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ABSTRACT 

This thesis presents research on MAC protocols used in underwater communications to explore 

the underwater world. MAC protocols assist in the access of the shared medium and the 

collection of data from oceans, for monitoring climate and pollution, calamity avoidance, 

assisted navigation, strategic surveillance, and exploration of mineral resources. This research 

will benefit sectors like military, oil and gas industries, fisheries, underwater instrumentation 

companies, research agencies, etc. The MAC protocol affects the network lifetime of Wireless 

Sensors Networks. The energy efficiency of the underwater acoustic networks is badly affected 

by the typical properties of the propagation of acoustic waves. The long propagation delays 

and data packet collisions hinder the transmission of the data packets, containing useful 

information for users to perform collective monitoring tasks.  

The aim of this study is to propose new mechanisms for MAC protocols designed for 

underwater acoustic networks to improve their performance. To do so, a previous and thorough 

comparative analysis of existing protocols is mandatory. Also, to establish a methodologically 

appropriate comparison procedure. Since underwater communication depends on acoustic 

waves, a number of challenges like long latency, limited bandwidth, long propagation delay, 

large bit error rates, momentary losses in connections, severe multipath and occurrences of 

fading are considered in the design of underwater MAC protocols. Terrestrial MAC protocols, 

if deployed directly, will perform inefficiently. In this thesis we present MAC protocols tailored 

for underwater acoustic networks, by classifying them into broad categories, providing 

performance measurement techniques and comparative analysis to select the best MAC 

Algorithm for specific application. Floor Acquisition Multiple Access (FAMA) is a MAC 

protocol that was proposed for underwater acoustic networks as a means to solve the problems 

of hidden and exposed terminals. A modified version, Slotted FAMA, aimed to provide savings 

in energy by using timeslots, thus eliminating the need for excessively long control packets in 

FAMA. However, it has been observed that, due to the high propagation delay in these 

networks, the cost of losing one ACK is very high, having a significant impact on the 

performance. The MultiACK and the EarlyACK mechanisms have been analyzed for the 

MACA protocol, to improve its efficiency. The MultiACK mechanism increases the 

probability of receiving at least one ACK packet by replying with a train of ACK packets, while 

the EarlyACK mechanism prevents the repetition of the entire RTS/CTS contention and data 

transmission cycle by sending an early ACK.  

In this research a mathematical analysis of the two variations, MultiACK and EarlyACK 

mechanisms, in Slotted FAMA is presented. The research includes the modified analytical 

expressions as well as numerical results. Simulations were carried out using ns-3. The results 

have been tested and validated using Excel and MATLAB. The performance evaluation of S-

FAMA with two variants showed an improvement factor of 65.05% in the probability of 

receiving an ACK correctly by using the MultiACK mechanism and 60.58% in preventing the 

repetition of the entire cycle, with EarlyACK. The impact of this improvement factor on delay, 

DATA packet size and throughput is also analyzed. The transmission energy wasted and 

consumed in the MultiACK and the EarlyACK mechanisms are analyzed and compared with 

that of S-FAMA. Throughput has been evaluated, reaching an improvement in both cases, 

compared to S-FAMA.  These mechanisms will have practical usefulness in case of ACK loss, 

by saving energy and time in critical periods. 
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RESUMEN 

Esta tesis presenta una investigación sobre los protocolos MAC utilizados en la comunicación 

subacuática para explorar el mundo submarino. Los protocolos MAC ayudan en el acceso al 

medio compartido y la recopilación de datos de los océanos, para monitorizar el clima y la 

contaminación, la prevención de catástrofes, la navegación asistida, la vigilancia estratégica y 

la exploración de los recursos minerales. Esta investigación beneficiará a sectores como las 

industrias militares, de petróleo y gas, pesquerías, compañías de instrumentación subacuática, 

organismos de investigación, etc. El protocolo MAC afecta la vida útil de las redes inalámbricas 

de sensores. La eficiencia energética de las redes acústicas submarinas se ve gravemente 

afectada por las propiedades típicas de la propagación de las ondas acústicas. Los largos 

retrasos de propagación y las colisiones de paquetes de datos dificultan la transmisión de los 

paquetes de datos, que contienen información útil para que los usuarios realicen tareas de 

supervisión colectivas. 

El objetivo de este estudio es proponer nuevos mecanismos para protocolos MAC diseñados 

para funcionar en redes acústicas submarinas, con el propósito de mejorar su rendimiento. Para 

alcanzar ese objetivo es necesario realizar un análisis comparativo de los protocolos existentes. 

Lo que además sienta un procedimiento metodológicamente correcto para realizar esa 

comparación. Como la comunicación subacuática depende de ondas acústicas, en el diseño de 

los protocolos de MAC submarinos surgen varios desafíos como latencia prolongada, ancho de 

banda limitado, largas demoras en la propagación, grandes tasas de error de bit, pérdidas 

momentáneas en las conexiones, severo efecto multicamino y desvanecimientos. Los 

protocolos MAC terrestres, si se implementan directamente, funcionarán de manera ineficiente. 

En esta tesis presentamos los protocolos MAC diseñados para redes acústicas subacuáticas, 

clasificándolos en amplias categorías, proporcionando técnicas de medición de rendimiento y 

análisis comparativo para seleccionar el mejor algoritmo MAC para aplicaciones específicas. 

Floor Acquisition Multiple Access (FAMA) es un protocolo MAC que se propuso para redes 

acústicas submarinas como medio para resolver los problemas de terminales ocultos y 

expuestos. Una versión modificada, Slotted FAMA, tenía como objetivo proporcionar ahorros 

de energía mediante el uso de ranuras de tiempo, eliminando así la necesidad de paquetes de 

control excesivamente largos en FAMA. Sin embargo, se ha observado que, debido al alto 

retraso de propagación en estas redes, el coste de perder un ACK es muy alto y tiene un impacto 

significativo en el rendimiento. Los mecanismos MultiACK y EarlyACK han sido analizados 

para el protocolo MACA, para mejorar su eficiencia. El mecanismo MultiACK aumenta la 

probabilidad de recibir al menos un paquete ACK al responder con un tren de paquetes ACK, 

mientras que el mecanismo EarlyACK evita la repetición de todo el ciclo de contención y 

transmisión de datos RTS / CTS enviando un ACK temprano. 

En esta investigación se presenta un análisis matemático de las dos variantes, los mecanismos 

MultiACK y EarlyACK, en Slotted FAMA. La investigación incluye las expresiones analíticas 

modificadas así como los resultados numéricos. Las simulaciones se llevaron a cabo utilizando 

ns-3. Los resultados han sido probados y validados utilizando Excel y MATLAB. La 

evaluación del rendimiento de S-FAMA con dos variantes mostró un factor de mejora del 

65,05% en la probabilidad de recibir un ACK correctamente utilizando el mecanismo 

MultiACK y del 60,58% en la prevención de la repetición del ciclo completo, con EarlyACK. 

El impacto de este factor de mejora en el retardo, el tamaño del paquete de datos y el 
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rendimiento también se analiza. La energía de transmisión desperdiciada y consumida en los 

mecanismos MultiACK y EarlyACK se analizan y comparan con S-FAMA. El rendimiento se 

ha evaluado, alcanzando una mejora en ambos casos, en comparación con S-FAMA. Estos 

mecanismos tendrán una utilidad práctica en caso de pérdida de ACK, al ahorrar energía y 

tiempo en períodos críticos.  
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CHAPTER 1 : INTRODUCTION 

This chapter covers the problem background, objectives to be accomplished, scope, and the 

thesis structure. A brief summary of the selected MAC Protocols along with the techniques 

involved for the underwater acoustic networks are described.  

1.1 Background 

Oceans today play an important role in environmental monitoring, surveillance and resource 

gathering. Underwater communication has drawn attention of researchers and scientist to 

explore the underwater world. Underwater communication networks use Medium Access 

Control (MAC) protocols to govern the behavior of sensor nodes for a successful 

communication. The study of MAC protocols for underwater acoustic networks is therefore 

crucial, as the techniques are still in the evolving stage for underwater applications such as 

collection of oceanographic data. 

Underwater communication uses acoustic waves as the typical physical layer technology. 

Radio waves propagate at long distances through conductive sea water only at ultra low 

frequencies (30–300 Hz), which require large antennae and high transmission power. Optical 

waves do not experience high attenuation, but they are affected by scattering. In addition, 

optical signals transmission requires high accuracy in pointing the narrow laser beams. Thus, 

links in underwater networks are based on acoustic wireless communications [1]. 

Underwater communications can be applied to collect data from oceans, offshore discovery, 

calamity avoidance, assisted navigation, strategic surveillance. The sectors that can benefit 

most from this research are military, oil and gas industries, fisheries, research agencies, etc. 

The scope of this research is in the areas such as underwater environmental monitoring, sea 

exploration, underwater robot operation, detection and ocean mapping, etc. A wide scope of 

applications aimed for underwater acoustic sensor networks includes applications in the 

prevention of disaster occurrence, assistance in navigation and strategic surveillance 

applications. The technology enabling these applications is the underwater acoustic 

networking, which comprise different number of sensor nodes and vehicles deployed in the 

region to perform monitoring tasks [2], [3], and [4]: 

 Networks for Ocean Sampling: The development of underwater networks and sensing 

is driven by applications. Networks for ocean sampling have the ability to perform 

sampling of coastal ocean environment. They have the ability to observe and predict the 

physical properties, such as depth, temperature, salinity, density and flow of the ocean. 

Networks of sensors, along with AUVs and robotic vehicles, may be used to collect data 

of phenomena in the underwater environment and provide it off-shore. Sophisticated 

robotic vehicle and advanced ocean models together enhance the ability to observe and 

predict the characteristics of the ocean environment.  

 Monitoring of Environment: Monitoring the environment is another application of 

UWASNs. They can monitor pollution such as chemical or biological elements in the 

ocean. They can detect the quality of water in lakes, rivers and oceans by the presence 

of chemical slurry of antibiotics in underwater. They can provide information on 
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weather forecast, predict change of climate, etc. Other applications include monitoring 

of ocean currents and winds, understanding the effect of human interventions on marine 

environment, biological monitoring like tracking fishes and other micro-organisms. 

 Prevention of Disaster: UWASNs can provide warnings of tsunami to coastal areas. 

They have the ability to measure seismic activities from remote locations or study the 

effects of seaquakes. 

 Assisted Navigation. Sensors can be used to trace hazardous rocks or shoals in shallow 

waters, anchorage locations, sunken wreckages, etc. They can also provide bathymetric 

information.  

 Distributed Strategic Surveillance. Sensor networks can be fixed at locations in 

underwater. They can provide monitoring in collaboration with AUVs to do surveillance 

for areas which are vulnerable to targeting and intrusion. A 3D underwater sensor 

network has been designed for a tactical surveillance system [4]. It can detect and 

classify submarines, small delivery vehicles and divers based on the sensed data 

gathered from mechanical, magnetic and acoustic micro-sensors. Compared to 

conventional radar/sonar systems, underwater sensor networks provide high accuracy 

and can detect and classify low targets by combining data from various kinds of sensors. 

 Mine Exploration. The concurrent operation of several AUVs along with acoustic and 

optical sensors, operating simultaneously can perform quick assessment of environment 

and detection of mine like targets. 

 Industrial Operations. Underwater sensor networks can be used to explore oil fields 

reservoirs and other minerals under seabed. They also assist in laying cables underwater 

by determining routes.   

1.2 Medium Access Control Protocols  

MAC protocols are needed to control the access of the shared medium. In Wireless Sensor 

Networks (WSNs) [1], the MAC protocol shares the wireless broadcast medium among sensor 

nodes and creates a basic network infrastructure for them to communicate with each other. The 

MAC protocol also has a great impact on the network lifetime of WSNs as it controls the actions 

of the radio, which is the most power consuming element of resource-limited sensor nodes. In 

the underwater environment, existing terrestrial WSN MAC protocols are not suitable. In fact 

Dario Pompili et al. in [5] explain that channel access control in UW-networks presents added 

tasks owing to the narrow bandwidth, large delays in propagation, too many bit error rates, 

losses in nodes connectivity, intense multipath and fading phenomenon and channel 

asymmetry. The unique properties of the UW acoustic communication path need for new 

efficient, reliable communication protocols to meet these challenges.  

The choice of Contention-based and contention-free protocols for  underwater networks is 

driven by the constraints and requirements such as time synchronization, delay-tolerance, time 

criticality and reliability in messaging, ad-hoc network establishment, number of expected 

nodes, nature of traffic (continuous or bursty), sleep-wake schedules in sensors and mobility 

[6]. 

The energy efficiency in underwater acoustic networks is badly affected by the long 

propagation delays and data packet collisions. The large propagation delay (0.67 s/km) reduces 

the throughput of the system and increases the round trip time (RTT). Energy-efficiency in 
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underwater networks is vital as nodes are generally battery powered and it is not easy to replace 

their supply.  

Owing to the narrow bandwidth of the underwater acoustic channel, most of the existing MAC 

protocols are based on techniques such as carrier-sense multiple access (CSMA) or code 

division multiple access (CDMA). The problems of hidden and exposed terminals lower the 

performance of CSMA protocols because of the problem of connectivity among some nodes. 

Besides, the throughput of the CSMA protocol rapidly decreases with the increase in delay [7]. 

To overcome this, the MACA (Multiple Access Collision Avoidance) protocol was proposed 

by Karn [8]. MACA includes a three-way handshake involving the exchange of RTS-CTS-

DATA to establish connectivity between source-destination pairs before the transmission of 

data packets, thus avoiding collisions.  

Fullmer et al. proposed FAMA (Floor Acquisition Multiple Access), in which the carrier 

sensing feature was used. It solved the problem of the hidden terminal and identified the 

conditions required to ensure no collisions happen in the transmission of data packets [9]. 

FAMA requires long RTS and CTS packets to guarantee collision-free transmission. However, 

in the underwater acoustic channel, where transmissions are expensive, excessively large 

control packets might be too energy expensive. 

In order to reduce these high energy costs, Slotted FAMA (S-FAMA) uses time slots, in the 

same way as slotted aloha, to reduce the control packet size. The slot length is equal to the 

maximum propagation delay plus the transmission time of a CTS packet, which assures that 

only control packets may collide [10]. One major difference between these two protocols is 

that 4-way handshaking (RTS/CTS/DATA/ACK) is utilized in S-FAMA while 2-way 

handshaking (DATA/ACK) is applied in slotted ALOHA. A drawback of S-FAMA is that two 

nodes successfully exchanging RTS/CTS packets are not guaranteed to send their data without 

collision in a multi-hop environment. Due to the high propagation delay in these networks, the 

cost of losing one ACK is very high, having a significant impact on the performance. This is 

because the entire RTS/CTS and data transmission cycle repeats, when an ACK fails to reach 

the receiver. 

Shahabudeen et al. proposed a MACA based protocol called MACA-EA, which uses the basic 

model RTS/CTS/DATA-TRAIN/ACK. It uses a single ACK for a batch of DATA packets 

(DATA-TRAIN). In case of ACK loss it uses two retry processes: multi-ACK and early-ACK 

in MACA-EA. In case of S-FAMA, the RTS/CTS based contention cycle and DATA 

transmission processes are repeated in the same way in case of ACK loss as in MACA-EA. 

The key differences in S-FAMA and MACA-EA are: early-ACK and multi-ACK features are 

not present in S-FAMA. S-FAMA sends all packets including DATA only at the start of a slot 

whereas MACA–EA uses time slotting only for the RTS contention phase. It uses short DATA 

packets, which are sent as a batch acknowledged by a single ACK at the end. In case of S-

FAMA there is no restriction on the size of a DATA packet. Longer DATA transmission can 

be achieved through the use of a single long DATA packet with one ACK.  

We identified the problems in S-FAMA where improvements could be made. Influenced by 

MACA-EA research, we proposed MultiACK and EarlyACK mechanisms and mathematical 

expressions were derived for them. 

1.3  Objectives 

The objectives of this research are: 
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1. To evaluate and compare various existing MAC algorithms and protocols for underwater 

communication using wireless sensor acoustic networks. 

2. To study MAC strategies for specific UW applications, and provide analytical analysis 

where feasible.  

3. Perform simulations by varying the parameters of the performance metrics, so as to 

analyze the behavior of the proposed MAC protocol at the receiver end, for a specific 

underwater application (environmental monitoring).  

The novelty in this research is the enhancement in the performance of S-FAMA by 

incorporating the mechanisms of MultiACK and EarlyACK to improve its efficiency. Another 

contribution is the formulation of MultiACK and the EarlyACK analytical models for S-FAMA 

that helps to compute the total delay in the MultiACK and the EarlyACK retry-based protocol. 

The mechanisms improve the throughput with respect to number of nodes, transmission range 

and PER for the two mechanisms. This is the first attempt of incorporating the two mechanisms 

of MultiACK and EarlyACK in S-FAMA without violation of the S-FAMA algorithm. 

To achieve the above objectives, we selected some existing protocols and studied their key 

features, such as throughput, delay, bit error rate (BER) and energy efficiency. We used ns-3 

[83] and MATLAB [84], as the software tools for the evaluation and testing of these protocols. 

Performance has been evaluated by varying parameters such as number of nodes, transmission 

range, BER, length of data, propagation delay and energy consumed.  

1.4 Thesis Organization 

This thesis is organized in five chapters, as described below: 

Chapter 1 is the introductory chapter which illustrates the problem background, scope, and the 

wide-ranging applications for UWASNs. A brief summary of the selected MAC protocols with 

the techniques involved for the underwater acoustic networks are described. The objectives of 

the research are discussed followed by the thesis organization. 

Chapter 2 covers the review of the state of the art in underwater MAC protocols. It includes 

the environment characteristics, factors that influence acoustic communications, network 

architecture and connectivity analysis and challenges associated with network architectures 

that need to be resolved to facilitate 3D monitoring. The underwater MAC protocols of interest 

are described in detail. The quantitative analysis of these MAC protocols is also shown. The 

performance of some selected protocols is analyzed as a preliminary work with simulation 

results followed by conclusion. 

Chapter 3 focuses on the theoretical analysis of their research. The chapter covers the S-

FAMA protocol overview, S-FAMA model and the detailed analysis of the analytical 

expressions derived for S-FAMA. The problem statement is discussed. The MultiACK and 

EarlyACK models for S-FAMA are described in this section. The mathematical analysis of 

original S-FAMA and derivations of the mathematical expressions for the proposed 

mechanisms are done in this chapter. The chapter also covers details of the analyzed scenarios, 

their comparative analysis and their impact on the improvement of energy, delay and 

throughput for the MultiACK and EarlyACK mechanisms. Total transmission energy wasted 

and consumed is also analyzed.  

Chapter 4 compares the throughput achieved in S-FAMA with that of the two new variants. 

We use the mathematical expressions derived for MultiACK and EarlyACK in chapter 3, and 
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the original throughput equation for S-FAMA to obtain the results. We present the analysis as 

a function of nodes, transmission range, BER, length of data and total transmission energy 

wasted and consumed. The quantitative analysis of all these results are discussed.  

Finally, Chapter 5 summarizes the research contribution. 
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CHAPTER 2 : STATE OF THE ART 

One of the biggest challenges in underwater communication networks is the design of MAC 

(Media Access Control) protocols suitable for the harsh characteristics of the underwater 

environment, which should target high throughput, low delay in channel access, and low energy 

consumption with the guarantee of fairness to competing nodes [11].  

MAC protocols for underwater wireless sensor networks (WSNs) cannot be implemented 

directly from the existing terrestrial WSN MAC protocols [12, 13]. The unique properties of 

the underwater acoustic communication path need for new efficient, reliable communication 

protocols to meet these challenges. This is due to the large propagation delay of sound, 

extremely low point-to-point data rates and high BER. In fact, owing to the narrow bandwidth, 

connection losses, multipath, fading and channel asymmetry, channel access control in 

underwater networks requires additional tasks [5]. 

The remaining of this chapter is outlined as follows. Environment characteristics are discussed 

in Section 2.1, followed by the factors influencing acoustic communications. Underwater 

acoustic sensors networks topologies and connectivity analysis are covered in Section 2.2. 

Section 2.3 addresses current challenges while Section 2.4 covers the underwater MAC 

protocols and their comparative analysis. Performance and results of some selected protocols 

are covered in Section 2.5. Conclusion of the chapter is given in section 2.6. 

