann fluctuante

Rayleigh κ = 0, µ = 1, η = 1

Rice κ = K, µ = 1, m→∞, η = 1 , ∀%

Nakagami-m κ = 0, µ = m, η = 1

Hoyt κ = 0, µ = 1, η = η

η-µ κ = 0, µ = µ, η = η

Beckmann κ = K, µ = 1, m→∞, η = η, % = %

κ-µ κ = κ, µ = µ, m→∞, η = 1, ∀%

Rician Shadowed κ = κ, µ = 1, m = m, η = 1, ∀%

κ-µ shadowed κ = κ, µ = µ, m = m, η = 1, ∀%

La MGF del modelo propuesto puede obtenerse condicionando a ξ la MGF de la
distribución Beckmann [18, eq. (2.38)] y posteriormente promediando sobre todos sus
posibles valores, llegando a

Mγ(s) =
(−1)µ

sµ
α
m−µ/2
2

γµαm1

(
1− µ(1 + η)(1 + κ)

2ηγs

)m−µ2
×

(
1− µ(1 + η)(1 + κ)

2γs

)m−µ2 (
1− c1

γs

)−m(
1− c2

γs

)−m
, (B.29)

donde c1,2 y α1,2 son constantes que dependen de los parámetros de la distribución.

La PDF y la CDF de γ se obtienen aplicando la transformada inversa de Laplace a
(B.29), de forma análoga a como se hizo en el análisis de las FCGs complejas, resultando

fγ(γ) =
α
m−µ/2
2 γµ−1

γ̄µΓ(µ)αm1
Φ

(4)
2

(
µ

2
−m, µ

2
−m,m,m;µ;

−γ
γ̄
√
ηα2

,
−γ√η
γ̄
√
α2
,
−γc1
γ̄

,
−γc2
γ̄

)
,

(B.30)

Fγ(γ) =
α
m−µ/2
2 γµ

γ̄µΓ(µ+ 1)αm1
Φ

(4)
2

(
µ

2
−m, µ

2
−m,m,m;µ+ 1;

−γ
γ̄
√
ηα2

,
−γ√η
γ̄
√
α2
,
−γc1
γ̄

,
−γc2
γ̄

)
,

(B.31)

donde Φ
(n)
2 es la serie confluente de Lauricella [107, p. 34], la cual aparece también en

otros modelos presentes en la literatura [29], [31], [108] y puede calcularse fácilmente de
forma numérica a través de una transformada inversa de Laplace [109], [110].

Bajo ciertas condiciones, la PDF y la CDF del modelo FB se simplifican, obtenién-
dose expresiones más sencillas y matemáticamente tratables. Específicamente, si m toma
valores enteros y µ es par, entonces (B.29) permite una descomposición en fracciones
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simples, y (B.30) y (B.31) pueden expresarse en términos de funciones elementales (expo-
nenciales y potencias).

Dado que la PDF y la CDF de una distribución, no reflejan el comportamiento
dinámico de la misma, se proporcionan dos métricas adicionales para reflejar este com-
portamiento: i) el level crossing rate (LCR), que mide la frecuencia con que la amplitud
recibida cruza un determinado umbral, y ii) el average fade duration (AFD), que caracter-
iza cuánto tiempo permanece dicha amplitud bajo el umbral.

El LCR de la señal recibida según el modelo BF puede calcularse mediante la fórmula
de Rice [111]. No obstante, a pesar de que se ha obtenido una expresión analítica para
NR(u), ésta viene dada en términos de una integral doble que limita su practicidad. Sin
embargo, bajo la suposición de qi = 0 y pi 6= 0 o viceversa en (B.26), es posible llegar a
una expresión más sencilla. Así pues, asumiendo qi = 0 ∀ i (la expresión resultante es
válida para pi = 0 ∀ i simplemente realizando el cambio η → 1/η), el LCR viene dado por

NR(u) =
mm[µ(1 + η)(1 + κ)]µ−1/2

√
−ρ̈(0)

2µ−1Γ2(µ/2)ηµ/2(µκ(1+η)
2η +m)m

√
2π
· u(2µ−1) exp

(
−µ

2
(1 + η)(1 + κ)u2

)

×
∫ 1

0
[1 + (η − 1)x]

1
2 (1− x)µ/2−1xµ/2−1 exp

(
−µ(1− η2)(1 + κ)

2η
u2x

)

× 1F1


m,µ/2;

κµ2(1+η)2(1+κ)
4η2

µκ(1+η)
2η +m

u2x


 dx (B.32)

donde Ω = E[R2] y ρ̈(0) es la derivada segunda de la función de autocorrelación evaluada
en 0.