2.1 Environment Characteristics 

Compared to radio waves, sound has superior propagation characteristics in water, making it 

the preferred technology for underwater communications [14]. The speed of acoustic signals is 

slightly higher than 1500 m/s, which is 5 orders of magnitude smaller than the speed of radio 

waves. Thus, for distances of interest, packets experience large propagation delays. Also, 

current underwater modems can only provide bit rates in the order of tens of kbps in optimal 

scenarios. These factors have profound implications on ranging and time synchronization [15]. 

As described in [2], factors like path loss, noise, propagation delay etc. largely influence the 

underwater communication and constraint the acoustic channel bandwidth.  In [15], it is shown 

that sound propagation underwater is severely affected by transmission loss, noise, 

reverberation, and temporal and spatial inconsistency of the channel. Transmission loss and 

noise are the principal factors determining the available bandwidth, range, and signal-to-noise 

ratio. Time-varying multipath influences signal design and processing, which determine the 

information throughput and the communication system performance. These peculiar 

characteristics of the underwater acoustic channel require deeper understanding of the channel 

characteristics when designing protocols for underwater sensor networks. 

The classification of underwater acoustic communication links is shown in Table 2.1. These 

links are classified as very long, long, medium, short, and very short as per the range shown in 

the table along with the available bandwidths [4]. As per the direction of the soundwaves, 

acoustic links may also be classified as vertical and horizontal. In case of horizontal links, a 

horizontal transceiver is connected to the underwater sink to communicate with the sensor 
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nodes. The vertical link is used to relay data from underwater sinks to the surface sink. The 

surface sink may be equipped with an acoustic transceiver that can handle multiple parallel 

communications with the deployed underwater sinks. As mentioned in the oceanic 

literature, shallow water denotes water with depth less than 100 m, while deep water is used 

for deeper oceans. 

Table 2.1: Bandwidths for different ranges in underwater acoustic channels. [4], [16] 

Span Range [km] Bandwidth [kHz] 

Very Long 1000 < 1 

Long 10--100 2—5 

Medium 1—10 ≈ 10 

Short 0.1—1 20—50 

Very short < 0.1 >100 

 

Sound absorption loss in water increases with frequency. Therefore, in order to achieve a long 

transmission range, the UWANs usually operate in low frequencies. For example, only a few 

hundreds of kilohertz for short range, few tens of kilohertz for medium distance, and few 

hundreds of Hertz for long range [16]. The available bandwidth is extremely limited because it 

can never exceed the upper limit of the operating frequency. It is therefore difficult to achieve 

a high data rate, given that the signal quality in UWANs is also low [17]. 

Factors that degrade the performance of acoustic communication systems are discussed below 

[15]. 

 Propagation delay: Terrestrial wireless sensor networks work at radio frequencies (RF); 

while acoustic sensors work at sonar frequencies (speed of sound 1.5x 103m/s). This 

amounts to a propagation delay of 0.33µs for terrestrial, while 67ms for underwater 

nodes spacing 100m. Also, current modems used in underwater communications provide 

bit rates only in tens or hundreds. This has profound implications on ranging and time 

synchronization [18], [19]. It can produce situations in which before a node ends 

transmission of a packet, the receiver node may start the reception of the same packet. 

In addition to Trans-receive collisions at MAC layer in underwater sensor networks, 

receive-receive collisions are also possible due to time variant large propagation delays. 

The large propagation delay may break or significantly degrade the performance of 

many existing protocols. 

 Noise: A signal in ocean must be detected in background of ambient noises like seismo-

acoustic, shipping, bio-acoustic, wind and rain. A number of frequency bands in the 

spectrum can be associated with readily identifiable noise sources. Frequencies below 

1Hz are associated with noise of hydrostatic origin (tides and waves) or with seismic 

activity. For a frequency in band 1Hz -20Hz oceanic turbulence is the most likely source 

of noise in deep waters; frequencies in band 20Hz -500Hz are dominated by noise due 

to distant shipping traffic and sea surface. Higher frequencies are affected by thermal 

noise originating in the molecular motion of the sea. Underwater acoustic 

communication is in the frequency range between 200 Hz and 100 kHz. In this frequency 

range the dominant noise source is wind acting on the sea surface. Noise levels in the 

ocean have a critical effect on sonar performance. Knudsen [20] has shown a correlation 

between ambient noise and wind force or sea state. Ambient noise increases about 5dB 

as the wind strength doubles. Peak wind noise occurs around 500 Hz, and then decreases 
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about 6dB per octave. At a frequency of 10,000 Hz the ambient noise spectral density is 

expected to range between 28 dB/Hz and 50 dB/Hz relative to 1 µPascal. This suggests 

the need for wide range control of transmitter power. 

 Bandwidth The available bandwidth is severely limited [21]. For ranges of 0.1Km and 

1000 Km, bandwidths of nearly 100 KHz and 1 KHz respectively are possible. Thus, we 

expect fairly low data rates in comparison to terrestrial wireless communications. This 

warrant requirement for efficient physical layer and tradeoff in system design based on 

available power and channel bandwidth. Application-level techniques need to be 

explored to maximize the benefits of even limited communication rates. 

 Attenuation The UW channel is badly affected and signal is weakened, because of 

attenuation, absorption, multi-path and fading problems. Absorptive losses at 12.5 KHz 

are 1dB/Km, while at 70 KHz they are 20dB/Km, thus restricting the use of higher 

frequencies. Attenuation is dependent on frequency as well as distance. 

 Shadow zones and channel characteristics Sound speed underwater is varying and 

dependent on salinity, depth and temperature. High BERs and momentary disconnect 

occurs in shadow zones because of the harsh features of the UW channel.  

2.2 Underwater Acoustic Sensor Networks and Connectivity  

An Underwater Acoustic Sensor Network (UASN) consists of underwater sensor nodes which 

are connected via acoustic links to achieve collaborative tasks [22]. Underwater acoustic sensor 

network deployments may be used in applications for environmental, scientific, military, and 

commercial purposes. Several topologies are in use, but the most widely used topology is 

linear. Indeed, placing nodes on a single line offers more opportunities in terms of large 

coverage and high-rate services [23]. 

As terrestrial sensor networks, in UASNs it is essential to deliver communication coverage in 

such a way that the whole monitoring area is covered by the sensor nodes, where every sensor 

node must be able to set up paths, possibly multi-hop, in order to reach a surface sink. In three-

dimensional underwater networks, sensor nodes float at different depths in order to observe a 

given phenomenon. They can collect data and also help relay data to the sink [24]. William S. 

Burdic, in his book [25], talks about underwater acoustic systems analysis. It covers 

information on acoustic signals and how to calculate sonar systems performance. The book 

provides information on acoustic transducers, sound transmission in the ocean and effects of 

ambient noise in the ocean. 

Figure 2.1 shows an example of an UASN. It consists of multiple sensor nodes that accomplish 

collaborative monitoring in a given volume. Three sink nodes are deployed on the water 

surface, equipped with both radio-frequency and acoustic modems. The sink nodes receive 

acoustic signals from the sensors and transmit the packets to the control center ashore through 

radio-frequency signal. 
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Figure 2.1 Example of Underwater Acoustic Sensor Network with multiple nodes and three surface sinks.  

There are several different topologies for Underwater Acoustic Sensor Networks, depending 

on the application [3]: 

 Two-dimensional Underwater Acoustic Sensor Networks for ocean floor monitoring: 

These are formed by sensor nodes which are fastened to the base of the ocean, Figure 

2.2. Environmental monitoring, or monitoring of underwater plates in tectonics are some 

of the applications of these networks. 

 

Figure 2.2: Two-dimensional Underwater Sensor Networks [16] 

As explained in [3], underwater sensor (uw-sensors) nodes are attached to the floor of 

the ocean in clusters. These uw-sensors are interconnected via wireless acoustic links to 

one or more underwater sinks (uw-sinks). These uw-sinks transfer data to the surface 

station. Uw-sinks are equipped with vertical and a horizontal transceiver: i) to direct 

commands and configuration data to the sensors; ii) to gather monitored data. The 

vertical link relays data to the surface station, which is furnished with an acoustic 

transceiver. The acoustic transceiver is capable of handling multiple simultaneous 
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communications with the installed uw-sinks. Deep water applications require long 

coverage transceivers as the depth of the ocean can be as deep as 10 km. It can connect 

with the onshore sink (os-sink) and/or to a surface sink (s-sink) via long range RF and/or 

satellite transmitter. 

 Three-dimensional underwater acoustic sensor networks: In these networks, the depth 

of the sensors may be controlled [2, 3]. 3D UW networks can be applied to identify 

phenomenon which are difficult to observe by means of sensor nodes at the bottom of 

the ocean. In these networks the floating sensor nodes at different depths monitor and 

collect data for a given phenomenon. Sensor nodes could be attached to the surface buoy 

through adjustable wires, to adjust the depth of each sensor node. Multiple floating 

buoys could obstruct the ships sailing on the surface and they could be easily detected 

by the enemies and deactivated. Typical applications are surveillance and monitoring of 

oceanic phenomenon. 

 

Figure 2.3: Three-dimensional Underwater Sensor Networks [16] 

An alternative approach would be to anchor each node to the bottom of the ocean. 

Depicted in Figure 2.3, each anchor is equipped with a floating buoy and is anchored 

to the bottom of the ocean. The floating buoy is inflatable by a pump. It pushes the 

sensor towards the surface of the ocean. The sensor’s depth could be regulated by 

adjusting the wire length that connects it to the anchor and is controlled electronically 

by an engine residing on the sensor. 

For applications such as long term underwater monitoring, the sensor nodes are densely 

deployed. This is because laying cables underwater for a large area is very costly. Underwater 

wireless sensor networks solves the problem. Firstly these smart sensors are very economical, 

so a large number of them can be deployed to cover a large monitoring area with enough 

density. Second, it can be easily deployed. It does not require special planning or extensive 

cable connections. Usually the neighboring nodes are only a few tens to hundreds meters apart. 

The MAC protocol for such underwater sensor networks should be designed to resolve data 

packet collision efficiently in terms of energy consumption. As the sensor nodes are mostly 

powered by batteries, it is difficult to change or recharge these batteries in harsh underwater 

environments [26]. 
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2.3 Challenges 

Various challenges evolve and must be resolved so as to allow 3D monitoring. The challenges 

posed by the underwater channels for underwater sensor networking comprise the following 

[2], [3]: 

- Range of Sensing: Sensors must collaboratively control their depth in order to achieve 

full column coverage, consistent with their sensing ranges. Therefore, it must be doable 

to acquire sampling of the wanted phenomenon at all depths.  

- Range of Communication: In 3D underwater networks there is no notion of underwater 

sink, sensors must have the ability to convey data to the surface station by means of 

multi-hop paths. Therefore, network devices have to direct their depths in such a way 

that the network topology is always connected, i.e., at least one path should always be 

there between every sensor node and the surface station.  

In practice [23], some application scenarios involve unicast delivery within a fully connected 

zone or, equivalently, within a single collision domain. A simple example is the sensor network 

case where each node has to transfer the data it has collected to specific destination nodes. 

Other applications may bring nodes to share navigation information, command and control 

system instructions, or even predefined messages for node safety. This may require the use of 

broadcast traffic. When the extent of the area to be covered gets larger, it becomes necessary 

to use multi-hop relaying where a long distance is divided into multiple shorter hops in order 

to reach the destination node. 

The challenges faced in the design of underwater acoustic networks include: 

 Energy: In underwater acoustic networks, sensor nodes are mostly powered by batteries.  

The power of the battery is constrained and generally it is not easy to recharge them, 

since solar energy is not reachable [21]. Further, the high bit error rate and delay in 

propagation in underwater environment results in energy waste.  

 Failure: Fouling and corrosion can cause failure in UW sensors [21]. Fouling is caused 

by incrustation or deposits of undesired materials on the sensors surface and reduces its 

efficiency, while corrosion is a natural process. It causes gradual destruction of materials 

due to rusting.  

Challenges for MAC Protocols. 

The biggest challenge in the design of underwater MAC protocol is the environment in which 

they operate. Hence the following issues must be addressed in every protocol [27]:  

 Connectivity. The ability of a node to hear transmission of another node depends upon 

the transmission power used, on the distance between the two nodes and on the 

sensitivity of the receiver on the receiving node. Connectivity patterns could be single-

hop, dual hop or multihop. 

 Type of Channel. The medium through which data is transferred from its source to 

destination. Errors may occur even when single transmission is heard at a node and, the 

errors between successive transmissions are not independent. Collision is a situation in 

which, at the receiver, two or more transmissions overlap in time wholly or partially.  

 Synchronization. When users are not synchronized they can access and transmit their 

data on the channel at any time. Collisions may occur, and data has to be retransmitted. 

Slotted systems is an important class of systems in which a global clock exists and marks 

equally long intervals of time called slots. Transmission of data in such systems occurs 
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only at the slot boundaries. Synchronization of various degrees is required in slotted 

protocols. 

 Feedback. This information can be obtained either by listening to the channel or by 

acknowledgement messages from the receiving node. 

 Message size.  It is possible that a very long message may not be transmitted in a single 

transmission. Such messages are split into smaller units called packets. Packet size is 

measured by the time required to transmit the packet once the channel access has been 

granted. Packets could be of equal size or randomly varying. 

 Generation of Message. Packets may be generated by identical users according to a 

Poisson process. Analyses in the literature show non-Poisson generation processes, 

where users are not identical. For example, there may be one heavy user and many 

identical small ones. 

 Number of users. The user population could be finite or infinite. Conflict-free protocols 

fail if the user population exceeds a certain limit.  Contention based protocols are 

preferred in such cases. 

 Buffering capability. Every user is assumed to have a buffer for a single message. It can 

only generate a new message when the buffer is empty. An alternative could be more 

buffering, for both finite and infinite, at each user. 

2.4 MAC Protocols  

As in all shared-medium networks, a medium-access control (MAC) protocol is necessary to 

regulate and coordinate medium access. 

A variety of MAC protocols have been studied for underwater acoustic networks. Mandar 

Chitre, et al. [6] classifies underwater wireless sensor network (WSN) MAC protocols into: 

Contention-based (non-orthogonal) and Contention free (scheduled, orthogonal or 

deterministic) protocols. Examples of Contention based protocols include: Half duplex 

ALOHA, ALOHA with Acknowledgement (ACK) and retries, ALOHA-CS, CSMA, Medium 

Access Collision Avoidance (MACA)-based, DACAP etc. Scheduling based MAC protocols 

assign collision free links to each node in the neighborhood, usually during initialization phase. 

Links may be assigned as time slots (TDMA), frequency bands (FDMA) or spread spectrum 

codes (CDMA). Examples of Contention free protocols includes TDMA, FDMA, CDMA, 

SDMA (Space Division Multiple Access), S-TDMA, UW-MAC etc. 

Recent MAC protocols for underwater communication are mostly based on carrier-sense 

multiple access (CSMA) or code division multiple access (CDMA). In [5], Dario Pompili, et 

al. showed that CSMA based protocols are susceptible to both hidden and exposed terminal 

problems. Frequency-division multiple access (FDMA) is not appropriate for the underwater 

environment owing to the narrow bandwidths and the susceptibility of narrow band systems to 

fading and multipath. Furthermore, TDMA exhibits a limited channel exploitation efficacy in 

large-scale networks for the long time guards needed in long-haul UWA links. Moreover, the 

varying delay produced by multipath renders it very difficult to execute an exact 

synchronization through a common timing reference. 

To overcome the weaknesses of TDMA and FDMA, and to utilize system resources efficiently, 

Code Division Multiple Access (CDMA) was designed. It resolves the issue of wasting idle 

resources. The system assigns the complete available frequency spectrum to each user and 

permits the users the facility to transmit over all time [28].   
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CDMA [29] is a conflict-free multiple access technique which is favorable for forthcoming 

underwater networks. Multi-user spread-spectrum approaches comprise frequency hopped 

spread spectrum (FHSS, using FSK modulation, and lower data rates) and direct-sequence 

spread spectrum (DSSS, using PSK modulation, and higher data rates); the term CDMA usually 

refers to multi-user DSSS. Each user is allotted a different spreading code with which to 

transmit. While this decreases each user’s throughput compared with the single-user case, users 

can convey packets without colliding with transmissions from other users. This would 

efficiently solve numerous of the MAC hitches related to high propagation delay. Moreover, 

CDMA has no hard limit on the number of users, and DSSS-based CDMA can perform 

especially well in multipath environments. CDMA is more tractable in radio channels than in 

underwater acoustic channels [30]. According to [31] and [11], CDMA is a promising 

technique for the underwater environment. It is very favorable for frequency-selective fading. 

It uses Rake filters at the receiver, for compensating the effect of multipath. The receivers can 

distinguish the signals transmitted at the same time by several devices. CDMA reduces energy 

consumption and increases throughput of the network by increasing channel reuse and reducing 

retransmissions of packets 

S. Han et al. in 2013 proposed the Multi-session FAMA (M-FAMA) algorithm [32]. The 

protocol uses long propagation delay in underwater communication to transmit multiple 

packets simultaneously in the underwater channel, to improve the overall throughput. It uses a 

Bandwidth Balancing algorithm that guarantees max-min fairness across multiple contending 

sources. Simulation results show that M-FAMA significantly outperforms existing MAC 

protocols in representative streaming applications. 

In [33] a Full-Duplex Collision Avoidance, FDCA, MAC protocol is proposed. FDCA is an 

RTS/CTS-based protocol that permits multiple packets concurrently in the underwater channel, 

thus, improving the throughput. Inspired by FAMA [34], FDCA reduces collisions in the case 

of channel contention by imposing wait times on the transmissions of control packets. 

Therefore, the following two conditions are implemented for collision free transmission in 

FDCA:  

(i) RTS wait time (the time between RTS transmission and reception of CTS at the 

transmitter) should be greater than the maximum propagation delay (the time for a 

transmitted packet to reach its maximum transmission range); 

(ii) CTS wait time is equal to the RTS transmission time plus 2 times the maximum 

propagation delay. 

In FDCA, control packets are transmitted using Aloha to achieve channel reservation. If there 

are no collisions, the node can transmit the DATA packets to the destination node. The low 

throughput in underwater networks is due to the acoustic waves that cause long propagation 

delay and the acoustic modems that operate under half-duplex mode. Unfortunately, most 

MAC protocols are designed for half-duplex modems. The paper models and analyzes the 

impact of full-duplex modem characteristics on the Aloha protocol. FDCA is a handshaking 

based protocol that is designed for full-duplex modems to maximize network throughput. 

Collision avoidance schedule algorithm avoids the collisions at both the receiver and the sender 

by passively acquired local information (neighboring nodes' propagation delay and expected 

transmission schedules). Moreover, to cope with the channel's long propagation delay, it 

launches multiple simultaneous handshaking processes with neighbors to concurrently 

propagate multiple packets in the underwater channel. FDCA has been compared with state-

of-the-art underwater half-duplex protocols such as M-FAMA [32], a variation of FAMA [9] 

briefly described in section 1.2 and DOTS [35]. The throughput of FDCA is found higher than 
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M-FAMA and DOTS by 41% and 80% in the single-hop network and by 58% and 87% in the 

sea swarm network. In FDCA, nodes can initiate multiple handshaking processes with their 

neighbors achieving temporal and spatial reuse to maximize throughput. Since M-FAMA and 

DOTS are half-duplex MAC protocols, the throughput of FDCA is higher. This is because full-

duplex operation doubles the theoretical bandwidth of the connection [36]. If a link normally 

runs at 1 Mbps but can work in full-duplex mode, it really has 2 Mbps of bandwidth (1 Mbps 

in each direction). Also in full-duplex each direction has dedicated bandwidth and collisions 

cannot occur. This removes the delay and retransmissions that occur in a shared medium.  

Xueyuan Su et al. in [37] proposed a Cross-Layer MAC Protocol for Underwater Acoustic 

Sensor Networks. It communicates with a price-based rate allocation scheme at the network 

layer. Fully meshed subgraphs in the flow contention graph, called cliques are used. To 

precisely reveal the clique limitations of the wireless medium, the clique-based price is 

generalized to act as the congestion signal, which controls the end-to-end rates of multi-hop 

flows. A maximal clique is a clique that is not a subgraph of any other clique. The MAC 

protocol then schedules contention-free packet transmissions of single-hop subflows in each 

maximum clique. Both the MAC protocol and rate allocation algorithm are simple and straight, 

thus having low computational complexity. Through analysis and simulation, it is shown that 

the proposed MAC protocol enables multi-hop flows to acquire the max-min fair share of the 

network bandwidth from the end-to-end perspective. The main contributions of the research 

are: 1) end-to-end flow rate is considered, 2) in the rate allocation, clique based price is 

employed to accurately reflect the interference limited characteristic of the wireless medium, 

3) both static and dynamic flows could be easily handled, and 4) the implementation of both 

MAC protocol and rate allocation is totally distributed. 

Carrier Sense Multiple Access (CSMA) [37] is a technique in which a transmitting node 

contends with its neighboring nodes to get the channel. Prior to any transmission, it first senses 

the carrier. If it finds the carrier free, it begins with its transmission; else it will wait for some 

random amount of time before retransmission. The random time is usually determined by a 

back-off algorithm. Carrier sensing in CSMA may not prevent packet collisions, however, the 

typical situation may allow multiple packets to propagate simultaneously. CSMA consumes 

less processing resources and is suitable for event driven wireless sensor network applications. 

It is flexible to network scale and dynamics as it requires no clustering or topology information. 

In CSMA, transmission is purely handled by the sender. The problem of hidden and exposed-

terminals may occur causing high collisions as neighboring nodes compete for the channel 

simultaneously. Hidden and exposed-terminals problems arise due to lack of connectivity 

between certain nodes in adhoc networks. In a hidden terminal situation, a node cannot sense 

some of the nodes that would interfere with its transmission. In an exposed terminal situation, 

a node delays its transmission when it overhears a transmission that would not collide with it. 

CSMA performance degrades in the presence of hidden and exposed terminal problems. CSMA 

and its variants are generally being used to avoid collisions which are caused by simultaneous 

transmissions by two or more stations. CSMA is effective in networks that are fully connected 

and have smaller delay as compared to packet duration. The throughput of the protocol rapidly 

decreases with the increase in delay [38].  

The multiple access with collision avoidance (MACA) protocol [8] utilizes control packets to 

detect and avoid collisions. The control packets are request-to-send (RTS) and clear-to-send 

(CTS). If a node has packets to send, it first sends out an RTS to the destination node. On 

hearing the RTS, the destination node immediately sends a CTS back to the source node 

indicating it is ready to receive packets. After receiving the CTS, the source node starts to send 
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the data packets. Any other node hearing the CTS defers its own packets transmission until the 

current transmission completes. If a node hears an RTS but does not hear any CTS later, it will 

consider itself an exposed node, and will be free to transmit its packets. Hidden nodes will stop 

packet transmissions on hearing the CTS. Thus, the problems of hidden and exposed nodes are 

solved in MACA and the throughput increases consequently. Data collisions are minimized 

through data deferment; the data transmission length is embedded in the control packet. 

Collisions in MACA may occur due to different packet delays, e.g. when a terminal has one 

neighbor very close and the other very far or when the node is hidden.  

MACA based protocols are found to be highly suitable in many scenarios of UW where 

scalability is important and time synchronization is not available [6]. Protocol additions and 

improvements of MACA have been examined to match them better to the underwater channel. 

A WAIT command extension was investigated. If the receiver is busy it sends back a WAIT 

command and sends a CTS later ([39], [40]). Performance of protocols such as MACA can be 

greatly improved by using packet trains. By dividing the DATA segment into packets, 

RTS/CTS collisions only affects a small number of packets and do not result in complete 

retransmission of the DATA ([41], [42], [43]). 

Bharghavan et al. in [44] modified MACA by applying ARQ (Automatic Repeat Request) 

techniques for erroneous packets retransmission, which led to MACAW (MACA-Wireless). 

The overhead (RTS and CTS) itself consumes the limited channel capacity, but the reduction 

of retransmissions can more than compensate, resulting in increased throughput. However, 

when applied in UWANs, where there are large propagation delays, the handshaking of control 

packets results in substantial dead-time, consuming much of the available channel capacity. 

Moreover, collisions may be more likely to occur due to the short packet duration relative to 

the large link delay. The above mentioned outcomes in MACA and MACAW result in a low 

channel utilization [17]. 

In [35] it is shown that the long propagation delay in an underwater wireless network generates 

a unique chance for temporal reuse that allows for multiple concurrent packets propagating 

within the same contention domain. Temporal reuse allows simultaneous, non-colliding 

transmissions to different destinations if they are adequately removed from one another, 

solving the exposed terminal problem. A great deal of attention has been focused on using 

temporal and/or spatial reuse of acoustic channels to improve the throughput.  

Wen Lin et al. in [45] proposed a new MACA-based MAC protocol with delay tolerant 

(MACA-DT). In handshake techniques, when a node has transmitted an RTS packet, it waits 

for the CTS packet replied by the destination. However, since the propagation delay in 

UWASNs is very high, the typical handshaking-based approach is less efficient. MACA-DT 

protocol utilizes these large gaps, which are normally wasted by conventional MACA 

protocols. It uses adaptive silent time and simultaneous handshake technique. MACA-DT 

protocol can improve the channel utilization and alleviate the long end-to-end delay. Silent 

times are used in MACA to avoid packet collision. In traditional fixed silent time, due to long 

propagation delay the throughput is seriously restricted. MACA-DT uses the adaptive silent 

time to reduce the silent time of each ‘no intended’ receiver. In adaptive silent time the silent 

time of each ‘no intended’ node is not fixed. It is determined by the propagation delay between 

the nodes. The adaptive silent time can be classified as the silent time of ‘no intended’ receivers 

that hear an xRTS packet and the silent time of ‘no intended’ receivers that hear an xCTS 

packet.  

MACA-DT operates in two phases: initialization phase and transmission phase. In the first 

phase it estimates the propagation delay between nodes and all of their neighbors. In the second 



 

 

16 

 

phase, it uses three way handshakes similar to the MACA protocol. A node that wants to 

transmit a data packet will first use a handshake to its intended neighbor by transmitting an 

RTS packet. When an intended receiver hears the RTS packet, it will respond with a CTS 

packet immediately, provided that it is currently not involved in a handshake with another node, 

and is also not required to remain silent. MACA-DT protocol can process multiple handshakes 

while nodes wait for the CTS packet from receive nodes. 

Zhong et al. (2009) [46] proposed the UMACAW (Underwater MACAW) protocol to enhance 

throughput and decrease delay in UWANs. It tells how to make use of the rest of the time 

during the RTS-CTS-DATA-ACK exchange period. As the busy duration (the time of 

transmitting a message) of a node is considerably shorter compared to the exchange period, it 

results in severe wastage of channel resources. In UMACAW, a node first listens to the channel 

and closely observes the overheard packets, then it extracts information of both senders and 

intended receivers and the busy intervals of neighbors. When a node has a packet to send, it 

transmits immediately provided it does not interfere with the ongoing transmissions. It takes 

advantage of the long propagation delay in underwater channel. In UMACAW a node can send 

and receive messages with several neighbors in the RTS-CTS-DATA-ACK exchange period. 

No collision will take place if busy time slots coming from other nodes have no overlap. This 

also reduces the hidden and exposed terminal problems. But, clock synchronization is essential 

in this proposal as added busy duration messages are being used. This can be overcome by 

inserting guard times in busy slots. 

FAMA (Floor Acquisition Multiple Access) [47] is a reservation based MAC protocol which 

prescribes the exchange of RTS/CTS messages. In its original version, FAMA allows total 

control of the channel for one station at a time.  RTS/CTS control dialogue and carrier sensing 

eliminate collisions for data packets and substantially increase channel throughput. After data 

is successfully transmitted, it waits for a confirmation of correct reception (ACK).  In case no 

CTS is received in response to an RTS, the transmitter backs off and reschedules a later attempt. 

The protocol also includes error control over the data packet by means of stop-and-wait ARQ 

with infinite retransmissions. FAMA also assumes that, in order to save energy, nodes are deaf 

during backoff intervals and that nodes transmit RTSs without listening to the channel. 

FAMA has Carrier Sensing capability, which was disabled in MACA. Collision Avoidance is 

guaranteed if following conditions hold: 

a) RTS length should be greater than the maximum propagation delay, and  

b) CTS length should be greater than the RTS length plus twice the maximum propagation 

delay plus the hardware transmit-to receive transition time.  

These conditions are the basis of the FAMA protocol. FAMA ensures no collision in the 

channel but the length of control packets is excessive on underwater acoustic channels, and this 

leads to an unacceptable waste of energy. Hence, FAMA is not an efficient protocol for UANs. 

Slotted FAMA adds timeslots to FAMA to reduce the impact of propagation delays, Control 

packets are received by the destination node and all the terminals in the neighborhood of the 

source node within the slot time. S-FAMA uses the carrier sensing (CS) and the handshaking 

features before data transmission. In the course of the initial dialogue, control packets are 

exchanged to avert multiple transmissions simultaneously. Time slotting eliminates the 

requirement for unduly long control packets, and thus saves energy; it lowers the probability 

of collisions by aligning packet transmissions into slots.  
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S-FAMA uses packet trains to increase the efficiency of the protocol. Once the connection is 

established, a station will send all the packets in the queue to the same location. The oldest 

packet is sent first, thus lowering end-to-end delay. In each packet sent, a flag will tell the 

receiving node if the transmitter is sending more packets in the same train. The main issue in 

Slotted FAMA is that there is no constraint on the maximum DATA packet transmission time. 

This is the time that stations overhearing a CTS packet have to wait in order to avoid collisions 

with a concurrent transmission. DATA packets within a train have to be acknowledged one at 

a time. J. P. Morris in [48] recommends to change the ARQ protocol acknowledging all the 

packets at the end of the train. Then, the transmitting node would only resend the erroneous 

packets. This would increase the efficiency of the protocol. 

Zhang, S., et al. in [49], proposed Slotted Floor Acquisition Multiple Access-Delay Tolerant 

(SFAMA-DT) MAC protocol based on S-FAMA, with data train. SFAMA-DT adapts the 

original S-FAMA for use in high traffic networks. It introduces RTS/CTS sorting scheme to 

set multiple handshakes simultaneously and then form a train of data packets of multiple 

transmission pairs during each round of simultaneous handshakes. Its main contribution is that 

it overcomes the multiple RTS attempts problem in S-FAMA and increases the network 

throughput by transmitting a train of data packets.  

Slotted-FAMA is not preferred for dense networks since the multiple RTS attempts problem in 

dense networks is serious and substantially limits the network throughput. To overcome this 

problem, Liang-fang QIAN et al. in [50] proposed a slotted-FAMA based MAC protocol for 

underwater acoustic networks, referred to as RC-SFAMA, introducing an RTS competition 

mechanism to keep the network from excessive frequency of backoff because of the multiple 

RTS attempts. Thus, useful data transmission can be completed effectively 

whilst the scenario of a couple of RTS attempts takes place. Simulation results display that 

RC-SFAMA increases the network throughput performance compared to Slotted-FAMA, and 

minimizes the energy consumption. 

In [51], performance of three MAC protocols, namely, random access based UW-Aloha, 

handshaking based SASHA, and scheduling based pipelined transmission MAC (PTMAC), 

have been compared in the real sea environment of Atlantic Ocean with nine nodes connected 

in a multi-hop string network. The three protocols were tested at both packet and node behavior 

levels. Their end to end throughput, delay, and packet delivery ratio were analyzed. From their 

real sea environment experiments they revealed the high packet loss rate and significant 

channel asymmetry, temporal and spatial transmission range uncertainty and delayed data 

transmissions effects on performance of MAC. 

Nils Morozs et al. investigated the application of underwater acoustic sensor networks for large 

scale monitoring of the ocean. They proposed two Medium Access Control protocols, namely 

Transmit Delay Allocation MAC (TDA-MAC) and Accelerated TDA-MAC. They are capable 

of providing Time Division Multiple Access (TDMA) to sensor nodes without the need for 

centralized clock synchronization. A thorough simulation study of a network deployed on the 

sea bed showed that the proposed protocols are capable of closely matching the throughput and 

packet delay performance of ideal synchronized TDMA. The TDA-MAC protocols also 

significantly outperform T-Lohi, a classical contention-based MAC protocol for underwater 

acoustic networks, in terms of network throughput and, in many cases, end-to-end packet delay. 

Furthermore, the assumption of no clock synchronization among different devices in the 

network is a major advantage of TDA-MAC over other TDMA-based MAC protocols in the 

literature. Therefore, it is a feasible networking solution for real-world underwater sensor 

network deployments [52].  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nils%20Morozs.QT.&newsearch=true
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In [53] a protocol named DN-MAC for the dynamic UASN is proposed to overcome the 

problem of low channel efficiency in case of classical TDMA in underwater acoustic sensor 

networks. A new guard time setting method is presented in this paper. It uses some prior 

information, such as the maximum propagation delay in the network and the maximum relative 

speed of the sensor nodes with respect to the center node and the mechanism of the packet 

transmission for the sensor nodes. By using the maximum propagation distance and the 

maximum relative velocity with respect to the center node, the recommended guard time can 

be set in the initialization period and the data transmission period to avoid collisions. Analysis 

and simulations show that the proposed method can reduce the time interval of the data packets 

received at the center node, which can improve the channel efficiency and the performance of 

the dynamic UASN effectively. 

Distance Aware-Collision Avoidance protocol (DACAP) [54] is based on MACA. Nodes do 

not need to be synchronized, can move, are half-duplex, and use the same transmission power. 

DACAP focuses on minimizing the duration of time slots that differ from each other, and 

minimizes the duration of a hand-shake by taking advantage of the receiver’s tolerance to 

interference when the two nodes are closer than the maximal transmission range. This protocol 

achieves a throughput several times higher than that of the Slotted FAMA, while offering 

similar savings in energy. 

UWAN-MAC in [55 is an Energy-Efficient MAC Protocol that can be used for delay-tolerant 

applications such as underwater environmental monitoring. Energy is the main performance 

metric rather than bandwidth utilization. Authors show that under a realistic underwater sensor 

network scenario, this MAC protocol wastes only 4% of the transmit energy and only 1.5% of 

the energy due to collisions, when the average number of neighbors is four, and the duty cycle 

is 0.004 %.  

In [56] L. T. Tracy and S. Roy, proposed Reservation Channel Acoustic Media Access Protocol 

(RCAMAC), which uses channel reservation scheme and is based on the RTS/CTS 

handshaking method. RCAMAC is quite suitable for UWASNs as it uses a channel reservation 

scheme. It segments the available bandwidth into control channel and main channel, so that, if 

there is data to send, it reserves channel time by first transmitting RTS packets in a control 

channel. It can help to minimize the probability of data packet collisions. 

ALOHA does not check the channel state before packet transmissions. Collisions occur when 

two packets arrive at one node concurrently. This leads to packet loss and significantly reduces 

the throughput. Therefore, ALOHA does not work well in busy traffic networks. The maximum 

throughput of ALOHA is only 18.4% i.e., 81.6% of frames end up in collisions and are 

therefore lost. The peak throughput is achieved when the offered load is G=0.5 packets per 

packet transmission time or 50 percent of normalized offered load to the channel [17]. 

L. G. Roberts in [57] gave the idea of slotting the time to increase the capacity. The duration 

of the time slot was equal to the packet transmission time. The packets were transmitted at the 

beginning of the time slot. Slotted ALOHA has approximately the same performance as pure 

ALOHA, but with more complicated implementation requirements [58]. 

In [59], Aloha with half duplex (Aloha-hd) improves throughput and energy waste when the 

node receives packets destined for itself, else it behaves like pure Aloha. Maximum throughput 

is around 25%, which is better than the throughput of 18.4%. In Aloha with carrier sense, the 

busy period information and the propagation delay is estimated from the information received 

from the overheads of packets. The nodes then compute the time for transmission to prevent 

collisions. ALOHA with collision avoidance (Aloha-CA) outperforms ALOHA with Carrier 
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Sense (ALOHA-CS) for different packet sizes. It has better stability than ALOHA-CS at high 

loads as its throughput does not fall as steeply when the load increases. Aloha with advance 

notification (Aloha-AN) is an enhanced form of Aloha-CS; it conveys a notification (NTF) 

packet prior to sending the data packet. Other nodes are then aware of the arrival of the data 

packet. 

Yen-Da Chen et al. in [60], proposed a two-level power control (TLPC) MAC protocol for 

collision avoidance in underwater acoustic networks. Although IEEE 802.11 DCF is the most 

famous MAC protocol, it does not work well in underwater environments. TLPC prevents 

Control/DATA Collision (CDC) and Underwater Large Interference Range Collision (ULIRC) 

problems. Taking interference into consideration, TLPC adapts the transmission power to resist 

interference and avoid collisions in order to enhance network throughput. TLPC can not only 

prevent CDC and ULIRC problems but can also reduce the energy consumption of stations. 

Chaima Zidi et al. in [61], proposed a multichannel MAC protocol, MC-UWMAC, a low power 

MAC protocol operating on multichannel using a single slotted control channel and multiple 

data channels. To guarantee a collision free communication, MC-UWMAC uses a virtual grid 

based slot assignment linked with a quorum based data channel allocation. Specifically, control 

channel slots are dedicated for handshaking. Data transmission takes place in a unique data 

channel especially reserved for each communicating pair. Simulation results show that MC-

UWMAC can greatly improve the network performance especially in terms of energy 

consumption, packet delivery ratio and end-to-end delay. 

UW-MAC, is a CDMA based, power controlled MAC protocol. It is suitable for deep water 

communications which typically are invulnerable to multipath. UW-MAC targets at attaining 

three goals, namely, to ensure high network throughput, low channel access delay, and low 

energy consumption [62], [5]. Throughput Adaptive adjustable and energy-efficient CDMA-

based MAC protocol (TAEE-CDMA) focus on the energy efficiency and suppress the MAI 

problem. Lagrange multiplier method is used to make the node run with minimum energy 

consumption. The protocol performance is good in decreasing energy consumption and 

prolonging the network lifetime. It is energy-efficient, real-time and has high reliability  [62]. 

Delay-aware Opportunistic Transmission Scheduling (DOTS) protocol, proposed by Y. Noh et 

al., exploits passively obtained local information (i.e., neighboring nodes’ propagation delay 

map and their expected transmission schedules) to escalate the chances of simultaneous 

transmissions while dropping the probability of collisions. DOTS imparts fair medium access 

even with node mobility and measures throughput and energy consumption per node as a 

function of the offered load on the sensor network. However, it lacks the support for multiple 

sessions from the sender, and the channel reuse in DOTS is limited to the receiver side. DOTS 

consumes more energy than S–FAMA & DACAP, because it delivers by far more frames than 

these two protocols [35, 63]. 

MDOTS, enables multiple transmission sessions in DOTS. Here, the term session refers to 

opening, closing, and managing a communications dialogue between end-user application 

processes (i.e., a sequence of RTS-CTS-DATA-ACK packet exchanges between a sender and 

its intended receiver) [35]. 

TDMA-based MAC protocols have also been designed for efficient data transmission. Each of 

them has its own advantages and disadvantages. Overall, they minimize data collision, help to 

decrease energy consumption, and increase transmission efficiency. Their major disadvantage 

is that it is difficult to use them for real-time data communication. In Time Division Multiple 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yen-Da%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chaima%20Zidi.QT.&newsearch=true
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Access (TDMA) schemes [31], a node can only access its allocated time slot and does not need 

any contention with its neighbors. TDMA minimizes collisions but the average queuing delay 

is much higher, as a node has to wait for its allocated time slot before accessing the channel.  

The Acoustic Communication network for Monitoring of Environment in coastal area 

Networks (ACMENet) protocol in [64] employs a time division multiple access (TDMA)-

based master-slave network protocol for small networks. Due to the limited battery power of 

its slave nodes, it is important to minimize their energy consumption of the slave nodes. Slave 

nodes have a simple design, but the master node is complex. If the master node migrates into 

large-scale networks, it can face increased collision problems during communication 

Super-TDMA MAC protocol, exploits the use of large propagation delays to maximize the 

network throughput. It is a form of Time Division Multiple Access (TDMA) protocol in which 

multiple transmissions are allowed in the same time slot and hence concurrently propagate in 

the medium. Super-TDMA needs frequent switching of transmission and reception modes in 

the modem. If the underwater acoustic modems are equipped with hardware and software 

capabilities to achieve better switching times allowing lesser guard periods, the concept of 

Super-TDMA can prove to be very useful for consideration in future MAC protocols exploiting 

large propagation delays for UWA networks [65].  

Preamble-MAC (P-MAC), [66], is another cluster-head-based MAC protocol. It is a hybrid 

protocol and employs contention free protocol and slotted MACA. The sink node functions as 

the cluster head, whereas the sensor nodes send periodically collected data to the sink node. 

This protocol was developed for implementing an underwater environment data collection 

system for improving the network throughput by using a dynamic algorithm. It works 

adaptively and dynamically.  