Finalmente, el AFD se calcula de forma inmediata como

TR(u) =
FR(u)

NR(u)
. (B.33)

Resultados numéricos

Una vez caracterizado el nuevo modelo, se va a ejemplificar la influencia de sus
parámetros en la distribución de la amplitud de señal recibida, la cual puede obtenerse a
partir de (B.29) mediante el cambio de variables fR(r) = 2r γΩfγ(γr2/Ω).

Dado que el desequilibrio en potencia caracterizado por los parámetros η y %2 rep-
resenta la generalización del modelo propuesto respecto al κ-µ shadowed, nos vamos a
centrar en el estudio del impacto producido por la variación de dichos parámetros. Para
ello, en la Fig. B.4 se representa la PDF de R para distintos valores de η en un escenario
con fluctuaciones medias y severas para la componente directa (m = 10 y m = 1, respec-
tivamente). En este caso, %2 se fija a %2 = 0.1, i.e. la componente en fase de la línea de
visión directa tiene diez veces más potencia que la componente en cuadratura. Con estos
parámetros, se observa cómo, a diferencia del modelo η-µ shadowed, la distribución BF no
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FIGURA B.4: Amplitud recibida según modelo BF para distintos valores de η y m
con κ = 1, % = 0.1, µ = 1 y Ω = 1. Las líneas continuas corresponden con los
valores teóricos, mientras que los marcadores corresponden a los resultados de la

simulación.

es simétrica respecto a η ∈ [0, 1] y η ∈ [1,∞) para un determinado ρ2 6= 1. De hecho, si el
desequilibrio en potencia de la parte difusa se produce en favor de la misma componente
que en la línea de visión de directa, el efecto es mucho más perjudicial que si se produjese
hacia la componente contraria. Un comportamiento similar se reproduce para distintos
valores de %2 dado un η fijo.

Por último, se va a analizar el efecto de los parámetros de la distribución en el LCR.
Para ello, se asume una variación de la componente difusa acorde al modelo de cor-
relación de Clarke [17, sec. 2.1.1] con una frecuencia Doppler máxima fd. Por tanto,√
−ρ̈(0) =

√
2fdπ [113, eq. (34)]. Igualmente, se asume %2 → ∞ de modo que el LCR

pueda calcularse como en (B.32).

Con dichas consideraciones, en la Fig. B.5 se representa el LCR en función del um-
bral, u, para distintos valores de los parámetros de la distribución BF. Curiosamente, al
aumentar µ, el número de cruces para umbrales bajos se reduce drásticamente, mientras
que éstos aumentan al reducir κ o aumentar η.

B.3.2 El modelo κ-µ shadowed con correlación

Modelo físico

La segunda extensión del modelo κ-µ shadowed presentada en esta tesis recibe el nom-
bre de κ-µ shadowed correlado. Según este nuevo modelo, la amplitud de señal recibida
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viene dada por

R =

(
µ∑

i=1

|Zi + ξpi|2
)1/2

, (B.34)

donde µ ∈ N+, pi para i = 1, . . . , µ son números complejos representando la contribución
de la componente directa y Zi ∼ CN (0, σ2). La variable ξ representa las fluctuaciones
debido al shadowing, al igual que en el modelo BF. La novedad aquí respecto al modelo
original es que las variables Zi pueden estar correladas con coeficiente de correlación
corr(Zi, Zj) = ρi,j para i, j = 1, . . . , µ, con

ρi,j =
E[ZiZ

†
j ]

σ2
. (B.35)

Obsérvese que, condicionado a ξ, R2 en (B.34) es un caso particular de la FCG com-
pleja en (B.13), donde A = Iµ. Por tanto, aplicando las mismas manipulaciones que para
QC , R puede escribirse como

R =

(
µ∑

i=1

∣∣∣
√
λiσZ̃i + ξ

√
λip̃i

∣∣∣
2
)1/2

, (B.36)

donde Z̃i ∼ CN (0, 1), p̃i son los elementos del vector p̃ = U†C−1p con p = (p1, . . . , pµ)T ,
λi son los autovalores de C†C y U es una matriz unitaria cuya columna i-ésima es el
autovector de C†C asociado con λi.
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Caracterización estadística

Al igual que en la distribución BF, nos basaremos en el análisis estadístico de la SNR
instantánea, definida como γ = γR2/E[R2], donde γ denota la SNR media y E[R2] =

µσ2 +
∑µ

i=1 ‖p2
i ‖.