In [67] an Adaptive Propagation-delay-tolerant Collision Avoidance Protocol (APCAP) was 

proposed. Besides the requirement of RTS and CTS frames, the protocol allows the 

transmitting node to perform other actions in the period waiting for the CTS. This improves 

efficiency and throughput when there is a large propagation delay. The mechanism guarantees 

nodes that can potentially interfere with a forthcoming transmission are properly informed.  

Another TDMA-based protocol called the Smart Blocking MAC (SBMAC) protocol [68] has 

been proposed. It works efficiently on network topologies consisting of master and slave nodes. 

The main contribution by the authors of the SBMAC protocol is the Smart Calculation Block, 

which is implemented in the master nodes and determines the policies followed by all the slave 

nodes. The policies include decisions associated with the transmission period, the data 

transmission policy (i.e. normal or blocked data), the Acknowledgement (ACK) policy (i.e. 

No-ACK, Selective-Multiple-ACK, Reduced-Whole-ACK, Multiple-Block-ACK, or 

Reduced-Block-ACK), etc., The master node broadcasts a beacon message containing the 

transmission mode, ACK mode, TDMA interval information, gain, and guard time. The main 

mechanism of this protocol minimizes the transmission amount by calculating control frames 

for different kinds of transmission methods. 

Miguel-Angel Luque-Nieto, et al. in [69] use Spatial-TDMA(S-TDMA) for fixed networks. In 

this paper, a scheduling procedure to obtain the optimal fair frame is presented, under ideal 

conditions of synchronization and transmission errors. The main objective is to find the 

theoretical maximum throughput by overlapping the transmissions of the nodes while keeping 

a balanced received data rate from each sensor, regardless of its location in the network. The 

procedure searches for all cliques of the compatibility matrix of the network graph and solves 

a Multiple-Vector Bin Packing (MVBP) problem. This work addresses the optimization 

https://www.hindawi.com/76250319/
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problem and provides analytical and numerical results for both the minimum frame length and 

the maximum achievable throughput. 

In [70], Xiaoning Feng et al. proposed a ‘Distributed Receiver-oriented Adaptive Multichannel 

MAC’ (DRAMAC) protocol. DRAMAC is based on single transceiver in long-delay UWSNs, 

to reduce the hardware cost. DRAMAC dynamically selects the channel negotiation strategy 

according to the packet length and the receivers’ network load condition. Using the neighbors’ 

cooperation information it can detect collisions. DRAMAC achieves a lower delay by using as 

few communication times as possible during the channel negotiation phase. DRAMAC can 

significantly improve the network throughput. 

Chao Li et al. in [71] proposed a novel distributed delay tolerant MAC protocol (DTMAC) 

inspired by the coupon collector’s problem. If a node needs to send a packet, the packet will be 

repeatedly transmitted m times, with a transmission probability to be p. Under the traditional 

protocol interference model, we first set up a probability model for throughput of DTMAC, 

and then give the throughput-optimal value for m and p with the successful transmission 

probability as tuning parameter. As no acknowledgement or channel reservation is used, the 

throughput of DTMAC is not influenced by propagation delay. In addition, the space unfairness 

problem no longer exists since DTMAC is not concerned with transmission distance. The 

simulation results show that the throughput of DTMAC greatly outperforms that of MAC 

protocols with RTS/CTS scheme in most underwater scenarios.  

Clustering is an effective and practical way to enhance the performance of UWSNs. In this 

paper, Ming Xu et al. proposed a secure MAC protocol for cluster-based UWSNs, called 

SC-MAC, which aims to ensure the security of data transmission. In SC-MAC, the clusters are 

formed and updated dynamically. MAC layer information is leveraged by considering the link 

quality as well as the residual energy of the modem's battery. After the successful mutual 

authentication, all sensor nodes from different clusters can protect the data transmission in the 

continuous communication [72].  

2.4.1 Performance Overview of MAC Techniques 

An analysis of the performance of state of the art adhoc-based/Cluster-head-based MAC 

protocols has been compiled in this section. 

The Cluster-head-based MAC protocols such as ACMENet, TDMA, P-MAC and SBMAC and 

Adhoc-based MAC protocols, which includes ALOHA, S-FAMA, RCAMAC, DACAP, 

UWAN-MAC, were analyzed and compared for throughput performance, bandwidth, 

probability of error, energy consumption, offered load and fairness in [73]. The throughput 

performance of cluster-head-based MAC protocols showed that P-MAC has high level of 

throughput (0. 285), whereas SB-MAC is 0.275, TDMA is 0.24, and ACMENet is 0.23. 

The throughput analysis of Adhoc-based MAC protocols shows that pure Aloha has the lowest 

throughput (0.45) compared to the throughputs of other protocols. This is due to the frequent 

collisions and retransmissions that take place as the number of nodes increases. Throughput of 

S-FAMA was found to be the highest (0.63), RCAMAC (0.6) is slightly less than S-FAMA. 

DACAP has throughput less (0.53) than S-FAMA and RCAMAC while UWAN-MAC’s 

throughput is 0.46 [73]. Performance analysis of some Adhoc based and Cluster head based 

MAC protocols is presented in Tables 2.2 and 2.3.  
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It was analyzed that ACMENet has almost 0.35 packet collision probability and low collision 

avoidance (0.65), while TDMA shows a collision probability of 0.32; P-MAC has high level 

(0.725) of collision avoidance,  and SBMAC has a packet collision probability of  0.287. 

The packet collision probability of pure Aloha was higher (0.7) than that of other Adhoc-based 

MAC protocols, hence ALOHA has lowest (0.3) collision avoidance; S-FAMA has the lowest 

(0.14) collision probability, hence high (0.86) collision avoidance; DACAP has medium (0.44) 

collision probability hence collision avoidance of (0.56); RCAMAC has low collision 

probability of 0.25, hence high collision avoidance of 0.75. UWAN-MAC has medium (0.39) 

collision probability and medium (0.61) collision avoidance [73]. 

The received energy consumed by a receiver for the failed deliveries due to collisions was 

analyzed. The fraction of received energy wasted is at most equal to the fraction of transmission 

energy wasted. It was noted that for the special case in which all the packets have the same 

duration, this fraction of received energy wasted due to collisions reduces to the collision rate 

[65]. The transmission energy wasted due to collision in pure Aloha was higher than that of 

other ad-hoc-based MAC protocols [73].  

Throughput as a function of offered load for DOTS and three CSMA protocols namely S-

FAMA, DACAP, CS-ALOHA with ACK protocols’ performance was evaluated. The results 

showed that DOTS outperforms S-FAMA and CS ALOHA by two times and DACAP by 70% 

[35]. 

The quantitative analysis of ad-hoc–based (ALOHA, S-FAMA, RCAMAC, DACAP, 

UWAN-MAC), and Cluster-head–based (ACMENet, TDMA, P-MAC and SBMAC) was 

carried out using Cluster-head-based and ad-hoc-based MAC topologies as shown in Figure 

2.4 (a) & (b).  

 

Figure 2.4: (a) Cluster-head–based and (b) ad-hoc–based MAC topologies [73].Source: 

https://www.tandfonline.com/action/showCitFormats?doi=10.4103%2F0256-4602.123119 

The parameters used to analyze performance of ALOHA, S-FAMA, RCAMAC, DACAP, 

UWAN-MAC are shown in Table 2.2 [73]. 

Table 2.2: Parameters used in the quantitative analysis. 

Parameters Values 

Network Area   500 m × 500 m 

Data rate 1 kbps 

Data transmission duration 200ms 

Control packet transmit duration < 80ms 
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Acoustic speed 1500m/s 

Number of nodes   1-100 

Transmit power < 100W 

 

The topologies used in [35] by Youngtae Noh et al. to analyze and compare DOTS and three 

CSMA protocols, S-FAMA, DACAP, CS-ALOHA with the performance of ACK protocols 

are shown in Figure 2.5 and Figure 2.6. 

  

Figure 2.5. Line Topology [35] Source: https://goo.gl/images/Xg2CFt 

 

 

Figure 2.6.  Star Topology [35] Source: https://goo.gl/images/Xg2CFt 

Line (4-nodes) topology and star (four nodes and one sink) topology, in a 3D region of 5km x 

5km x 5km were used. Simulation duration was kept at one hour per run. Data frames of size 

512 bytes were transmitted and the transmission range was 750m. As indicated previously, 

their results showed that DOTS outperforms S-FAMA and CS ALOHA by two times and 

DACAP by 70% [35].  

The summary of the quantitative analysis of Medium Access Control techniques is shown in 

Table 2.3 and Table 2.4. It indicates the name, topology, internodal distance, collision 

probability, energy consumption throughput, propagation delay, and fairness parameters for 

MAC protocols. For cells where data is not available (NA) is used. 

Table 2.3: Quantitative Analysis of MAC Protocols 

Protocol Topology Inter-

Node 

Distance 

Collision 

Avoidance 

Energy 

Consum-

ption 

Throu- 

ghput 

Delay Real 

time 

Performance 

 metrics 

Pure 

ALOHA  

Adhoc-

based 

2-D 

(300m x 

300m) 

1341 m 0.3 12000W 0.45 NA Yes Throughput 

ALOHA-

HD 

Adhoc-

based 

2-D (3km 

x 3km) 

1341 m NA NA 0. 25 NA Yes NA 

https://goo.gl/images/Xg2CFt
https://goo.gl/images/Xg2CFt
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CS-

ALOHA 

 

3-D (5km 

x 5km x 

5km) 

Line & 

Star 

Line: 

750m to 

1.5km 

Star: 

750m to 

1.5 km 

NA High 

12000W 

0.425 

(line) 

0.002 

(Star) 

 

2.07s 

(Line) 

& 

3.86s 

(Star) 

 

Yes Throughput 

ALOHA-

CA  

Adhoc-

based 

2-D (3km 

x 3km) 

1341 m NA NA 0.45 NA Yes Throughput 

ALOHA-

AN  

Adhoc-

based 

2-D (3km 

x 3km) 

1341 m 0.6 NA 0.59 NA Yes Throughput 

S-FAMA  3-D (5km 

x 5km x 

5km) 

Line & 

Star 

Line: 

750m to 

1.5km 

Star: 

750m to 

1.5 km 

0.86 2900W in 

Line & 

5000mWhr 

in Star 

0.63 

  

0.04 

Min 

5.05s. 

(Line) 

Ave. 

20.93 

(Star) 

No Throughput 

& delay 

DACAP 

 

3-D (5km 

x 5km x 

5km) 

Line  

&  

Star 

Line: 

750m to 

1.5km 

Star: 

750m to 

1.5 km 

0.56 3800W in 

Line & 

6000mWhr 

In Star 

topology 

0.53 

0.046 

 

Min 

4.06s 

(Line) 

Ave 

16.23s 

(Star) 

No Energy 

DOTS  3-D (5km 

x 5km x 

5km) 

Line  

& 

 Star 

Line: 

750m to 

1.5km 

Star: 

750m to 

1.5 km 

NA 9000mWhr 

(Higher 

than 

SFAMA & 

DACAP in 

Star 

topology) 

0.08 

 

Min. 

4.16s 

(Line) 

Ave 

8.86s 

(Star) 

No Throughput 

& fairness 

RCAMAC Adhoc-

based 

2-D 

(500m x 

500m) 

NA 0.75 3000W 0.6 NA Yes Channel 

Utilization 

UWAN-

MAC 

Adhoc-

based 

2-D  

(500m x 

500m) 

100m 0.61 4400W 0.46 0.2s Yes Energy  

MACA-

EA  

Sea Trial Max.  

400-

500m 

Min. 

200m 

NA NA 0.25 0.4s NA Throughput 

MACA 

WAIT  

Sea Trial Max.  

400-

500m 

Min. 

200m 

NA NA NA 0.5s NA Throughput 

& Energy  

MACAW NA NA NA NA NA NA NA Throughput 

  

 



 

 

25 

 

 

 

Table 2.4: Quantitative Analysis of Cluster-Head-Based MAC Protocols 

Protocol Topology Inter-

Node 

Distance 

Collision 

Avoidan

ce 

Energy 

Consum-

ption 

Throu

-ghput 

Delay Real 

time 

data 

comm

unicat

ion 

Performan

ce metrics 

 

ACMEN

et  

Cluster-

head-based 

(500mx 

500m) 

NA 0.65 5500W 0.240 NA No Throughput 

& Collision 

avoidance 

TDMA 

based 

MAC in 

UWN 

Cluster-

head-based 

(500mx 

500m) 

NA 0.68 4800W 0.245 NA No Delay & 

Throughput 

 

P-MAC 

Cluster-

head-based 

(500mx500

m) 

 

 

NA 0.725 4250W 0.277 NA No Throughput

; delay; 

energy 

consumptio

n 

 

SBMAC 

Cluster-

head-based 

(500mx500

m) 

NA 0.713 4000W 0.275 NA No Throughput 

 

UW-

MAC 

CDMA-

based 

protocol 

 

3-D 

shallow 

water 

(500x 500 

x 50) m3 

NA NA 15µJ/bit 0.8 1.5s No Energy 

TAEE-

CDMA 

(300x300x

20)m3 

NA NA 0.5J/pkt at 

1.2pkt/sec 

arrival 

rate 

NA 5.1s at 

1.2pkt/sec 

arrival rate 

Yes Energy 

 

2.5 Analytical Study 

The throughput is an important parameter for measuring the performance for reliable data 

transfer. Some papers term it as “Saturation Throughput,” that is the network throughput when 

at all times it has data to transport [74]. This measure also determines the utilization of the 

channel or efficiency. The normalized throughput is defined as the number of successfully 

transmitted packets per unit of time normalized by the system capacity [75]. 

In this section the performance of existing MAC protocols, namely: ALOHA, CSMA, MACA, 

MACA-EA, S-FAMA is shown. Poisson arrivals have been considered for the offered traffic 

[69], [75] & [42]. 
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The throughput (S) of Pure ALOHA is given by (2.1), and its maximum is 18.4%, which occurs 

at an offered load of 50% the maximum capacity [27]. 

𝐒 = 𝐆𝐞−𝟐𝐆 (2.1) 

Where S is the throughput, G is the normalized offered load, If T is the packet length, the 

vulnerable time is 2*T and G=g*T is the normalized offered load, being g the offered load. The 

maximum throughput is 1/(2e) frames per frame-time. 

The throughput of Slotted ALOHA [53] is 36.8%, as collisions of packets are reduced. But if 

there is a delay in propagation, its performance degrades to pure ALOHA. The throughput is 

given by (2.2) [70]: 

𝐒 = 𝐆𝐞−𝐆 (2.2) 

The throughput of the CSMA (SCSMA) is expressed by (2.3): 

𝐒𝐂𝐒𝐌𝐀 =  
𝐆𝐞−𝐆𝐚

𝐆(𝟏 + 𝟐𝐚) +  𝒆−𝐆𝐚
 (2.3) 

The parameters shown in (2.3) present normalized quantities with respect to the packet 

transmission time. The offered traffic is assumed Poisson, with average value ‘G’ measured in 

packets per packet transmission time. It consists of both the arrival of new packets and 

rescheduled packets resulting from collisions and deferred transmission. The ratio of 

propagation delay to packet transmission time is denoted by 𝑎 ≥ 1. Where ‘a’ is the normalized 

propagation delay (‘normalized’ means expressing the propagation delay in unit of the length 

of data packet). Packet transmission time ‘T’ is chosen as 1 [76].  

The throughput for MACA is given by (2.4) [76]: 

𝐒 =  
𝐔̅

𝐁̅ +  𝐈̅
 (2.4) 

where S is the throughput per node,  𝑈̅ is the average useful data transmission time, 𝐵̅ is the 

average busy time and 𝐼 ̅is the average idle time. Table 2.5 shows the MACA parameters. The 

throughput of MACA for the upper bound and lower bound are expressed by (2.5) and (2.6) 

respectively [21]: 

The upper bound throughput   𝑆𝑎>𝑋
𝑈 : 

𝐒𝐚>𝐗
𝐔 =

𝐞−𝐆𝐱(𝟏 − 𝐞−𝐆(𝐚−𝐱))𝐞−𝐆𝐱 + 𝐞−𝐆(𝐚+𝐱)

(𝐁̅𝟏𝐦𝐢𝐧 +  𝐁̅𝟐 + 𝐁̅𝟑+𝐁̅𝟒𝐦𝐢𝐧 +  𝐁̅𝟓) +  
𝟏
𝐆

 
  

(2.5) 

 

The lower bound throughput   𝑆𝑎>𝑋
𝐿 : 

𝐒𝐚>𝐗
𝐋 =

𝐞−𝐆(𝐚+𝐱)

(𝐁̅𝟏𝐦𝐚𝐱 +  𝐁̅𝟐 + 𝐁̅𝟑+𝐁̅𝟒𝐦𝐚𝐱 +  𝐁̅𝟓) +  
𝟏
𝐆

 
  

(2.6) 
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Table 2.5. MACA Parameters. 

Parameter Value 

B̅i Busy period of case ‘i’ 

B̅1 Case when second RTS is transmitted in the time 

period [0, x] 

B̅2 RTS including the second RTS are transmitted only 

in the time period (x, a] 

B̅3 RTSs including the second RTS are transmitted only 

in the time period (a, a+x] 

B̅4 Case when RTS and second RTS is transmitted in the 

time period (x, a] and a number of RTS are 

transmitted in the time period (a, a+x] 

B̅5 no RTS is transmitted in the time period [0, a+x] 

 

Matsuno et al. have shown that the lower bounds become higher nearly upto the upper bounds 

for both x=0.05 and x=0.005, where x represents the RTS recognition time, which is the time 

required for network node controller (NNC) to recognize an RTS packet. G is the offered traffic 

and ‘a’ is the normalized packet delay. For high traffic, when x is small (x=0.005), the 

throughput of MACA is high, whereas it decreases for large RTS recognition times (when x = 

0.05). The reason is that the chances of data packet transmission failure become higher as the 

RTS recognition times grows. 

Observations suggest that CSMA throughput is higher than that of MACA in the traffic below 

nearly 3, but the situation gets reversed for the traffic above 3. The authors show that MACA 

is not always more effective than CSMA for large RTS recognition time [76]. 

In MACA-EA, LD is the data packet length and ‘1/LD’ is the system capacity. 𝐵 packets are 

sent as a batch in time sb and only kD packets succeed on an average, due to decoding and 

detection losses. Thus, the normalized throughput 𝑇 per node for MACA-EA is expressed as 

shown in (2.7) [75]. 

𝐓 =

𝐤𝐃𝐁
𝐬𝐛

(
𝟏

𝐋𝐃
)

 (2.7) 

where kD represents the overall data packet success probability and sb is the mean batch service 

time. The mean batch service time is defined as the average delay from the time a batch is 

intended for transmission (RTS Contention starts) until it is successfully transmitted. B is the 

batch size. From (2.7) it can be seen that the larger the batch size, the better the throughput. 

The MACA–EA protocol can achieve good throughput for saturated load [75].  

Contention Window is a type of network protocol that permits nodes to contend 

for network access. That is, two or more nodes may try to send messages across the network 

simultaneously. All nodes choose a random back off interval between zero and CW and wait 

for the chosen number of slot times before trying to access the channel. Initially, CW is set to 

CWMin (minimum contention window size). When there is a collision, the contention window 

size is doubled, until a maximum value: CWMax. This technique of randomization and scaling 

the contention window size is used to reduce collisions.  
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A preliminary analysis of UAN Contention Window (UAN-CW-MAC) was performed using 

network simulator ns-3. Throughput curves were obtained for UAN-CW-MAC with 20 nodes 

and one surface sink (see Figure 2.7). The parameters shown in Table 2.6 were used in the 

analysis. 

 

Figure 2.7:  UAN-CW-MAC Throughput (pkts/sec) for 20 nodes. 

Table 2.6: The parameters used to analyze the performance UAN-CW-MAC 

Parameters Values 
Data rate  80Hz 

Depth  70 m 

Boundary  1000 m 

Packet Size  32 Bytes 

CWmin (Min. CW) 10 

CWmax (Max. CW) 400 

CW-Step  10 

Position of sink:  250:250:70 

Mean range from gateway:  166.966     

Min. range  72.406 

 

The nodes were deployed randomly (according to RNG seed) in a finite square region with the 

X and Y coordinates of the nodes distributed uniformly. The CW parameter is varied 

throughout the simulation in order to show the variation in throughput with respect to changes 

in CW. As the CW-size increases, the average throughput increases up to a maximum at 

CW=160, where the average throughput for three runs is 48.896 Packets per second (pkts/sec). 

The throughput is found to slightly decrease for higher values. As the CW increases more nodes 

try to compete to acquire the channel, resulting in collisions. 

The equations for S-FAMA are discussed in chapter 3. 

2.6 Conclusion 

In chapter 2, we have described the state of the art on underwater MAC protocols. The chapter 

covers the environment characteristics and factors that influence acoustic communications. 

State of the art MAC protocols are described. Performance of some selected ad-hoc based and 

cluster-head based MAC protocols for underwater acoustic networks have been presented, with 

quantitative analysis of various parameters like throughput, delay and energy consumption etc. 
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Throughput equations for some selected protocols have been discussed. Simulation results 

obtained from ns-3 have also been covered. 
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CHAPTER 3 : THEORETICAL ANALYSIS   

In this chapter we present the performance analysis of S-FAMA based on its analytical 

expressions, identify problems and propose solutions to improve the performance of the 

protocol. We derive the mathematical expressions for the proposed solutions. MultiACK and 

EarlyACK mechanisms [75] have been studied for S-FAMA and their throughput 

improvement, without violating the conditions defined for S-FAMA, has been analyzed. The 

comparison between algorithms has been carried out using parameters such as achieved 

throughput, delay, error rate, transmission efficiency, etc. With this analysis it was possible to 

recommend appropriate mechanisms or propose some improvements.  

In FAMA, to guarantee collision avoidance, RTS length should be greater than the maximum 

propagation delay and CTS length should be greater than RTS length plus twice the maximum 

propagation delay plus the hardware transmit-to-receive transition time. Although FAMA 

increases the life-time of the RTS and CTS packets to prevent collisions with DATA packets, 

the efficiency of FAMA protocol is impacted heavily by propagation delays, due to the multi-

way handshakes [29]. FAMA in its original form is not suitable for underwater networks but 

with enhancements such as slotting, it can be used in underwater effectively. 

S-FAMA, a variant of FAMA, was introduced to overcome the problems of MACA and 

FAMA. It was designed to save energy by introducing time-slotting. In underwater 

communications, energy saving is vital as sensors are powered by batteries which cannot be 

recharged easily. In S-FAMA, in case of an ACK loss, the cost of retransmitting the entire 

RTS/CTS and DATA transmission cycle is very high. The motivation behind this research was 

to prevent the possibility of losing an ACK, which would save the energy wasted in the 

repetition of the whole cycle and improve the performance of S-FAMA. This could be achieved 

by minimizing the probability of losing an ACK and improving the efficiency of S-FAMA.  

Unlike typical slotted MAC protocols, S-FAMA can take advantage of the control messages 

overheard by making the slot length much longer than the control message length, rather than 

designing the control message with large duration [77]. 

We identified problems in S-FAMA (i) with regards to ACK, (ii) with regards to 

retransmissions to handle failed DATA packets. The idea of adding the two features to the S-

FAMA was influenced by [75]. 

3.1 Protocol Overview 

S-FAMA is based on random access. It regulates transmissions by 4-way handshaking, and 

imposes restrictions on the packet sending times. Each packet (RTS, CTS, DATA or ACK) has 

to be transmitted at the beginning of one slot, shown in Figure 3.1.  It exchanges control packets 

during the initial dialogue, between the source node and the destination node to prevent several 

transmissions at the same time [42].  

The slot length is determined to ensure absence of data packet collisions. This is achieved with 

a slot length of TCTS+D̃, where TCTS is the transmission time of a control packet (RTS/CTS) 
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and D̃ is the propagation delay. For a given network topology the transmission range can be 

chosen so as to maximize the network performance in terms of throughput and delay. An ARQ 

protocol is used to acknowledge data reception. 

 

Figure 3.1: A successful handshake between terminals A and B in Slotted FAMA [42] 

3.1.1 Model  

The behavior of S-FAMA is depicted through the state transition diagram shown in Figure 3.2 

[78], with some changes made to keep only the S-FAMA part in the state transition diagram. 

The description begins in the idle state. 

 When a node has a packet to send, while in the idle state, it waits for the next timeslot 

and transmits RTS at the beginning of the slot. Then, it moves to the TX-RTS state. 

 When it receives the CTS from the destination node it enters the TX-Data state and 

transmits the packet. 

 The node remains in the TX Data state, until an ACK is received and then it goes to the 

idle state. 

 If a CTS does not arrive, it backs off (Backoff 1) and reschedules another attempt. 

 When the node receives an RTS addressed to itself, in the idle state, it replies with a 

CTS at the beginning of the next time slot (TX-CTS state) and moves to RX-Data. It 

remains there until it receives a correct data packet. The node then transmits an ACK 

(TX-ACK state) and returns to the idle state. 

 When the node receives an RTS addressed to another node (xRTS), it waits for the 

packet to be sent (Wait-Data state). Wait-Data is the time a terminal, after receiving an 

xRTS, must wait: two slots (long enough for the receiver to send a CTS and the sender 

to start transmitting data). In case it hears no packet transmission, it means the initiated 

handshake by the neighbor has been a failure and the node returns to the idle state. In 

case it hears a packet transmission, it remains in the Wait-Data state until the 

transmission is successful. 

 After receiving a CTS packet intended for another station (xCTS packet), while it is in 

the idle state, it will go to Wait-ACK and waits for the ACK to be sent. Wait-ACK is 
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the time from receiving the xCTS to the xACK. After receiving the xCTS packet, the 

terminal waits long enough to allow the other station to transmit the entire data packet 

and receive the corresponding ACK packet. If an ACK fails to arrive, indicating packet 

error, it remains in that state until data is correctly transmitted. When an ACK is 

detected, it returns to idle state.  

 

Figure 3.2: State Transition diagram for S-FAMA protocol [78]. 

3.1.2 Analysis  

The network considered for the throughput analysis is shown in Figure 3.3. It is the same as in 

[42] & [78] for proper comparison of the results. The initiator node is marked with an ‘X’. If 

we assume that every node has N neighbors (N=6), each of the N nodes has, itself, Q neighbors, 

which are hidden from node X. In the figure, nodes a, b, and c are neighbors of node 1 and are 

hidden from X (Q = 3). Each node has a packet ready to send every 1/ λ seconds. The arrivals 

are modeled as a Poisson distribution with average λ packets per second. Each of the Q nodes 

sends RTSs to every neighbor of X that the hidden node is neighbor of at a rate λ/N. Table 3.1 

shows the description of all symbols used in the analysis. For later analysis, we will use the 

same variables as in S-FAMA, with subscript ‘M’ for MultiACK and ‘EA’ for EarlyACK. 

X

6

5

4 3

2

1 c

ba

 

Figure 3.3: Network Layout [42] 

The throughput per node (S) is calculated using (3.1), where U̅ the average time when useful 

data is being sent, B̅ represents the average time when the channel is being used (Busy period) 

and I ̅is the average time between two busy periods (Idle time): 
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S =  
U̅

B̅ +  I̅
    (3.1) 

We denote by Ps the probability of success (no collision). It is the probability that no neighbors 

transmit within the time slot used by a given node X. These transmissions can be the neighbors 

RTS’s or CTS’s whose corresponding RTS’s has not been heard. The probability of no collision 

is derived in (3.3). We assume that an RTS sent by a node hidden from X has not collided and 

that a CTS will be sent. Tslot  is the sum of the transmission time of a control packet (RTS, 

CTS) and the maximum propagation delay. 

Ps =  ∏ e−λ×Tslot  
N

1
× ∏ (∏ e−

λ
N

×Tslot  
Q

1
)

N

1
 (3.2) 

Ps = e−(N+Q)×λ×Tslot (3.3) 

As defined in [9], the utilization of the channel is the data portion of the successful transmission 

period. The average useful data transmission time for node X (Figure 3.3) is given by (3.4), 

where δ represents the transmission time of a DATA packet. 

U̅ =  
δ

N + 1
Ps (3.4) 

Given the Bit Error Rate (BER), Pe is the probability of error in a data packet containing LDATA 

bits and LACK is the number of bits in the ACK packet. We define the probability of error in a 

data packet as (3.5): 

Pe = 1 −  (1 − BER)LDATA × (1 − BER)LACK     (3.5) 

Tdata is defined as the duration of all the slots needed by a DATA packet, expressed as an 

integer. TTot is the total duration of a successful transmission and is given by (3.6), where 2Tslot 

is the duration of the RTS and CTS slots and T is the time between the start of the transmission 

of a DATA packet and the time of successful reception of the ACK packet; it is given by T= 

(𝑇𝑑𝑎𝑡𝑎 + 𝑇𝑠𝑙𝑜𝑡)/(1 − 𝑃𝑒).  

TTot = 2Tslot +  T =  2Tslot +
Tdata +  Tslot 

1 − Pe
    (3.6) 

The average busy time B̅, is defined as (3.7):  

B̅ =  T̅success +  T̅fail + T̅defer  (3.7) 

T̅success is the time during which data is being successfully sent (3.8): 

Tsuccess =  Ps × TTot (3.8) 

T̅fail is a period of collisions on the channel (3.9): 

T̅fail =  
2Tslot × (1 − Ps)

N + 1
 (3.9) 

T̅defer  is the time during which node X defers its transmission, because the channel has been         

acquired by another node. 

Deferral periods happen when a CTS is heard replying another node’s RTS (hidden nodes). 

This probability is given by [42] (3.10): 
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Probability CTS is over heard =  
QPs

(N + 1)
 (3.10) 

The deferral time when a CTS is overheard is shown in (3.11): 

The deferal time when CTS is overheard =  
(Tdata + Tslot)

(1 − Pe)
 (3.11) 

If a terminal senses interference in the channel, a collision is assumed. The probability of 

collision in the channel is given by (3.12). In this situation, the deferral time is Tdata + Tslot. 

Hence, average deferral time is given in (3.13). 

Probability of collision =  
N(1 − Ps)

(N + 1)
 (3.12) 

T̅defer = (Tdata +  Tslot ) (
QPs

(N + 1)(1 − Pe)
+  

N

N + 1
(1 − Ps)) (3.13) 

The average idle time on the channel is given by (3.14):  

I̅ =  
1

λ(N + 1)
 (3.14) 

Substituting the values of  U̅, B̅ and I ̅in equation (3.1), the throughput for S-FAMA is given by 

(3.15), where δ denotes the transmission time of DATA packet [42]. 

S =
δPs

(N + 1)Ps TTot +  2Tslot(1 − Ps) + (Tdata +  Tslot ) (
QPs

(1 − Pe)
+  N(1 − Ps)) +

1
λ

 

 

(3.15) 

Equation (3.15) measures the ‘Throughput per node’ (S) defined as the fraction of time during 

which a certain node is transmitting correct data. This equation is valid for a static single-hop 

network. 

3.1.3 Performance 

The results of the throughput of some MAC protocols discussed in chapter 2 are shown in 

Figure 3.4. The performance of MAC protocols, namely ALOHA, CSMA, and S-FAMA is 

shown. Poisson arrivals have been considered for the offered traffic [69], [75] & [42]. Figure 

3.4 depicts the throughput vs offered load for CSMA for a propagation delay ‘a’: a = 1, a = 0.1 

and a = 0.01. 

The performance of CSMA is found effective in fully connected networks with small 

propagation delay (a<= 0.1) compared to the duration of the packet (T=1). The efficiency of 

the protocol rapidly decreases with the increase in delay (a=1). We assumed the network with 

no hidden terminals. CSMA throughput is seen to be maximum at G=3, for a=0.1, where G is 

the number of Packets per packet transmission time. 
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Figure 3.4. Throughput vs Offered Load (packets/sec) of Pure Aloha, Slotted Aloha, CSMA and SFAMA 

The results of variations in S-FAMA with varying offered load are also shown. The throughput 

versus offered load performance for S-FAMA with Tdata = 1slot is depicted. The curve shows 

that S-FAMA has maximum throughput 0.025 at λ equals 0.037 packets/second. 

The performance analysis of SFAMA with respect to varying number of nodes is evaluated and 

shown in Figure 3.5. The average throughput versus number of nodes curves are drawn for 

different DATA packet sizes at the same BER. 

 

Figure 3.5. Average Throughput (bps) vs Number of Nodes for S-FAMA, for: Tdata=1 slot and Tdata= 3slots 

We have considered values of Tdata=1slot (DATA packet size 100bits) and Tdata=3slots (DATA 

packet size 1700 bits) for a BER of 10-5. It can be seen that the throughput decreases as the 

number of nodes increases, as it increases the competition amongst nodes to acquire the 

channel, resulting in more collisions. Also, from the quantitative analysis it can be seen that 

the throughput varies inversely with the number of nodes. However, the effect of changing the 

DATA packet size in Figure 3.5 can also be seen. The average throughput for Tdata=3 slots is 

much higher than that of Tdata=1slot. The larger the DATA packet size the larger the throughput. 

Figure 3.6 shows the average throughput versus number of nodes for S-FAMA with BER: 10-3, 

10-4, 10-5. It can be seen that the throughput decreases as the number of nodes increases. The 
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average throughput with BER 10-3 is lower compared to the throughput at BER 10-4 and 10-5. 

The throughput with two nodes is found to be 5.95x10-3 bps, 6.94x10-3 bps and 6.99x10-3 bps 

for BERs 10-3, 10-4, 10-5 respectively. The throughput with 16 nodes reduces to 3.09x10-3, 

5.34x10-3, and 5.48x10-3 bps respectively. As explained earlier, this is due to the fact that 

increasing the number of nodes means more number of hops through the network and more 

competition to access the channel. This makes it difficult for the nodes to acquire the channel. 

The effect of varying the BER on the throughput can be seen in Table 3.1 and Figure 3.6. The 

higher the BER, the lower the throughput with respect to the number of nodes.  

 

Figure 3.6.  Average Throughput (bps) vs Number of Nodes for S-FAMA for Tdata=3slots 

Table 3.1: Effect of varying BER on Average Throughput (bps) vs Nodes for Tdata =3 slots 

Nodes BER 10-3 BER 10-4 BER 10-5 

2 5.95x10-3 6.94x10-3  6.99x10-3 

16 3.09 x10-3 5.34 x10-3 5.48 x10-3 

3.2 Problem Statement 

The successful transmission in S-FAMA comprises the following steps: Before sending 

DATA, the transmitter sends an RTS at the beginning of the new slot to the receiver. The 

receiver sends a CTS, at the start of the next slot. The transmitter then sends DATA packets at 

the start of new slot and waits for acknowledgement (ACK). If an ACK fails to reach the 

transmitter, the RTS/CTS based contention cycle and DATA transmission processes repeat 

[75]. The cost of repeating the whole cycle is very high and energy consuming. Figure 3.7(a) 

shows the RTS/CTS based contention cycle and DATA transmission processes in S-FAMA. 

To overcome the problem of high energy consumption due to ACK failure we propose two 

solutions, namely MultiACK and EarlyACK mechanisms. These mechanism are depicted in 

Figure 3.7(b) and Figure 3.7(c).  The proposed solutions are described below. 

1. With regards to the number of acknowledgements:  

We propose to add the MultiACK feature to S-FAMA. Instead of sending one ACK 

packet, the receiver node will send ‘i’ ACK packets. This increases the probability of 

receiving at least one ACK packet by sending a batch of ACK packets (ACK-TRAIN).  

This not only saves energy but improves throughput, delay, reliability. Let’s define 

TMultiACK as the duration of all the slots needed by the MultiACK packet. We propose 

the following two scenarios: 
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I. Scenario-I: Use a number of ACKs such that i×TACK = TCTS and TMultiACK =
 Tslot, where i×TACK is the duration of the train of acknowledgements. 

In this scenario, the duration of ACK-Train is the same as that of the control packet, 

hence it requires just one time slot. 

II. Scenario-II: Use a number of ACKs such that  2Tslot >  i × TACK ≥ Tslot + TCTS, 

TMultiACK = 2Tslot. 

In this scenario the duration of the train of acknowledgement includes one time slot 

plus the control packet duration on the second slot, hence it requires two time slots. 

2. With regards to retransmissions in case of ACK failure: 

To handle retransmission of DATA packets in case of ACK failure, the EarlyACK 

mechanism is proposed (Figure 3.7(c)). The EarlyACK is helpful when the DATA 

arrives successfully but the ACK is lost. It prevents the repetition of the entire contention 

and data transmission cycle. It sends an early acknowledgement in response to the 

repeated RTS for a lost ACK, thus saving energy and preventing the retransmission of 

the DATA cycle. 

The Message Sequence Chart for S-FAMA, S-FAMA with MultiACK and S-FAMA with 

EarlyACK are shown in Figure 3.7(a), (b) and (c).  

Tx Rx Tx Rx Tx Rx
S-FAMA MultiACK EarlyACK

RTSRTSRTS

RTS (same UID)

ACK

ACK

i-ACK(i=4)

RTS (same UID)

DATA

DATA DATA DATA

CTS CTS CTS

CTS

NO ACK NO ACK
X X

 

                       (a)                            (b)                         (c) 

Figure 3.7: Message Sequence Charts for: (a) S-FAMA, (b) MultiACK and (c) EarlyACK. 

3.3 MultiACK Mechanism 

In MultiACK [75], instead of sending one ACK for each received DATA packet, a train of ‘i’ 

acknowledgement packets is sent. By sending ‘i’ ACK packets, the probability of receiving at 

least one ACK is increased. We denote TMultiACK the duration of all slots needed by the 

MultiACK packet.  

Two scenarios have been considered here. In the first scenario, the size of the ACK-Train is 

the same as that of the control packet LCTS. This is done by shortening the size of ACK packet. 

TMultiACK is one time slot. In the second scenario, the size of the ACK-Train covers the duration 

of one time slot plus the duration of the control packet “TCTS”. In this scenario, TMultiACK is two 

time slots.  



 

 

38 

 

3.3.1 Analysis  

In this section we derive the mathematical expressions for the throughput of MultiACK and 

present its performance analysis.  

The probability of error in a DATA packet in MultiACK is denoted by PeM (3.16). Psucc−ACK 

is the probability of successfully transmitting at least one of the ACKs in the ACK- train (3.17).  

PeM = 1 − [(Psucc−DATA) × (Psucc−ACK)]   (3.16) 

Psucc−ACK = 1 − ∏[1 −

i

1

 (1 − BER)LACK]   (3.17) 

PeM = 1 − [((1 − BER)LDATA) × (1 − ∏[1 −

i

1

 (1 − BER)LACK] )]   (3.18) 

3.3.2 Scenarios 

3.3.2.1 Scenario-I 

In the first scenario, we have considered a duration of the train of ACKs equal to the duration 

of the control packet (TCTS). Thus, in this case, the transmission of the batch of ACKs requires 

only one slot (Figure 3.8). We will use subscript ‘M-1’ to denote the variables for this scenario. 

The number of ACKs is: 

i×TACK =TCTS = (No. of bits in the control packet)/Bitrate   (3.19) 

 

 

Figure 3.8: MultiACK Scenario-I 

The parameter PeM(3.18) varies with “i” and thus affects other variables, TM-1 (3.20), TTot-M-1 

(3.21), Tsuccess-M-1 (3.22) and Tdefer-M-1 (3.23). Consequently, the throughput, SM−1, would be 

affected (3.24). Table 3.2 contains the description of each term used in the equations. 

TM−1 =
Tdata +  Tslot 

1 − PeM
 

  (3.20) 

Thus,  
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TTot−M−1 = 2Tslot +
Tdata +  Tslot 

1 − PeM
   (3.21) 

Where, 

 T̅success−M−1 = Ps. × TTot−M−1   (3.22) 

The average deferral time equation changes into 

T̅defer−M−1 = (Tdata +  Tslot ) (
QPs

(N + 1)(1 − PeM)
+

N(1 − Ps)

N + 1
)   (3.23) 

Substituting the values for U̅, B̅ and I ̅ in equation (3.1), the throughput for MultiACK 

scenario-1 is shown in (3.24): 

 

Table 3.2: Parameters  

Symbols Description 

Tslot Duration of one time slot 

TCTS Duration of a Control packet  

TACK Duration of an ACK packet  

N Number of neighboring nodes 

Q Number of hidden nodes 

R Bitrate  

D̃ Propagation Delay  

LDATA Number of bits in the DATA packet 

LACK Number of bits in the ACK packet 

Tdata Duration of all slots needed by the DATA packet 

i Number of ACKs 

LACK-MA Number of bits in the single packet of MultiACK 

 

3.3.2.2  Scenario-II   

In Scenario II, we take the length of the train of acknowledgements as greater than one time 

slot but less than two time slots, as shown in Figure 3.9 and expression (3.25). We will use 

subscript ‘M-2’ to denote the variables for this scenario.  