La MGF de γ viene dada por

Mγ(s) =
µµ(κ+ 1)µ

µ∏
i=1

(µ(κ+ 1)− sλiγ)


1− 1

m

µ∑

j=1

diλisγ

µ(κ+ 1)− sλiγ



−m

, (B.37)

con di = |p̃i|2 /σ2.

A partir de (B.37), la PDF y la CDF de γ pueden obtenerse realizando una descom-
posición en fracciones simples y aplicando la transformada inversa de Laplace, resul-
tando

fγ(γ) = α

nβ∑

i=1

qim∑

j=1

Ai,jγ
j−1e−βiγ , (B.38)

Fγ(γ) = 1 + α

nβ∑

i=1

qim∑

j=1

Ci,jγ
j−1e−βiγ , (B.39)

donde α, Ai,j y Ci,j son constantes que dependen de los parámetros de la distribución.

Resultados numéricos

Finalmente, se va a ejemplificar la influencia de la correlación en la distribución de
la amplitud de señal recibida. Por simplicidad, asumimos que la correlación sigue un
perfil exponencial, i.e., corr(Zi, Zj) = ρi,j = ρ|i−j| con 0 ≤ ρ < 1. Bajo esta suposición,
en la Fig. B.6 se representa la PDF de la amplitud recibida para distintos valores de ρ,
µ y m con κ = 4. Se observa que, independientemente del resto de parámetros, una
correlación alta (valores de ρ próximos a la unidad) siempre producen valores de la señal
más distribuidos, siendo prácticamente independiente de los valores de m empleados.
Sin embargo, al aumentar µ, este efecto de la correlación es aún más notorio.

B.4 Conclusiones y líneas futuras

Conclusiones

En esta tesis se ha conseguido un doble objtivo. Por un lado, se ha presentado un
nuevo método de aproximar la distribución de variables aleatorias basado en el análi-
sis de una secuencia de variables aleatorias auxiliares definidas a partir de la variable
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mientras que los marcadores representan el valor de las simulaciones.

objetivo. La ventaja de este método respecto a otras soluciones disponibles en la liter-
atura son: i) las expresiones obtenidas siempre representan una distribución válida y ii)
puede obtenerse cualquier grado de precisión con independencia de los parámetros de
la variable en cuestión.

Esta técnica de análisis se ha aplicado en el contexto de las FCG, dando lugar a las
siguientes contribuciones:

• Se han proporcionado expresiones para la PDF y CDF de las FCG reales y definidas
positivas que pueden computarse fácilmente de forma recursiva.

• Se han obtenido aproximaciones tratables matemáticamente en términos de fun-
ciones elementales para las FCG complejas.

• Se dan, por primera vez en la literatura, expresiones generales para la probabilidad
de error y la probabilidad de outage en sistemas MRC sobre canales Rice correlados.

Por otro lado, la aplicación del método propuesto en el contexto de modelado de
canal ha dado lugar a la presentación de dos modelos de canal generalizados que unifican
a la mayoría de distribuciones de desvanecimientos más usadas. Específicamente, las
contribuciones son:

• Presentación y análisis del modelo Beckmann fluctuante como generalización tanto
de la distribución κ-µ shadowed como de la Beckmann, proporcionando expresiones
para sus estadísticos de primer y segundo orden.

• Introducción del modelo κ-µ shadowed correlado, extendiendo la distribución orig-
inal.
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Líneas futuras

En el contexto del análisis de variables aleatorias, una posible línea futura de inves-
tigación sería la aplicación del método general aquí propuesto a otros tipos de variables
cuyo estudio es en general sumamente complejo, tales como aquellas variables que sur-
gen de la suma o producto de otras.

Además, debido al número de aplicaciones de las FCG en procesado de señal y comu-
nicaciones, y dada la relativa tratabilidad de las aproximaciones dadas en esta tesis, las
expresiones aquí aportadas pueden ser útiles para el análisis de múltiples sistemas, e.g.,
sistemas con diversidad, detección de señales o análisis de prestaciones de estimadores.

Por otro lado, en lo referente a modelado de canal, el propio método aquí propuesto
es interesante para el análisis de modelos composite, i.e., aquellos que contemplan a la vez
el efecto de los desvanecimientos y un shadowing multiplicativo. En esta línea, algunos
resultados preliminares pueden encontrarse ya en [114]. Finalmente, los dos modelos
generalizados que se han introducido pueden ser de utilidad para el análisis de presta-
ciones de sistemas sobre una gran variedad de condiciones de propagación. Ejemplos del
interés de la comunidad científica en estas distribuciones pueden encontrarse en [115],
[116].