2Tslot > i×TACK ≥ Tslot + TCTS (3.25) 

SM−1 =
δPs

(N+1)Ps TTot-M-1+ 2Tslot(1-Ps)+(Tdata+ Tslot ) (
QPs

(1-PeM)
+ N(1-Ps)) +

1
λ

 

(3.24) 
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Figure 3.9: MultiACK Scenario-II 

In this case we have used the same value of TACK as in Scenario-I, for the purpose of 

comparison. The probability PeM now decreases as it varies with 'i’ and, thus, affects variables 

TM-2 (3.26), TTot-M-2 (3.27), Tsuccess-M-2 (3.28) and Tdefer-M-2  (3.29). Consequently the throughput, 

SM−2, for this second scenario is given by (3.30). 

TM−2 =
Tdata +  2Tslot 

1 − PeM
 

  

(3.26) 

TTot−M−2 = 2Tslot +
Tdata +  2Tslot 

1 − PeM
 

  

(3.27) 

 T̅success−M−2 = Ps. ×  TTot−M−2 
  

(3.28) 

T̅defer−M−2 = (Tdata + 2 Tslot ) (
QPs

(N + 1)(1 − PeM)
+

N(1 − Ps)

N + 1
) 

  

(3.29) 

SM-2=
δPs

(N+1)PsTTot-M-2+2Tslot(1-Ps)+(Tdata+2Tslot) ((
QPs

(1-PeM)
) +N(1-Ps)) +

1
λ

 

(3.30) 

 

3.4 EarlyACK Mechanism 

The EarlyACK mechanism has been proposed to prevent the repetition of the entire contention 

and DATA retransmission cycle in S-FAMA, see Figure 3.4 (c). In S-FAMA, when an ACK 

fails to reach the transmitter, the transmitter sends the RTS with the same unique identification 

number (UID). In response, the receiver sends an ACK instead of a CTS for the repeated RTS, 

thus avoiding the retransmission of the data. 

3.4.1 Analysis  

The probability of successful transmission is given by (3.31), where ‘D’ is the probability that 

a DATA packet containing LDATA bits is received successfully (3.34) and ‘A’ is the probability 
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that an ACK packet is received successfully (3.35), being LACK the number of bits in the ACK 

packet. An ACK-retry occurs when an ACK fails to reach the transmitter; the receiver sends 

an ACK to the sender in response to the repeated RTS, until an ACK is successfully received. 

Parameter ‘n’ denotes the number of ACK-retries for a successful transmission. In EarlyACK, 

a DATA packet with a specific UID is transmitted only once before receiving a reply from the 

destination node. If the ACK is lost, instead of sending again the specific DATA packet, an 

EarlyACK will be sent in response to the repeat RTS. If the ACK is not lost then a new batch 

of DATA will be formed with a new UID and RTS will be sent for that.  

During the EarlyACK phase, only one ACK packet is sent of the same size as the CTS packet. 

The ACK is assumed to convey all information on lost packets and retransmissions of only lost 

packets takes place. 

PSucc = D × A + (D × A̅  × [(1 − A2)n] × 𝐴2) (3.31) 

Let’s name PeEA the probability of error in EarlyACK S-FAMA. The new probability of error 

in a DATA packet is: 

PeEA = 1 −  PSucc  (3.31) (3.32) 

PeEA = {1 − (D × A + D × A̅ × [(1 − A2)n] × 𝐴2)} (3.33) 

Where,  

D = (1 − BER)LDATA (3.34) 

A= (1 − BER)LACK (3.35) 

𝐴̅= (1-A)= [1 − (1 − BER)LACK] (3.36) 

Hence, 

PeEA = 1 − {(1 − BER)LDATA × (1 − BER)LACK + (1 − BER)LDATA × [1
− (1 − BER)LACK] ×  (1 − [(1 − BER)LACK]2)n  
×  [(1 − BER)LACK]2} 

(3.37) 

 

The new probability of error in a DATA packet affects TEA, the duration between the start of a 

DATA packet and the successful reception of the ACK packet. As in MultiACK, it will also 

affect TTot−EA (3.38),  T̅success−EA (3.39), T̅defer−EA (3.40) and, finally, the throughput (3.41):  

TTot−EA = 2Tslot +
Tdata + Tslot 

1 − PeEA
 (3.38) 

T̅success−EA = Ps × TTot−EA (3.39) 

T̅defer−EA = (Tdata +  Tslot ) (
QPs

(N + 1)(1 − PeEA)
+

N(1 − Ps)

N + 1
) (3.40) 

The throughput per node (SEA) is now given by: 

SEA= 
δPs

(N+1)Ps TTot-EA+ 2Tslot(1-Ps)+(Tdata+ Tslot ) (
QPs

(1-PeEA)
+N(1-Ps)) +

1
λ

 
     

(3.41) 
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  The normalized transmission time of a DATA packet (𝛿), is calculated as shown in (3.42). 

δ =
LDATA

 Rate x Tslot
 (3.42) 

3.5 Analysis of Energy Consumption  

In underwater acoustic networks, sensor nodes are mostly powered by batteries that cannot be 

recharged easily. Further, the underwater environment and harsh characteristics of sea water 

causes high bit error rate and delay in propagation, resulting in energy waste. It is therefore 

important to analyze the energy consumption in order to design an energy efficient MAC 

protocol. In [79], Iyad Tumar presents an analysis of energy consumption in both shallow and 

deep water. The analysis shows that direct transmission shows bad results in the deep water. 

The packet relaying technique results in energy savings in the deep water scenario. Clustering 

schemes save more energy and they show a better performance in shallow water. Sensor nodes 

should deliver the collected data to the nearest cluster head. This cluster head sends all the 

information to another cluster head until it reaches the underwater sink relaying case, the data 

produced by a source sensor is forwarded through multi-hop paths by intermediate sensors until 

it reaches the surface sink. This technique results in energy savings. What is more, for a fixed 

distance between sensors, if the number of sensor nodes is increased, the total energy consumed 

is increased because more nodes are farther away from the surface sink and the power necessary 

to transmit is proportional to the square of the distance.  

The energy consumed during transmission for one hop can be calculated as shown in (3.43), 

[80, 81]: 

 

Etotal = N × P × Ttx × K (3.43) 

 

where N is the number of hops. P is the transmission power related to the acoustic modems and 

hydrophones, Ttx is the DATA transmission time, and K is the number of packets. 

In S-FAMA, the probability of error, Pe, in a data packet containing LDATA bits, assuming 

independent errors, is shown in (3.5). Thus, the total transmission energy wasted (Ew-SF) in 

unsuccessful transmissions is shown in (3.44). 

Ew−SF = N × P × Ttx × K × Pe (3.44) 

The total transmission energy wasted in the unsuccessful transmission in MultiACK (Ew-MA) is 

calculated by (3.45): 

Ew−MA = N × P × Ttx × K × PeM (3.45) 

We can compare it with that of S-FAMA by dividing (3.45) by (3.44), shown in (3.46).  

Ew−MA

Ew−SF
=

PeM

Pe
 (3.46) 

The total transmission energy wasted in the unsuccessful transmission in EarlyACK (Ew-EA) is 

given by (3.47): 

Ew−EA = N × P × Ttx × K × PeEA (3.47) 
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The transmission energy wasted in EarlyACK is compared with that of S-FAMA using (3.48). 

For the analysis we divide (3.47) by (3.44). If the ratio is less than 1, it means that the 

transmission energy wasted in S-FAMA is higher than that of EarlyACK.  

Ew−EA

Ew−SF
=

PeEA

Pe
 (3.48) 

The total energy used during successful transmission in S-FAMA (ET1) and MultiACK (ET2) 

and EarlyACK (ET3) is calculated by expressions (3.49), (3.50) and (3.51) respectively. 

ET1= N x Ttx x K x P x (1-Pe) (3.49) 

ET2= N x Ttx x K x P x (1-PeM) (3.50) 

ET3= N x Ttx x K x P x (1-PeEA) (3.51) 

Improvement in total energy used during successful transmission for MutliACK and EarlyACK 

is obtained by dividing (3.50) by (3.49) and (3.51) by (3.49), shown in (3.52) and (3.53), 

respectively: 

ET2

ET1
=

1 − PeM

1 − Pe
 (3.52) 

ET3

ET1
=

1 − PeEA

1 − Pe
 (3.53) 

The energy efficiency is calculated using (3.54) for MultiACK and (3.55) for EarlyACK.  

ɳMA = (
ET2 − ET1

ET1
) × 100 

(3.54) 

ɳEA = (
ET3 − ET1

ET1
) × 100 (3.55) 

3.6 Comparative Analysis  

To compare the throughputs of S-FAMA (S), MultiACK-SFAMA (SM) and EarlyACK-

SFAMA (SEA), we can define an improvement factor for MultiACK (IFMA) and EarlyACK 

(IFEA) when an ACK fails to reach the sender.  

The MultiACK improvement factor is the quotient obtained by dividing the probability of 

successfully receiving an ACK in MultiACK-SFAMA by the probability of successfully 

receiving an ACK in S-FAMA. Similarly, EarlyACK improvement factor is the quotient 

obtained by dividing the probability of successfully receiving an ACK in EarlyACK-SFAMA 

by the probability of successfully receiving an ACK in S-FAMA. When this factor is greater 

than one, it shows an improvement. 

3.6.1 Improvement for MultiACK  

The Improvement Factor for MultiACK (IFMA) is calculated by taking the ratio of “the 

probability that an ACK is correctly received in MultiACK-SFAMA” and “the probability an 

ACK is correctly received for S-FAMA”. The expression is shown in (3.57).  
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IFMA =  
Probability an ACK is correctly received in MultiACK − SFAMA

Probability an ACK is correctly received in  SFAMA
 (3.56) 

IFMA  =  
1 − (1 − (1 − BER)LACK))i

(1 − BER)LACK
 (3.57) 

3.6.2 Improvement for EarlyACK  

The Improvement Factor for EarlyACK (IFEA) is calculated by taking the ratio of “the 

probability an ACK is correctly received in EarlyACK-SFAMA” and “the probability an ACK 

is correctly received in S-FAMA”, as shown in (3.59). Thus the improvement in the probability 

of successfully receiving an ACK in EarlyACK is: 

IFEA =  
Probability an ACK is correctly received in EarlyACK − SFAMA

Probability an ACK is correctly received in  SFAMA
 (3.58) 

 

IFEA =
1 − (D × A̅  × [(1 − A2)n] × A2)

(1 − BER)LACK
 (3.59) 

3.7 Conclusion 

In chapter 3 we have identified the problems in S-FAMA and the proposed solutions have been 

discussed. The MultiACK and EarlyACK mechanisms are explained and analyzed. 

Mathematical expressions for quantitative analysis are derived for both variants. Comparative 

analysis of the proposed variations is discussed to calculate the improvement in throughput. 

Energy consumption analysis with mathematical expressions is covered. Equations for the 

‘Improvement Factor’ for both MultiACK and EarlyACK are also derived. The performance 

evaluation and validation of the results obtained are discussed in Ch.4.  



 

 

45 

 

 

CHAPTER 4 : RESULTS AND DISCUSSIONS 

In this chapter the effects of MultiACK and EarlyACK are presented in numerical terms. The 

performance of the two new variants for different number of nodes, transmission ranges, BERs 

and offered load are evaluated. The throughput improvement for both scenarios of MultiACK 

and the EarlyACK are compared. The quantitative analysis of the results of the two variants is 

presented for performance analysis.  

4.1 MultiACK 

In the MultiACK  mechanism, where a train of ACK packets is sent instead of a single ACK 

for the received DATA, two scenarios were considered. In the first scenario the duration of the 

train of ACK packets was considered the same as that of the control packet, TCTS. The length 

of the ACK packet was shortened so that MultiACK packets could be accommodated in the 

same duration as TCTS. In the first scenario TMultiACK is equal to one Tslot. In the second scenario, 

TMultiACK  needs two Tslots. The detailed analysis of the two MultiACK scenarios is discussed 

below.  

The analysis has considered 2-16 nodes and a data packet length of 1 to 30 slots. Results have 

been obtained in MATLAB using the expressions derived in the previous chapter.  

Table 4.1: Parameters used in MutliACK: Scenario-I 

Parameter Values 

Tslot D̃ + TCTS  

TCTS (LCTS/R) 0.1s 

LCTS (RTS/CTS packet size) 100 bits 

TACK (LACK/R) 0.025s 

LACK 25 bits 

i 4 

N 2-16 

Q (hidden nodes) 0 

R (Bitrate) 1000bps 

Propagation speed 1500 m/s 

D̃ (Propagation Delay) (Distance/Speed) 

DATA packet size 
100, 1700, 11300, 23300  

bits 

Tdata 1, 3, 15 & 30 slots(s) 

Distance (Range) 

1000m (w.r.t. nodes) 

100m to 3000m 

(w.r.t transmission range) 

We have used the expressions (3.15) and (3.24) to plot the graphs for Scenario-I of MultiACK, 

using the parameters shown in Table 4.1. The throughput improvement was calculated by 
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taking the ratio of (SM-1/S) shown in (4.4). Same values of TACK have been used in both 

scenarios for comparative analysis. 

4.1.1 Scenario-I  

Using a control packet size (LCTS) of 100 bits and a bitrate of 1000bps, the duration of the 

control packet (TCTS) is 0.1seconds. To accommodate the ACK-train, we have shortened the 

length of one ACK-packet to 0.025 seconds. The number of ACKs then is 4. 

The propagation delay (D̃) is calculated using formula (4.1): 

D̃ =
Distance between furthest pair of nodes(m)

Propagation speed (1500m/s)
 (4.1) 

The performance has been first evaluated as a function of the number of nodes (2-16 nodes). 

To evaluate the performance as a function of the transmission range, we have used distances 

from 100m to 3000m. For example, for 1000m distance between the furthest pair of nodes, the 

propagation delay is 0.7 seconds. Thus, Tslot, which is the sum of TCTS and D̃ is 0.8seconds. The 

formula for calculating Tslot is shown in (4.2). 

Tslot= (LCTS/R) + D̃ (4.2) 

For Tdata = k slots, LDATA was calculated using formula (4.3): 

LDATA = [(k-1) Tslot + TCTS] x R (4.3) 

The duration of all the slots needed by a DATA packet was calculated by Tdata= (LDATA/R) +D̃. 

The throughput improvement was obtained using (4.4): 

SM−1

S
=

(N + 1)PsTTot + 2Tslot(1 − Ps) + (Tdata + Tslot) ((
QPs

(1 − Pe)
) + N(1 − Ps)) +

1
λ

(N + 1)PsTTot−M + 2Tslot(1 − Ps) + (Tdata + Tslot) ((
QPs

(1 − PeM)
) + N(1 − Ps)) +

1
λ

 

                                                                                                                                               (4.4) 

 

4.1.1.1 Analysis as a function of the number of Nodes  

Results are illustrated in Figures 4.1(a) to (f) with no hidden nodes. Simulations were carried 

out with Q=0, 2-16 nodes and BER=10-2 to 10-7. Results were plotted for different values of 

Tdata equal to 1, 3, 15 and 30 slots, which correspond to values of LDATA of 100, 1700, 11300 

and 23,300 bits. It can be seen from the results that the percentage improvement for BER (10-2), 

for Tdata =1 and 3 is very high as compared to those of low BER.  

At BER 10-2, the minimum and maximum throughput improvement, for Tdata=1 are 6.82% and 

29.96% which occurs at 2 and 16 nodes, respectively. The highest throughput improvement is 

172.5%, and it occurs at Tdata=3, for all 2 to 16 nodes. For higher Tdata, 15 and 30 slots, it is 

observed that as Tdata increases, TTot increases, which varies inversely with ‘1-Pe’. Pe varies 

directly with BER and LDATA. For example, for Tdata=1, LDATA=100 bits, Pe is 0.866 and (1-Pe) 

is 0.134. TTot is 12.98sec and TTot-M-1 is 5.73sec. The S-FAMA throughput ‘S’ is 2.44x10-4 and 

the MultiACK throughput SM-1 is 3.17x10-4, which gives the throughput improvement of 

29.96% with 16 nodes. When Tdata=3slots, LDATA is 1700 bits, Pe is high 99.99x10-2, which 

makes ‘1-Pe’ very low (1.39x10-8), which reduces the throughput. The throughput ‘S’ is 
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5.79x10-10 while SM-1 is 1.58x10-9. This gives throughput improvement of 172.53%.  Further 

increase in the Tdata to 15, where LDATA is 11300bits, Pe increases to’1’ and ‘1-Pe’ goes down 

to 0. This makes T infinite resulting in TTot to infinity (Div/0). Since S and SM-1 varies inversely 

with TTot and TTot-M-1, the throughput does not exist with Tdata=15 and 30 slots. The behavior of 

S-FAMA for BER 10-2 is shown in Table 4.2. The same behavior applies to MultiACK for 

BER 10-2. 

The impact of varying Tdata can also be seen. The larger the size of the DATA packet, the larger 

the throughput improvement. As Tdata increases, it increases the time between start of the 

DATA packet and the time of successful reception of the ACK packet. When BER is high, the 

successful transmissions are few, which increases this time. T and TM-1 vary inversely with (1-

Pe) and (1-PeM) respectively.  The ratio PeM/Pe is less than 1, indicating Pe in S-FAMA is higher 

than PeM in MultiACK. Thus the throughput of MultiACK is slightly higher than that of S-

FAMA. 

Table 4.2:Behaviour of the S-FAMA protocol at high BER 10-2and larger DATA packet size. with LACK=100bits,   

BER=0.01, Q=0 

Tdata LDATA (1-BER)L
DATA 1-Pe TTot TTot-M-1 

Throughput 

‘S’ 
‘SM-1’ 

Throughput 

Improveme

nt ‘%’ 

1 100 0.366 0.134 12.98 5.73 2.44x10-4 3.17x10-4 29.98% 

3 1700 3.80x10-8 1.39x10-8 2.25x108 8.26x107 5.79x10-10 1.58x10-9 172.53%, 

15 
11300 4.76x10-50 0 ∞ ∞ --- --- --- 

30 
23300 2.00x10-102 0 ∞ ∞ --- --- --- 

 

As BER is reduced to 10-3, the throughput improvement can be seen for higher values of Tdata. 

Figure 4.1(b) illustrates the results. At this BER, the minimum and maximum throughput 

improvement for Tdata=1 are 0.172% and 0.82%, for number of nodes 2 and 16, respectively. 

At Tdata=3 slots, the minimum and maximum throughput improvement at N=2 and 16 are 1.52% 

and 4.85%, respectively. For Tdata=15 slots, the minimum and maximum throughput 

improvement (%), is 10.5215% and 10.5224%. while for Tdata equals 30slots  it is 10.52% for 

both minimum and maximum. The analysis shows that as Tdata increases, PER increases, 1-Pe 

decreases, TTot increases, and throughput improvement increases. Results for lower BER shown 

in Figure 4.1(c) to (f) confirm that the lower the BER the lower the improvement.  

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 4.1: Throughput Improvement vs. Number of nodes, MultiACK Scenario-I, for:  (a) BER 10-2 (b) BER 

10-3 (c) BER 10-4 (d) BER 10-5 (e) BER 10-6 (f) BER 10-7, for Q=0. 

Results shown in Figure 4.1(a) to (f) confirm that the MultiACK Scenario I mechanism is 

appropriate for bad channels, where the BER is high. For low BER, the throughput 

improvement is marginal, but the MultiACK mechanism can save, in specific moments, energy 

and time. For example, for a BER of 0.005, ACK size 25 bits and 4 ACK packets, the proposed 

MultiACK mechanism improves the probability of successfully receiving an ACK by 65.05%. 

4.1.1.1.1 Impact of hidden nodes  

The impact of hidden nodes is analyzed. Hidden nodes (Q) in S-FAMA affect several 

parameters such as the probability of no collision Ps, which further affects parameters like Tfail, 

Tsuccess and Tdefer. The average time, U̅, during which useful data is transmitted is also affected. 

Results for MultiACK with hidden nodes Q=3 are shown in Figure 4.2. The results show that 

the throughput improvement with Q=3 is higher than the results with Q=0 hidden nodes. For 

example for BER 10-3, Tdata=1 and DATA packet size of 100 bits, throughput improvement 

with Q=3 is 0.95% with 16 nodes while for Q=0 it is 0.82%. For Tdata=3, the minimum 

throughput improvement for 2 nodes is 2.63% and the maximum is 5.26%. For Tdata=15 and 30 

slots, the throughput improvement remains at 10.52%. For lower BERs, shown in Figure 4.2(c) 

to (f) the throughput improvement drops as BER decreases. In summary, Q=0 increases Ps, 

while Q=3 decreases Ps. The parameters which increase with Q=0 are Ps, Tsucc and U̅, while 

Tfail and Tdefer decrease. With Q=3, Ps, Tsuccess and U̅ decrease while Tfail and Tdefer increase. The 

throughput improvement is higher for Q=3 than for Q=0. Values are shown in Table 4.3.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.2: Throughput Improvement vs. Number of nodes, MultiACK Scenario-I, for:  (a) BER 10-2 (b) BER 

10-3 (c) BER 10-4 (d) BER 10-5 (e) BER 10-6 (f) BER 10-7, for Q=3 nodes. 

Table 4.3: Impact of Hidden nodes (Q) on throughput Improvement, for Tdata=1 and 16 nodes 

BER Throughput Improvement (%) Analysis 

 Q=3 Q=0 

Throughput improvement 

is lower for Q=0 than for 

Q=3. It decreases as the 

BER decreases. 

10-2 33.99 29.96 

10-3 0.95 0.82 

10-4 0.08 0.07 

10-5 8.2x10-3 7.1x10-3 

10-6 8.2x10-4 7.1x10-4 

10-7 8.2x10-5 7.1x10-5 

 

The impact of hidden nodes on the parameters, Ps, Tsuccess, Tfail and Tdefer, S, SM-1 and throughput 

improvement is shown in Table 4.4 for BER 10-3. The impact on Ps, Tsuccess, Tfail and Tdefer is 



 

 

50 

 

shown in the form of mathematical values obtained from MATLAB.  Ps and Tsuccess are greater 

for Q=0 than for Q=3, while Tfail and Tdefer are greater for Q=3 than Q=0. The throughput 

improvement is 0.95% with hidden nodes while for no hidden nodes it is 0.82%. 

Table 4.4: Quantitative Analysis on Impact of Hidden nodes (Q) on throughput Improvement, for Tdata=1 and 

16 nodes, BER 10-3 

Q=3 Q=0 

Parameters Values Parameters Values 

Ps 0.9526 Ps 0.9599 

Tsuccess 3.245 Tsuccess 3.27 

Tfail 4.28x10-3 Tfail 3.62x10-3 

Tdefer 5.422 Tdefer 0.058 

S 3.43x10-4 S 3.51x10-4 

SM-1 3.47x10-4 SM-1 3.54x10-4 

Throughput 

Improvement 

0.95% Throughput 

Improvement 

0.82% 

 

4.1.1.2 Analysis as a function of BER 

Figure 4.3 illustrates the MultiACK performance with varying BER and varying DATA packet 

sizes. The analysis shows that at higher BER, the improvement is better than at lower BERs. 

As explained earlier the throughput improvement varies directly with the BER and the DATA 

packet size (4.4). The throughput improvement is very low at BER 10-7, 10-6 and 10-5 and tends 

to increase as BER increases to 10-4 and 10-3. For example at BER 10-7 the throughput 

improvement is 7.13x10-5 and   increases to 0.82% at BER 10-3 for Tdata = 1 slot. The impact of 

increasing DATA packet size is also seen in Table 4.5. Values of the percentage improvement 

in throughput are shown in Table 4.5.  

Table 4.5:  MultiACK-Scenario-I, Performance Analysis as a function of BER. 

BER Tdata=1 Tdata=3 Tdata=15 Tdata=30 

10-7 7.13x10-5 1.35x10-4 3.84x10-4 5.43x10-4 

10-6 7.13x10-4 1.35x10-3 3.87x10-3 5.48x10-3 

10-5 7.13x10-3 1.57x10-2 4.48x10-2 6.34x10-2 

10-4 7.23x10-2 1.57x10-1 6.62x10-1 9.28x10-1 

10-3 0.82 4.85 10.5 10.5 
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Figure 4.3: Throughput Improvement vs. BER, MultiACK Scenario-I, for BER=10-7 to 10-3. 

Values of throughput improvement at BER 10-7and 10-6 are almost flat, for all values of Tdata. 

As the packet error rate (PER) varies directly with the BER and the packet size, the impact of 

varying Tdata is seen. As Tdata increases it increases T and TM-1. Also, a high BER lowers the 

amount of successful transmissions. 

The improvement in throughput increases as BER increases. This is because, due to MultiACK 

mechanism, the probability that at least one ACK is received increases. This increases the 

efficiency of the protocol. PER in MultiACK-SFAMA is less than that of S-FAMA. The ratio 

PeM/Pe being less than 1 indicates that PER in S-FAMA is higher than in MultiACK. Also TM-

1 < T, and TTot-M-1 < TTot. The ratio SM-1/S, which varies directly with TTot  and inversely with 

TTot-M-1, is greater than 1. The throughput improvement is larger at higher BER and degrades 

at lower BERs. 

4.1.1.3 Analysis as a function of the data length 

Figure 4.4 depicts the average throughput improvement vs the data length (Tdata) for BER 

10-5. As shown in the figure, the throughput improvement increases as Tdata increases; the 

larger the size of the DATA packet the larger the throughput improvement. The values are 

shown in Table 4.6. 

 

Figure 4.4: Throughput Improvement vs Tdata 
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Table 4.6: Analysis as a function of data length at BER 10-5 

Tdata (slot) 1 3 15 30 

Throughput 

Improvement (%) 
0.007 0.013 0.041 0.060 

4.1.1.4 Analysis as a function of the transmission range 

Results are plotted in Figure 4.5 for a transmission range varying from 100m to 3000m, Tdata= 

1, 3, 15 & 30 slots , BER from 10-2 to 10-7 and Q=0.  

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.5: Performance of MultiACK as a function of Transmission range and Tdata= 1, 3, 15 and 30 slots for 

(a) BER 10-2 (b) BER 10-3 (c) BER 10-4 (d) BER 10-5 (e) BER 10-6 (f) BER 10-7 
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The results show that the throughputs of S-FAMA and MultiACK decrease as the transmission 

range increases for the same length of data. Table 4.7 shows values of throughput improvement 

for a selected range of 100 m to 500 m. From Table 4.7, it is seen that MultiACK throughput 

is larger compared to the throughput of S-FAMA, also the throughput improvement (SM-1/S) is 

seen to increase with the distance. This is because as the distance increases, it increases the 

propagation delay and hence Tslot. This has a direct impact on TTot and TTot-M-1, which also 

increase. The throughput improvement (4.4) varies directly with TTot and inversely with 

TTot-M-1. Since the throughput S and SM-1, varies inversely with TTot and TTot-M-1 respectively, 

the throughputs decrease but the ratio of ‘SM-1/S’ increases with distance because S< SM-1 and  

TTot-M-1< TTot. 

Table 4.7: Analysis as a function of Transmission range at BER 10-3 

Tdata=1 Q=0 BER 10-3 Nodes=16 
Throughput 

Improvement (TI) 

Distance S SM-1 SM-1/S (SM-1/S)-1 TI% 

100 0.001903 0.001907 1.002094 0.002094 0.21 

200 0.001333 0.001337 1.002878 0.002878 0.29 

300 0.001017 0.001021 1.003633 0.003633 0.36 

400 0.000817 0.000820 1.004362 0.004362 0.44 

500 0.000679 0.000682 1.005064 0.005064 0.51 

 

Figure 4.5 (a) to (f) also depicts the impact of transmission range on throughput improvement 

with different lengths of data and varying BERs. The length of data is directly affected by 

transmission range as it is a measure of the duration of all slot needed by the DATA packet. 

The increase in transmission range increases Tslot  and hence Tdata which in turn increases TTot. 

It is observed that for a given transmission range, throughput improvement tends to be lower 

at lower BERs. This is because TTot varies directly with the distance and inversely with ‘1-Pe’. 

Lower BERs, increases ‘1-Pe’ and decreases TTot and hence decreases the throughput 

improvement for a given transmission range. 

The throughput improvement for Tdata= 3 slots is in hundreds (172.53%) at a range of 3000m 

for BER 10-2 and is below tens (5.93%) for BER 10-3. Further, increasing the length of data to 

15 and 30 slots shows no results for BER 10-2. This is because Pe tends to 1. The impact of 

transmission range on the throughput improvement for BER 10-3 to 10-7 shows throughput 

improvement for larger DATA packets. However, the improvement degrades with increasing 

distance. The percentage improvement at these values is very low.  

In S-FAMA, low transmission ranges involve low competition to acquire the channel but a 

higher number of hops through the network and lower connectivity. This degrades 

performance. A situation of isolated nodes occurs when one or more pairs of nodes cannot be 

connected through any path. 

For high transmission ranges the throughput performance degrades because of the increase in 

neighboring nodes causing an increase in the overheard traffic. It becomes difficult to acquire 

a channel due to large number of RTS collisions. In our results it is clearly seen that the 

improvement is achieved at all transmission ranges. This is due to the better performance of 

MultiACK compared to S-FAMA.  
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4.1.1.4.1 Impact of hidden nodes 

The presence of hidden nodes in S-FAMA impacts Ps (the probability of no collision). This 

further affects Tsuccess,  Tfail and Tdefer. From the results and analysis of parameters it is observed 

that Ps is higher with no hidden nodes (Q=0) and reduces in the presence of hidden nodes 

(Q=3). When Ps increases, Tsuccess and channel utilization is high. Tfail and Tdefer are low. In the 

presence of hidden nodes (Q=3), Ps decreases, Tfail and Tdefer increase and Tsuccess and channel 

utilization decrease. The effects of hidden nodes are shown in Figure 4.6. It is seen that at 

Tdata=1 and 3, the throughput improvement increases with the increase in range. For larger 

DATA packets, Tdata=15 and 30, it tends to decrease with the increase in range. At lower BER 

the throughput improvement is very low. The comparative analysis is shown in Table 4.8. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.6: Performance of MultiACK Scenario-I as a function of Transmission range and Tdata= 1, 3, 15 and 

30 slots for (a) BER 10-2 (b) BER 10-3 (c) BER 10-4 (d) BER 10-5 (e) BER 10-6 (f) BER 10-7with hidden nodes 

(Q=3). 
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Table 4.8:  MultiACK-Scenario-I, Performance Analysis with Q=0 and Q=3 hidden nodes and Tdata=1slot and  

16 nodes. 

 Q=0 Q=3 

  Transmission Range Transmission Range 

BER 100m 3000m 100m 3000m 

10-3 0.21 1.68 0.25 1.89 

10-4 0.02 0.15 0.02 0.17 

10-5 1.80x10-3 1.47x10-2 2.11x10-3 1.65x10-2 

10-6 1.80x10-4 1.47x10-3 2.11x10-4 1.65x10-3 

10-7 1.80x10-5 1.47x10-4 2.11x10-5 1.65x10-4 

 

4.1.1.5 Analysis as a function of the Offered Load 

The throughput performance of S-FAMA and MultiACK has been analyzed using (3.15) and 

(3.24). Graphs for throughput versus offered load, for BER = 10-5 and 16 nodes, are presented 

in Figure 4.7. The curves show that S-FAMA has a maximum throughput of 0.00104 bps for 

Tdata=1 and λ ranging from 0.03481 to 0.03871 packets/second. For Tdata=3, the maximum 

throughput of S-FAMA is 0.0124 for λ ranging from 0.0273 to 0.0292 packets/second. 

Figure 4.7 also shows that MultiACK has a maximum throughput of 0.001045bps for Tdata=1 

and λ=0.03581-0.03791 packets/second. Thus, the improvement in throughput of MultiACK is 

0.0256%. 

 

Figure 4.7: Throughput (bps) vs offered Load (packets/second) for S-FAMA, Tdata=1&3 slots, MultiACK with 

Tdata=1 slot and EarlyACK with Tdata=1 slot 

Figure 4.8 shows a comparison for MultiACK Scenario-I with Tdata = 1 & 3 slots. The 

maximum throughput improvement for Tdata = 1 slot is 0.0256 bps at an offered load of 

0.03561-0.03811 packets/seconds. With Tdata = 3 slots, the throughput improvement is 0.0385 

at an offered load of 0.02811 to 0.02841 packets/sec. It is seen that with Tdata=3 slots throughput 

improvement increases by 50.39% compared to that of Tdata=1 slot. Thus, for the given range 

of offered load, increasing the size of Tdata increases the throughput improvement. 
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Figure 4.8: Throughput Improvement vs offered Load with MultiACK-Scenario-I, and EarlyACK 

4.1.2 Scenario-II  

In Scenario-II we have used the same value of TACK (0.025seconds) as in Scenario-I to compare 

the throughputs of both scenarios. The number of ACKs in this case is i = 36 ACKs and LACK 

= 25 bits. In the simulations we have used the parameters given in Table 4.9. Throughput 

improvement curves have been plotted for BER= 10-2 to 10-7. In this scenario the results were 

not positive. 

Table 4.9: Parameters used in MutliACK: Scenario-II 

Parameter Values 

Tslot D̃ + TCTS  

TCTS (LCTS/R) (0.1) 

LCTS (RTS/CTS packet size) 100 bits 

TACK 0.025 s 

i 36 

N 2-16 

Q (hidden nodes) 0 and 3 

R (Bitrate) 1000 bps 

Propagation speed 1500 m/s 

D̃ (Propagation Delay) (Distance/Speed) 

DATA packet size 100, 1700, 11300, 23300  bits 

Tdata 1, 3, 15 & 30 slots 

LACK 25 bits 

Distance (Range) 

1000m (w.r.t. nodes) 

100m to 3000m 

(w.r.t transmission range) 

4.1.2.1 Analysis as a function of the number of Nodes 

The curves for the throughput improvement vs the number of nodes have been plotted for Tdata= 

1, 3, 15, 30 and BER = 10-2 to 10-7. Results obtained are shown in Figure 4.9. The curves show 
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improvement in throughput of S-FAMA with MultiACK Scenario-II, for BER 10-2, where the 

minimum is 4.76% and the maximum is 19.51% for 2 and 16 nodes, respectively. 

For BER 10-3 the results show positive improvement for Tdata= 15 and 30 slots. For Tdata =15, 

the throughput improvement remains almost constant at 4.25%. For Tdata = 30, the same 

happens at 7.20%.  

The results for BER 10-4 to 10-7 show no improvement. In fact, they show that this hypothesis 

degrades the throughput of S-FAMA. This is because the increase in the duration of the 

MultiACK packet to 2Tslot increases TM-2, the time between the start of DATA packet and 

successful reception of an ACK; this, in turn, increases TTot-M-2 (3.27) which further increases 

Tsuccess-M-2 (3.28) and Tdefer-M-2 (3.29). The throughput SM-2 varies inversely with TTot-M-2, Tsuccess-

M-2 and Tdefer-M-2; thus, throughput decreases. The mathematical expression derived for the 

second scenario of MultiACK is shown in (4.5).  

SM−2

S
=

(N + 1)PsTTot + 2Tslot(1 − Ps) + (Tdata + Tslot) ((
QPs

(1 − Pe)
) + N(1 − Ps)) +

1
λ

(N + 1)PsTTot−M−2 + 2Tslot(1 − Ps) + (Tdata + 2Tslot) ((
QPs

(1 − PeM)
) + N(1 − Ps)) +

1
λ

 

 (4.5) 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4.9: MultiACK Scenario-II.:  Throughput Improvement vs. Number of nodes for: (a) BER 10-2 (b) BER 

10-3 (c) BER 10-4 (d) BER 10-5 (e) BER 10-6 (f) BER 10-7 

4.1.2.2 Analysis as a function of BER 

Figure 4.10 illustrates the performance as a function of BER from 10-7 to 10-3. The throughput 

degradation at Tdata=1 and 3 slots is -3.10% and -5.85%, it is seen to increase to 4.25% at 

Tdata=15 slots and at 30 slots it is 7.20% for BER = 10-3. The throughput improvement is 

negative except for Tdata=15 and 30 slots at BER 10-3. Results are shown in Table 4.10 with 16 

nodes.  

Table 4.10:  MultiACK-Scenario-II, Performance Analysis as a function of BER. 

Comparative Analysis: Throughput Improvement (%) vs 

BER 

BER Tdata=1 Tdata=3 Tdata=15 Tdata=30 

10-7 -3.57 -3.33 -2.36 -1.73 

10-6 -3.57 -3.33 -2.36 -1.73 

10-5 -3.57 -3.36 -2.46 -1.82 

10-4 -3.53 -3.65 -3.22 -1.89 

10-3 -3.10 -5.85 4.25 7.20 

 

 

Figure 4.10:  Throughput Improvement vs. BER, MultiACK Scenario-II. 
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4.1.2.3 Analysis as a function of the Transmission Range 

Figure 4.11 presents the performance results of MultiACK Scenario-II. For BER 10-2 results 

show that for Tdata=1 throughput improvement increases with the increase in range. With 

Tdata=3, the improvement is there but decreases with the distance. With larger DATA packets, 

Tdata equal 15 and 30, it gives no results. This is because TTot and TTot-M-2 are infinite, because 

Pe and PeM-2 are 1. In Figure 4.11 (b), with BER 10-3 and Tdata=1slot, there is no improvement 

in throughput. For Tdata=3 slots, 0.67% improvement is observed only for 100m range. For a 

transmission range from 200m to 3000m the results also show no improvement. For Tdata=15 

slots, there is an improvement in throughput at 100m (8.95%) which tends to reduce to 2000m 

(0.30%). From 2000m to 3000m there is no improvement. For Tdata=30slots, improvement is 

seen, which tends to reduce with the distance between 100m (9.75%) and 3000m (2.66%).  

For BER 10-4, Tdata=1, 3 and 15slots, no improvement is seen. Tdata=30 slots gives improvement 

for transmission ranges between 100m (0.27%) and 200m (0.02%). From 400m to 3000m no 

improvement is seen. For BER 10-5 to 10-7, there is no improvement in throughput. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.11: MultiACK Scenario-II.:  Throughput Improvement (%) vs. Transmission range, (a) BER 10-2 (b ) 

BER 10-3 (c)  BER 10-4 (d)  BER 10-5 (e)  BER 10-6 (f)  BER 10-7. 
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4.1.2.4 Analysis as a function of the data length  

Figure 4.12 shows that the throughput improvement versus the length of data gives negative 

results. Table 4.11 depicts the behavior for BER 10-5. 

 

Figure 4.12:  Throughput Improvement vs. Tdata, MultiACK Scenario-II, with 16 nodes. 

Table 4.11: Analysis Throughput Improvement vs. Tdata, MultiACK Scenario-II 

 Tdata 

BER 1 3 15 30 

10-5 -7.52865 -7.18986 -5.64278 -4.41969 

4.1.3 Comparative Analysis 

The performance of MultiACK Scenario-I, in terms of throughput is better with respect to 

varying nodes, transmission range, BER, and for varying length of data. Table 4.12 depicts the 

comparative analysis of MultiACK Scenarios I and II. The MultiACK Scenario-I mechanism 

improves efficiency of S-FAMA and increases the probability of successful reception of an 

ACK packet. 

Table 4.12: MutliACK Scenario-I & II, Performance Analysis 

Throughput Improvement vs Number of Nodes  

for 16 nodes and BER=10-5 

MultiACK Tdata=1 Tdata=3 Tdata=15 Tdata=30 

Scenario-I 
7.14x10-3 13 x10-3 41x10-3 60x10-3 

Scenario-II -3.57 -3.36 -2.46 -1.82 

 

If we compare the throughput improvement performance of MultiACK Scenarios I and II, we 

can see that the results for Scenario-II are worse as compared not only to Scenario-I, but also 

to S-FAMA itself. Table 4.13 and Table 4.14 depicts the comparative analysis of both 

scenarios. 
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Table 4.13: MutliACK Scenario-I & II, Comparative Analysis of throughput improvement at BER 10-3 

Throughput Improvement (%) vs BER 

Nodes=16 BER=10-3 Tdata=1 Tdata=3 Tdata=15 Tdata=30 

Scenario-I 0.82 4.85 10.52 10.52 

Scenario-II -3.10 -5.85 4.25 7.20 

Table 4.14: Comparative Analysis: Throughput Improvement vs Transmission Range for Tdata=1slot. 