137

Bibliography

[1] P. Billingsley, Probability and Measure, ser. Wiley Series in Probability and Statistics.
Wiley, 2012.

[2] H. Van Trees, K. Bell, and Z. Tian, Detection Estimation and Modulation Theory, Part
I: Detection, Estimation, and Filtering Theory, ser. Detection Estimation and Modu-
lation Theory. Wiley, 2013.

[3] V. K. Madisetti, The Digital Signal Processing Handbook, 2nd. CRC Press, 2009.
[4] S. Provost and A. Mathai, Quadratic Forms in Random Variables: Theory and Applica-

tions, ser. Statistics : textbooks and monographs. Marcel Dek ker, 1992.
[5] G. E. P. Box, “Some theorems on quadratic forms applied in the study of analysis

of variance problems, i. effect of inequality of variance in the one-way classifica-
tion”, Ann. Math. Statist., vol. 25, no. 2, pp. 290–302, 1954.

[6] T. Y. Al-Naffouri and M. Moinuddin, “Exact performance analysis of the ε-NLMS
algorithm for colored circular Gaussian inputs”, IEEE Trans. Signal Process., vol. 58,
no. 10, pp. 5080–5090, 2010.

[7] E. H. Gismalla and E. Alsusa, “Performance analysis of the periodogram-based
energy detector in fading channels”, IEEE Trans. Signal Process., vol. 59, no. 8,
pp. 3712–3721, 2011.

[8] F. Athley, “Threshold region performance of maximum likelihood direction of ar-
rival estimators”, IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1359–1373, 2005.

[9] Q. Zhao and H. Li, “Differential modulation for cooperative wireless systems”,
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2273–2283, 2007.

[10] D. Raphaeli, “Noncoherent coded modulation”, IEEE Trans. Commun., vol. 44,
no. 2, pp. 172–183, Feb. 1996.

[11] T. Y. Al-Naffouri, M. Moinuddin, N. Ajeeb, B. Hassibi, and A. L. Moustakas,
“On the distribution of indefinite quadratic forms in Gaussian random variables”,
IEEE Trans. Commun., vol. 64, no. 1, pp. 153–165, 2016.

[12] B. D. Rao, M. Wengler, and B. Judson, “Performance analysis and comparison of
MRC and optimal combining in antenna array systems”, in IEEE Int. Conf. Acoust.
Speech Signal Process. Proceedings (Cat. No.01CH37221), vol. 5, 2001, pp. 2949–2952.

[13] D. Lao and A. M. Haimovich, “Exact closed-form performance analysis of opti-
mum combining with multiple cochannel interferers and Rayleigh fading”, IEEE
Trans. Commun., vol. 51, no. 6, pp. 995–1003, Jun. 2003.



138 BIBLIOGRAPHY

[14] C. Kim, S. Lee, and J. Lee, “SINR and throughput analysis for random beamform-
ing systems with adaptive modulation”, IEEE Trans. Wireless Commun., vol. 12,
no. 4, pp. 1460–1471, Apr. 2013.

[15] G. A. Ropokis, A. A. Rontogiannis, and P. T. Mathiopoulos, “Quadratic forms in
normal RVs: Theory and applications to OSTBC over Hoyt fading channels”, IEEE
Trans. Wireless Commun., vol. 7, no. 12, pp. 5009–5019, 2008.

[16] V. Havary-Nassab, S. Shahbazpanahi, and A. Grami, “Optimal distributed beam-
forming for two-way relay networks”, IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1238–1250, Mar. 2010.

[17] G. L. Stuber, "Principles of Mobile Communication", 2nd. Kluwer Academic Publish-
ers, 2002.

[18] M. K. Simon and M.-S. Alouini, Digital communication over fading channels. John
Wiley & Sons, 2005, vol. 95.

[19] J. Proakis and M Salehi, “Digital communications”, McGraw-Hill Education,
vol. 31, 2007.

[20] M. Nakagami, “The m-distribution — a general formula of intensity distribution
of rapid fading”, in Statistical Methods in Radio Wave Propagation, W. Hoffman, Ed.,
Pergamon, 1960, pp. 3 –36.

[21] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and
E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation”,
IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.

[22] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband
millimeter-wave propagation measurements and channel models for future wire-
less communication system design”, IEEE Trans. Commun., vol. 63, no. 9, pp. 3029–
3056, Sep. 2015.

[23] J. Medbo, K. Börner, K. Haneda, V. Hovinen, T. Imai, J. Järvelainen, T. Jämsä,
A. Karttunen, K. Kusume, J. Kyröläinen, P. Kyösti, J. Meinilä, V. Nurmela, L.
Raschkowski, A. Roivainen, and J. Ylitalo, “Channel modelling for the fifth gener-
ation mobile communications”, in Proc. 8th Eur. Conf. Antennas Propag. (EuCAP),
Apr. 2014, pp. 219–223.

[24] S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and
J. Park, “Proposal on millimeter-wave channel modeling for 5G cellular system”,
IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 454–469, Apr. 2016.

[25] Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini,
“Large intelligent surface assisted MIMO communications”, arXiv preprint
arXiv:1903.08127, 2019.

[26] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling large intelligent surfaces with
compressive sensing and deep learning”, arXiv preprint arXiv:1904.10136, 2019.

[27] M. Stojanovic and J. Preisig, “Underwater acoustic communication channels:
Propagation models and statistical characterization”, IEEE Commun. Mag., vol. 47,
no. 1, pp. 84–89, Jan. 2009.



BIBLIOGRAPHY 139

[28] M. D. Yacoub, “The κ-µ distribution and the η-µ distribution”, IEEE Antennas
Propag. Mag., vol. 49, no. 1, pp. 68–81, Feb. 2007.

[29] J. F. Paris, “Statistical characterization of κ-µ shadowed fading”, IEEE Trans. Veh.
Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.

[30] F. J. Lopez-Martinez, J. F. Paris, and J. M. Romero-Jerez, “The κ- µ shadowed fad-
ing model with integer fading parameters”, IEEE Trans. Veh. Technol., vol. 66, no. 9,
pp. 7653–7662, Sep. 2017.

[31] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. J. Goldsmith, “The fluc-
tuating two-ray fading model: Statistical characterization and performance anal-
ysis”, IEEE Tran. Wireless Commun., vol. 16, no. 7, pp. 4420–4432, Jul. 2017.

[32] C. Goutis and G. Casella, “Explaining the saddlepoint approximation”, Am. Stat.,
vol. 53, no. 3, pp. 216–224, 1999.

[33] R. W. Butler and A. T. A. Wood, Ann. Statist., vol. 32, no. 6, pp. 2712–2730, Dec.
2004.

[34] H. E. Daniels, “Saddlepoint approximations in statistics”, Ann. Math. Statist.,
vol. 25, no. 4, pp. 631–650, Dec. 1954.

[35] J. E. Kolassa, Series approximation methods in statistics. Springer Science & Business
Media, 2006, vol. 88.

[36] P. McCullagh, Tensor Methods in Statistics, ser. Monographs on statistics and ap-
plied probability. Kluwer Academic Publishers, 1987.

[37] D. L. Wallace, “Asymptotic approximations to distributions”, Ann. Math. Statist.,
vol. 29, no. 3, pp. 635–654, Sep. 1958.

[38] C. Field and E. Ronchetti, Small Sample Asymptotics, ser. Lecture notes-monograph.
Institute of Mathematical Statistics, 1990, vol. 13.

[39] S. B. Provost, “Moment-based density approximants”, Math. J., vol. 9, no. 4,
pp. 727–756, 2005.

[40] H. Sorenson and D. Alspach, “Recursive bayesian estimation using gaussian
sums”, Automatica, vol. 7, no. 4, pp. 465 –479, 1971.

[41] B. Everitt and D. Hand, Finite mixture distributions, ser. Monographs on applied
probability and statistics. Chapman and Hall, 1981.

[42] M. Wiper, D. Rios, and F. Ruggeri, “Mixtures of gamma distributions with appli-
cations”, J. Comput. Graph. Stat., vol. 10, pp. 440–454, Sep. 2001.

[43] A. Bacharoglou, “Approximation of probability distributions by convex mixtures
of Gaussian measures”, Proc. Amer. Math. Soc., vol. 138, pp. 2619–2619, Jul. 2010.

[44] “Universal series induced by approximate identities and some relevant applica-
tions”, J. Approx. Theory, vol. 163, no. 12, pp. 1783 –1797, 2011.

[45] D. Alspach and H. Sorenson, “Nonlinear bayesian estimation using gaussian sum
approximations”, IEEE Trans. Autom. Control, vol. 17, no. 4, pp. 439–448, Aug. 1972.

[46] P. Ramírez-Espinosa, D. Morales-Jimenez, J. A. Cortés, J. F. París, and E. Martos-
Naya, “New approximation to distribution of positive RVs applied to Gaussian
quadratic forms”, IEEE Signal Process. Lett., vol. 26, no. 6, pp. 923–927, Jun. 2019.



140 BIBLIOGRAPHY

[47] P. Ramírez-Espinosa, L. Moreno-Pozas, J. F. París, J. A. Cortés, and E. Martos-
Naya, “A new approach to the statistical analysis of non-central complex Gaus-
sian quadratic forms with applications”, IEEE Trans. Veh. Technol., vol. 68, no. 7,
pp. 6734–6746, Jul. 2019.

[48] P. Ramírez-Espinosa, F. J. López-Martínez, J. F. París, M. D. Yacoub, and E. Martos-
Naya, “An extension of the κ-µ shadowed fading model: Statistical characteriza-
tion and applications”, IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 3826–3837, May
2018.

[49] P. Ramírez-Espinosa, J. F. París, J. A. Cortés, and E. Martos-Naya, “The κ-µ shad-
owed fading model with arbitrary intercluster correlation”, in 2018 15th Int. Symp.
Wireless Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5.

[50] M. Abramowitz, I. A. Stegun, et al., Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, New York, 1972, vol. 9.

[51] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic
Press, 2007.

[52] D. Williams, Probability with Martingales, ser. Cambridge mathematical textbooks.
Cambridge University Press, 1991.

[53] D. D. Boos, “A converse to Scheffe’s theorem”, Ann. Statist., vol. 13, no. 1, pp. 423–
427, 1985.

[54] H. Scheffe, “A useful convergence theorem for probability distributions”, Ann.
Math. Statist., vol. 18, no. 3, pp. 434–438, Sep. 1947.

[55] E. B. Manoukian, Mathematical Nonparametric Statistics. CRC Press, 1986.
[56] S. Resnick, A Probability Path, ser. A Probability Path. Birkhäuser Boston, 2003.
[57] B. Sklar, Digital communications: fundamentals and applications, 2nd, ser. Prentice

Hall Communications Engineering and Emerging Technologies Series. Prentice-
Hall PTR, 2001.

[58] R. Hankin, “The complex multivariate Gaussian distribution”, R Journal, vol. 7,
pp. 73–80, Jun. 2015.

[59] N. R. Goodman, “Statistical analysis based on a certain multivariate complex
gaussian distribution (an introduction)”, Ann. Math. Statist., vol. 34, no. 1, pp. 152–
177, Mar. 1963.

[60] H. Cramér, Mathematical Methods of Statistics, ser. Princeton landmarks in mathe-
matics and physics. Princeton University Press, 1999.

[61] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications. Wi-
ley, 2006.

[62] C. Ming Tan, N. Raghavan, and A. Roy, “Application of gamma distribution
in electromigration for submicron interconnects”, J. Appl. Phys., vol. 102, no. 10,
p. 103 703, 2007.

[63] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, 2nd,
ser. Wiley Series in Probability and Statistics. Wiley, 1994, vol. 1.



BIBLIOGRAPHY 141

[64] V. Sundarapandian, Probability, statistics and queuing theory. PHI Learning Pvt. Ltd.,
2009.

[65] P. J. Smith, “A recursive formulation of the old problem of obtaining moments
from cumulants and vice versa”, Am. Stat., vol. 49, no. 2, pp. 217–218, 1995.

[66] A. Mathai and H. Haubold, Special Functions for Applied Scientists. Springer New
York, 2008.

[67] L. L. Scharf, Statistical Signal Processing. Addison-Wesley Reading, MA, 1991,
vol. 98.

[68] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.
[69] H. Robbins and E. J. G. Pitman, “Application of the method of mixtures to

quadratic forms in normal variates”, Ann. Math. Statist., vol. 20, no. 4, pp. 552–
560, Dec. 1949.

[70] S. Kotz, N. L. Johnson, and D. W. Boyd, “Series representations of distributions of
quadratic forms in normal variables. i. central case”, Ann. Math. Statist., vol. 38,
no. 3, pp. 823–837, Jun. 1967.

[71] ——, “Series representations of distributions of quadratic forms in normal vari-
ables II. Non-Central case”, Ann. Math. Statist., vol. 38, no. 3, pp. 838–848, Jun.
1967.

[72] B. Shah, “Distribution of definite and of indefinite quadratic forms from a non-
central normal distribution”, Ann. Math. Statist., vol. 34, no. 1, pp. 186–190, 1963.

[73] J. P. Imhof, “Computing the distribution of quadratic forms in normal variables”,
Biometrika, vol. 48, no. 3/4, pp. 419–426, 1961.

[74] J. Gurland et al., “Distribution of definite and of indefinite quadratic forms”, Ann.
Math. Statist., vol. 26, no. 1, pp. 122–127, 1955.

[75] F. J. Reifler, M. S. Rogers, and K. Malakian, “Distribution of general noncentral
positive definite quadratic form in K-dimensions”, IEEE Trans. Aerosp. Electron.
Syst., vol. 25, no. 3, pp. 411–414, 1989.

[76] G. L. Turin, “The characteristic function of Hermitian quadratic forms in complex
normal variables”, Biometrika, vol. 47, no. 1/2, pp. 199–201, 1960.

[77] K. H. Biyari and W. C. Lindsey, “Statistical distributions of Hermitian quadratic
forms in complex Gaussian variables”, IEEE Trans. Inf. Theory, vol. 39, no. 3,
pp. 1076–1082, May 1993.

[78] D. Raphaeli, “Distribution of noncentral indefinite quadratic forms in complex
normal variables”, IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 1002–1007, May 1996.

[79] G. Tziritas, “On the distribution of positive-definite Gaussian quadratic forms”,
IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 895–906, 1987.

[80] H. Ruben, “A new result on the distribution of quadratic forms”, Ann. Math.
Statist., vol. 34, no. 4, pp. 1582–1584, 1963.

[81] G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, “New analytical models and
probability density functions for fading in wireless communications”, IEEE Trans.
Commun., vol. 50, no. 6, pp. 1005–1015, Jun. 2002.



142 BIBLIOGRAPHY

[82] S. O. Rice, “Statistical properties of a sine wave plus random noise”, Bell Syst.Tech.
J., vol. 27, no. 1, pp. 109–157, Jan. 1948.

[83] R. Hoyt, “Probability functions for the modulus and angle of the normal complex
variate”, Bell Syst. Tech. J., vol. 26, no. 2, pp. 318–359, Apr. 1947.

[84] K. Bischoff and B. Chytil, “A note on scintillation indices”, Planet. Space Sci.,
vol. 17, no. 5, pp. 1059 –1066, 1969.

[85] P. Beckmann and A. Spizzichino, The scattering of electromagnetic waves from rough
surfaces, ser. International series of monographs on electromagnetic waves. Perg-
amon Press, 1963.

[86] Chun Loo, “A statistical model for a land mobile satellite link”, IEEE Trans. Veh.
Technol., vol. 34, no. 3, pp. 122–127, Aug. 1985.

[87] A. Abdi, W. C. Lau, M. Alouini, and M. Kaveh, “A new simple model for land
mobile satellite channels: First- and second-order statistics”, IEEE Trans. Wireless
Commun., vol. 2, no. 3, pp. 519–528, May 2003.

[88] U. S. Dias and M. D. Yacoub, “The κ-µ phase-envelope joint distribution”, IEEE
Trans. Commun., vol. 58, no. 1, pp. 40–45, Jan. 2010.

[89] S. L. Cotton, “Human body shadowing in cellular device-to-device communica-
tions: Channel modeling using the shadowed κ-µ fading model”, IEEE J. Sel. Areas
Commun., vol. 33, no. 1, pp. 111–119, Jan. 2015.

[90] L. Moreno-Pozas, F. J. Lopez-Martinez, S. L. Cotton, J. F. Paris, and E. Martos-
Naya, “Comments on “human body shadowing in cellular device-to-device com-
munications: Channel modeling using the shadowed κ-µ fading model””, IEEE J.
Sel. Areas Commun., vol. 35, no. 2, pp. 517–520, Feb. 2017.

[91] L. Moreno-Pozas, F. J. Lopez-Martinez, J. F. Paris, and E. Martos-Naya, “The κ-µ
shadowed fading model: Unifying the κ-µ and η-µ distributions”, IEEE Trans. Veh.
Technol., vol. 65, no. 12, pp. 9630–9641, Dec. 2016.

[92] F. J. Cañete, J. López-Fernández, C. García-Corrales, A. Sánchez, E. Robles, F. J.
Rodrigo, and J. F. Paris, “Measurement and modeling of narrowband channels for
ultrasonic underwater communications”, Sensors, vol. 16, no. 2, 2016.

[93] A. Goldberger, Econometric theory. J. Wiley, 1964.
[94] F. Bornemann, “Accuracy and stability of computing high-order derivatives of

analytic functions by Cauchy integrals”, Found. Comput. Math., vol. 11, no. 1, pp. 1–
63, 2011.

[95] Y. Ma, J. Yu, and Y. Wang, “Efficient recursive methods for partial fraction expan-
sion of general rational functions”, J. Appl. Math., vol. 2014, 2014.

[96] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems (2Nd Ed.)
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[97] R. K. Mallik and N. C. Sagias, “Distribution of inner product of complex Gaus-
sian random vectors and its applications”, IEEE Trans. Commun., vol. 59, no. 12,
pp. 3353–3362, Dec. 2011.

[98] Yao Ma, “Impact of correlated diversity branches in Rician fading channels”, in
IEEE Int. Conf. Commun. ICC 2005, vol. 1, May 2005, 473–477 Vol. 1.



BIBLIOGRAPHY 143

[99] P. Bithas, N. C. Sagias, and P. T. Mathiopoulos, “Dual diversity over correlated
Ricean fading channels”, J. Commun. Netw., vol. 9, pp. 67–74, Mar. 2007.

[100] M. Ilic-Delibasic and M. Pejanovic-Djurisic, “MRC dual-diversity system over cor-
related and non-identical Ricean fading channels”, IEEE Commun. Lett., vol. 17,
no. 12, pp. 2280–2283, Dec. 2013.

[101] A. Goldsmith, Wireless Communications. Cambridge university press, 2005.
[102] F. J. Lopez-Martinez, E. Martos-Naya, J. F. Paris, and U. Fernandez-Plazaola,

“Generalized BER analysis of QAM and its application to MRC under imperfect
CSI and interference in Ricean fading channels”, IEEE Trans. Veh. Technol., vol. 59,
no. 5, pp. 2598–2604, Jun. 2010.

[103] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, “On the multivari-
ate Nakagami-m distribution with exponential correlation”, IEEE Transactions on
Communications, vol. 51, no. 8, pp. 1240–1244, Aug. 2003.

[104] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential corre-
lation matrix”, IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371, Sep. 2001.

[105] Y. Wu, R. H. Y. Louie, and M. R. McKay, “Asymptotic outage probability of
MIMO-MRC systems in double-correlated Rician environments”, IEEE Trans.
Wireless Commun., vol. 15, no. 1, pp. 367–376, Jun. 2016.

[106] A. Abdi and M. Kaveh, “On the utility of gamma PDF in modeling shadow fading
(slow fading)”, in IEEE 49th Veh. Technol. Conf., vol. 3, May 1999, pp. 2308–2312.

[107] P. W. K. H. M. Srivastava, Multiple Gaussian Hypergeometric Series. John Wiley &
Sons, 1985.

[108] D. Morales-Jimenez and J. F. Paris, “Outage probability analysis for η-µ fading
channels”, IEEE Commun. Lett., vol. 14, no. 6, pp. 521–523, Jun. 2010.

[109] E. Martos-Naya, J. M. Romero-Jerez, F. J. Lopez-Martinez, and J. F. Paris, “A MAT-
LAB program for the computation of the confluent hypergeometric function Φ2”,
Repositorio Institucional Universidad de Malaga RIUMA., Tech. Rep., 2016.

[110] J. Abate and W. Whitt, “Numerical inversion of Laplace transforms of probability
distributions”, ORSA J. Comput., vol. 7, no. 1, pp. 36–43, 1995.

[111] S. O. Rice, “Mathematical analysis of random noise”, Bell Syst. Tech. J., vol. 23,
no. 3, pp. 282–332, 1944.

[112] N. C. Beaulieu and S. A. Saberali, “A generalized diffuse scatter plus line-of-sight
fading channel model”, in Proc. 2014 IEEE Int. Conf. Commun., Jun. 2014, pp. 5849–
5853.

[113] F. Ramos-Alarcon, V. Kontorovich, and M. Lara, “On the level crossing dura-
tion distributions of Nakagami processes”, IEEE Trans. Commun., vol. 57, no. 2,
pp. 542–552, Feb. 2009.

[114] P. Ramírez-Espinosa and F. J. López-Martinez, “On the utility of the inverse
gamma distribution in modeling composite fading channels”, arXiv preprint
arXiv:1905.00069, 2019.



144 BIBLIOGRAPHY

[115] H. Al-Hmood and H. S. Al-Raweshidy, “Performance analysis of physical
layer security over fluctuating Beckmann fading channels”, arXiv preprint
arXiv:1904.08230, 2019.

[116] J. Chen and C. Yuan, “Coverage and rate analysis in downlink L-tier hetnets with
fluctuating Beckmann fading”, IEEE Wireless Commun. Lett., 2019.