BER 

Improvement % Improvement % 

MultiACK Scenario-I MultiACK Scenario-II 

 At 100m At 3000m At 100m At 3000m 

10-2 8.27 55.22 5.74 33.20 

10-3 0.21 1.68 -0.79 -6.53 

10-4 0.018 0.149 -0.89 -7.45 

10-5 1.81x10-3  1.47x10-2  -0.90 -7.53 

10-6 1.81x10-4  1.47x10-3  -0.90 -7.53 

10-7 1.81x10-5 1.47x10-4  -0.90 -7.53 

4.2 EarlyACK 

This section presents the results obtained for EarlyACK. The analysis has been done using the 

parameters shown in Table 4.15. The throughput improvement was calculated using expression 

(4.6).  

Table 4.15: Parameters for analysis of EarlyACK 

Parameter Values 

Tslot D̃ + TCTS  

TCTS (LCTS/R) 0.1s 

LCTS (RTS/CTS packet size) 100 bits 

TACK 0.025s 

n 1 

N 2-16 

Q (hidden nodes) 0 

R (Bitrate) 1000bps 

Propagation speed 1500 m/s 

D̃ (Propagation Delay) Distance/Speed 

DATA packet size 
100, 1700, 11300, 23300  

bits 

Tdata 1, 3, 15 & 30 slots(s) 

LACK 25 bits 

Distance (Range) 

1000m (w.r.t. nodes) 

100m to 3000m 

(w.r.t transmission range) 
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SEA

S
=

(N+1)PsTTot+2Tslot(1-Ps)+(Tdata+Tslot) ((
QPs

(1-Pe)
) +N(1-Ps)) +

1
λ

(N+1)PsTTot-EA+2Tslot(1-Ps)+(Tdata+Tslot) ((
QPs

(1-PeEA)
) +N(1-Ps)) +

1
λ

 

 (4.6) 

4.2.1 Analysis as a function of the number of Nodes  

Graphs for the throughput improvement vs the number of nodes are shown in Figures 4.13 (a) 

to (f). The analysis has been made for BER=10-2 to 10-7 for different values of Tdata and no 

hidden nodes (Q=0). The number of bits in the DATA packet (LDATA) has been 100, 1700, 

11,300 and 23,300 bits. It can be seen from the results that the improvement for BER 10-2, Tdata 

=1 and 3 is very high as compared to those of low BER. The minimum and maximum 

throughput improvement for Tdata=1 is 6.56% and 28.41%, respectively. The highest 

throughput improvement is 149.99%, and it occurs for Tdata=3. This is because at high BER, 

the packet error rate is also high. For example at BER 10-2 and 100 bits DATA packet, the 

packet error rate Pe is 1, this makes TTot infinite and the throughput goes to zero. 

For BER 10-3, the throughput improvement increases as the number of nodes increases. The 

effect of the data packet size is also significant. The throughput is seen to increase with the 

packet size, as shown for Tdata=1. As the packet size increases, the improvement grows. For 

Tdata=15 and 30 slots, the throughput improvement is 1.91%. 

In Figure 4.13 (c) to (f) it is observed that as BER decreases from 10-4 to 10-7, throughput 

improvement also lowers. Though the variation with the increase of the packet size is positive 

in terms of throughput improvement, it is however very marginal. For example, in Figure 

4.13(c) the minimum at number of nodes=2 for Tdata=1 slot is 3.1x10-4 % and the maximum at 

16 nodes, for Tdata=30, is 1.87x10-2 %. The same can be observed for BER=10-5, where for 

Tdata=30 slots the minimum throughput improvement is 5.65 x10-5 % and the maximum is 

1.31x10-4 %. It continues to lower for BER=10-6 and BER=10-7 where the maximum 

throughput improvement for Tdata=30 slots at 16 nodes is 12.1x10-7 % and 12.1x10-9 %, 

respectively.  

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 4.13: Throughput Improvement (%) vs. Number of nodes in  EarlyACK for                                                                         

(a) BER 10-2 (b ) BER 10-3 (c)  BER 10-4 (d)  BER 10-5 (e)  BER 10-6 (f)  BER 10-7 

The curves show that this mechanism performs marginally better in terms of throughput, and 

assures that no retransmission of DATA takes place in case of ACK loss. As the cost of losing 

an ACK is very significant in underwater communication, this EarlyACK mechanism saves 

cost in such scenarios by preventing the repetition of the data transmission cycle, thus resulting 

in energy saving.   

4.2.1.1 Impact of Hidden Nodes 

Graphs for the throughput improvement vs the number of nodes for Q=3 are shown in Figures 

4.14 (a) to (f). The analysis has been made for BER=10-2 to 10-7 for different values of Tdata. 

The number of bits in the DATA packet (LDATA) has been 100, 1700, 11,300 and 23,300 bits. 

It can be seen from the results that the improvement for BER 10-2, Tdata =1 and 3 is very high 

as compared to those of low BER. The minimum and maximum throughput improvement for 

Tdata=1 is 13.95 (for Q=0 it was 6.56%) and 35.32% (it was 28.41% for Q=0), respectively. The 

highest throughput improvement is 149.99% (same as with Q=0), and it occurs for Tdata=3. 

This is because at high BER, the packet error rate is also high. For example, at BER 10-2 and 

100 bits DATA packet, the packet error rate Pe is 1 and the throughput goes to zero. The impact 

on the throughput improvement, with and without hidden nodes is realized from the analysis.  

The parameters which increase with Q=0 are Ps, Tsuccess and U̅, while Tfail and Tdefer decrease. 

With Q=3, Ps, Tsuccess and U̅ decrease while Tfail and Tdefer increase. The throughput 

improvement is higher for Q=3 than for Q=0. 

For BER 10-3, the throughput improvement increases as the number of nodes increases. The 

effect of the data packet size is also significant. The throughput is seen to increase with the 

number of nodes, as shown for Tdata=1. As the packet size increases, the improvement grows. 
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For Tdata=15 and 30 slots, the throughput improvement is 1.91% which is the same as with 

Q=0. 

In Figure 4.14 (c) to (f) it is observed that as BER decreases from 10-4 to 10-7, throughput 

improvement also lowers. Though the variation with the increase of the packet size is positive 

in terms of throughput improvement, it is however very marginal. For example, in Figure 

4.14(c) the minimum at number of nodes=2 for Tdata=1 slot is 6.7x10-4 % which is higher 

compared to 3.1x10-4 % for Q=0 and the maximum at 16 nodes, for Tdata=30 is 1.89x10-3 %, 

which is lower than 1.87x10-2 % that occurred at Q=0. The same can be observed for BER=10-5, 

where for Tdata=30 slots, the minimum throughput improvement is 8.59 x10-5 % (it was 5.65 

x10-5 % for Q=0) and maximum is 1.36x10-4 % which is close to 1.31x10-4 % that occurred at 

Q=0. It continues to lower for BER=10-6 and BER=10-7 where the maximum throughput 

improvement for Tdata=30 slots at 16 nodes is 12.7x10-6 %, which is higher compared to 

12.1x10-7 % at Q=0 and 12.6x10-9 %, compared to 12.1x10-9 at Q=0.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.14: Throughput Improvement (%) vs. Number of nodes in  EarlyACK for Q=3,                                                                        

(a) BER 10-2 (b ) BER 10-3 (c)  BER 10-4 (d)  BER 10-5 (e)  BER 10-6 (f)  BER 10-7 
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4.2.2 Analysis as a function of BER 

Figure 4.15 illustrates the EarlyACK performance with varying BER. The improvement in 

throughput at BER 10-3 and Tdata=1slot is 0.16% and is seen to increase to 0.99% at Tdata=3 

slots. Further increase in Tdata to 15 and 30 slots increases the improvement to 1.908262% to 

1.908323%, respectively. This is because TTot-EA varies directly with the data packet size and 

inversely with (1-PeEA). For example for BER=10-3 and Tdata=1slot, TTot-EA is 3.77s and for 

Tdata=3slots it increases to 24.26s. The larger the packet size, the larger the TTot-EA and hence 

the throughput improvement. Also the higher the BER, the higher the improvement. The 

throughput varies directly with the DATA packet size. As shown in (3.41), throughput varies 

directly with 𝛿, the normalized DATA transmission time, which depends on LDATA (3.42). 

Increasing the packet size, increases the throughput. For example, for BER=10-3, Tdata=1slot, 

LDATA is 100bits and the throughput is 35.05x10-5 for S-FAMA and 35.11x10-5  for EarlyACK. 

When Tdata is increased to 3 slots, LDATA is 1700 bits, the throughput of S-FAMA is 3.09x10-3   

while for EarlyACK it is 3.12x10-3, which gives an improvement of 0.99%. 

It is also observed that, for a given BER, TTot-EA and PER increase with increasing DATA 

packet size. For example, at BER 10-4, we observe that the variation in TTot-EA at the same BER 

10-4 shows an increase from 3.44 to 6.15 as Tdata increases from 1 slot to 3 slots. The PER also 

increases from 0.02 to 0.16. Further increase to Tdata=15 and 30 slots increases the throughput 

improvement to 0.68% and 0.90%. 

We see that the improvement is low and tends to increase as Tdata increases from 1 to 30 slots. 

Values are shown in Table 4.16. As BER decreases TTot-EA decreases. TTot and TTot-EA vary 

inversely with 1-Pe and 1-PeEA. For BER 10-3, Tdata=1 slot, 1-Pe is 0.8186 while 1-PeEA is 

0.8134. This gives TTot as 3.799 and TTot-EA as 3.765.  Since TTot-EA is less than TTot, the 

throughput improvement increases, as it varies directly with TTot and inversely with TTot-EA. 

Table 4.16 shows the comparative analysis of throughput improvement for Early ACK, for 

varying DATA packet sizes. From the results it can be seen that at higher BER the improvement 

is higher. The throughput shows improvement for BER 10-2 to 10-7. By sending an early ACK 

in case of ACK loss the probability of successful reception of ACK increases the effectiveness 

of the mechanism and saves energy and cost. Thus, the proposed mechanism would be useful 

in case of ACK loss. 

 

Figure 4.15: EarlyACK: Throughput Improvement (%) vs. BER 
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Table 4.16: EarlyACK, Comparative Analysis as a function of BER,with 16 nodes 

BER Tdata=1 Tdata=3 Tdata=15 Tdata=30 

10-7 1.45x10-9 3.08x10-9 8.81x10-9 12x10-9 

10-6 1.45x10-7 3.08x10-7 8.86x10-7 12.1x10-7 

10-5 1.45x10-5 3.12x10-5 9.37x10-5 1.31x10-4 

10-4 1.47x10-3 3.56x10-3 1.4x10-2 1.87x10-2 

10-3 1.64x10-1 9.91x10-1 1.91 1.91 

10-2 28.4 149.99 --- --- 

4.2.3 Analysis as a function of the Transmission Range 

The throughput improvement results are plotted in Figure 4.16 as the transmission range varies 

from 100m to 3000m for Tdata=1, 3, 15 & 30 slots and BER ranging from 10-2 to 10-7, with no 

hidden nodes.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.16: EarlyACK: Throughput Improvement  vs Transmission Range for:  (a) BER 10-2 (b) BER 10-3       

(c)  BER 10-4 (d)  BER 10-5 (e)  BER 10-6 (f)  BER 10-7 
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The analysis was done with 16 nodes. It shows that at BER=10-2 the minimum improvement is 

9.08% and the maximum is 55.73% for Tdata=1 slot. For Tdata=3, the minimum is 7.80% at 100m 

and 50.87% at 3000m. For BER 10-3, improvement is seen to increase with larger DATA size 

and increasing range. The improvement is seen to reduce for lower BERs from 10-4 to 10-7, for 

Tdata=15 and 30 slots with increasing transmission range. This is due to the increase in 

propagation delay, which tends to increase TTot-EA and reduces the throughput improvement, 

which varies inversely with TTot-EA. 

4.2.3.1 Impact of hidden nodes 

Results for throughput improvement as a function of transmission range are plotted for Q=3 

hidden nodes in Figure 4.17. At a range of 100 m the throughput improvement is 9.08% for 

Tdata=1 slot. This is higher as compared to the improvement at Q=0 hidden nodes, where it is 

7.80%. The maximum occurs at 3000m, where it is 55.73% for Q=3 nodes and 50.86% for Q=0 

nodes. For Tdata=3 slots, the throughputs of S-FAMA and EarlyACK become very low, 

3.67x10-9 and 9.17x10-9, respectively, for Q=3. The throughput improvement increases to 

149.99%. Comparing with the throughputs of S-FAMA and EarlyACK at Q=0, S=4.32x10-9 

and SEA=1.08x10-8, the improvement is 149.99%. Larger DATA packet sizes of 15 and 30 slots 

gives no improvement. At Tdata=15 and 30, Pe=1 and PeEA=1. This makes TTot and TTot-EA 

infinite and S and SEA become 0. Comparison of throughput improvement for EarlyACK with 

and without hidden nodes is summarized in Table 4.17. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4.17: EarlyACK: Throughput Improvement  vs Transmission Range for:                                                        

(a) BER 10-2 (b) BER 10-3 (c)  BER 10-4 (d)  BER 10-5 (e)  BER 10-6 (f)  BER 10-7 

Table 4.17: EarlyACK comparative analysis of throughput improvement (%) for Q=0 and Q=3 at BER 10-3. 

Tdata Distance (Km) Q=0 Q=3 

1 
0.1 0.04 0.05 

0.3 0.33 0.37 

3 
0.1 0.74 0.81 

0.3 1.11 1.18 

15 
0.1 1.91 1.91 

0.3 1.91 1.91 

30 
0.1 1.91 1.91 

0.3 1.91 1.91 

 

4.2.4 Analysis as a function of the length of data 

Figure 4.18 depicts the throughput improvement for Tdata = 1, 3, 15 and 30 slots for BERs 

ranging from 10-6 to 10-3. The throughput varies inversely as the size of the DATA packet 

increases. Table 4.18 gives the comparative analysis of throughput improvement. From the 

table it is seen that the improvement varies directly with DATA packet size. 

 

Figure 4.18: Throughput Improvement vs Tdata for EarlyACK, with 16 nodes. 
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Table 4.18: EarlyACK Comparative Analysis of Throughput Improvement vs Tdata 

 BER 

Tdata 10-3 10-4 10-5 10-6 

1 16.4x10-2  1.47x10-3  1.45x10-5 1.45x10-6 

3 99.13x10-2  3.56x10-3  3.12x10-5  3.08x10-7 

15 1.9082622 14.15x10-3  9.37x10-5  3.08x10-7 

30 1.9083234 18.70x10-3  1.31x10-4  1.20x10-6  

4.2.5 Analysis as a function of the Offered Load 

Graphs for throughput improvement against offered load for EarlyACK have been shown in 

Figure 4.8 for comparison with MultiACK. Throughput Improvement curves are plotted for 

Tdata=1 and Tdata=3, BER= 10-5, N=16, n=1. The curve shows a very marginal improvement in 

the throughput with EarlyACK as compared to MultiACK. For Tdata=1 slot, the maximum 

improvement is 5.12× 10−5 at an offered load 𝜆 = 0.03621 to 0.03751 packets/second. The 

maximum throughput improvement in EarlyACK with Tdata=3slots is 7.69× 10−5 at λ equal 

0.02771-0.02881 packets/seconds. 

4.3 Energy Consumption  

In underwater acoustic sensor networks, MAC protocols must be designed to save energy. In 

such networks a node consumes energy not only in transmission and reception but also   

overhearing, and collisions also unnecessarily waste energy of the nodes. These problems are 

more common in handshake based protocols where the control traffic is high. The energy waste 

in underwater acoustic networks is very critical as it is not easy to recharge sensor nodes. 

Further, the high bit error rate adds to the energy waste. Hence, a primary objective of MAC 

protocol must be energy efficiency without compromising the throughput [80]. In this section 

we analyze the energy consumption in S-FAMA, MultiACK (with i=4) and EarlyACK.  

The energy consumed during transmission for one hop can be calculated using (3.43), (3.44) 

and (3.45) [81, 82]. 

The number of hops N is taken as 5, 10, 15 and 20. Other parameters used are the Signal to 

Noise ratio (SNR) of 20 dB, the ambient noise level of 70 dB, the Directivity index of 3 dB 

and depth of 75 m. The number of packets, K, is taken as 1000, DATA transmission time Ttx 

is 125ms and a transmission power of 2 W related to the acoustic modems and hydrophones is 

considered [81, 82]. 

Table 4.19: Parameters for Energy Consumption per node 

Parameters Description Value 

N Number of hops 5, 10, 15, 20 

TTx Transmission time taken by one packet 0.125s 

K Number of Packets each node transmits 1000 

P Transmission Power 2 W 

LDATA Data Packet size 100 bits 

LACK ACK Packet size 100 bits (25*4) 

BER Bit Error Rate 10-5 

Pe Packet error rate in S-FAMA 19.98 x 10-4 

PeM Packet error rate in MultiACK-SFAMA 9.9951x 10-4 

PeEA Packet error rate in EarlyACK-SFAMA 19.96 x 10-4 
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Using (3.46) and parameters in Table 4.19, the total transmission energy wasted in unsuccessful 

transmissions in MultiACK compared with that of S-FAMA (4.8) shows a saving of 50%, 

shown in Figure 4.19. 

 

Ew−MA

Ew−SF
=

9.995 × 10−4

0.0020
 (4.7) 

Ew−MA

Ew−SF
= 0.49995 ≈ 0.50 ≈ 50% 

(4.8) 

 

 

Figure 4.19: Analysis of transmission energy wasted in S-FAMA & MultiACK-SFAMA for BER 10-5. 

A comparison of the total energy used during successful transmission in S-FAMA (ET1), 

MultiACK (ET2) and EarlyACK (ET3) is calculated using (3.49), (3.50) and (3.51): 

ET1= N x TTx x K x P x (1-Pe) = 5 x 0.125 x 1000 x 2 x (1-0.002) = 1247.5 J (4.9) 

ET2 = N x TTx x K x P x (1-PeM) = 5 x 0.125 x 1000 x 2 x (1-9.995x10-4)=1248.75 J (4.10) 

ET3 = N x TTx x K x P x (1-PeEA) = 5 x 0.125 x 1000 x 2 x (1-0.002) = 1247.5 J (4.11) 

Improvement in total energy used during successful transmission for MutliACK and EarlyACK 

is obtained using (3.52) and (3.53) respectively. The ratio ET2/ET1 (4.12) is greater than 1, 

indicating improvement by 0.1% in total energy used during successful transmission with 

MutliACK. The ratio ET3/ET1 is greater than 1 (4.13), indicating improvement, but marginal, 

by 2x10-4 % for EarlyACK. 

ET2

ET1
=

1 − 9.995 × 10−4

1 − 0.0020
= 1.001 (4.12) 

ET3

ET1
=

1 − 0.001996

1 − 0.001998
= 1.000002 (4.13) 

The energy efficiency for MultiACK is calculated using (3.54). In total, the percentage of 

energy transmission in MultiACK is 0.1% larger than in S-FAMA, showing improvement in 

transmission (4.14). The energy efficiency for EarlyACK is calculated using (3.55). In total, 

the amount of energy transmitted in EarlyACK is 2x10-4 % larger, showing only marginal 

improvement in energy efficiency. 
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ɳMA =  (
0.999 − 0.998

0.998
) × 100 = 0.10 %  (4.14) 

Figure 4.20 shows the improvement in transmission energy for MultiACK for varying BER 

from 10-6 to 10-2. The improvement can be seen as the energy waste is reduced by almost 50% 

for BER from 10-6 to 10-4.  At 10-3 it is 52% and increases to 80% for BER 10-2 (see Table 4.20). 

 

 

Figure 4.20: MultiACK energy transmission improvement at different BERs. (10-6 to 10-2) 

Figure 4.21 confirms that MultiACK outperforms EarlyACK in saving energy at all BERs by 

almost 50%, except for 10-3 and 10-2. A comparative analysis of the reduction in the total 

transmission energy wasted during unsuccessful transmission in S-FAMA, MultiACK and 

EarlyACK is shown in Table 4.20. In case of EarlyACK, the PER for low BER is almost the 

same as the packet error rate of S-FAMA. Thus, at low BERs, 10-6 and 10-5, EarlyACK gives 

no improvement in the transmit energy waste reduction. Very little improvement is seen in 

EarlyACK at higher BER 10-4 to 10-2 due to close values of PER with S-FAMA. MultiACK 

outperforms S-FAMA and EarlyACK. 

 

Figure 4.21: Comparative analysis of transmission energy wasted in unsuccessful transmission in MultiACK 

and EarlyACK. 
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Table 4.20: Analysis of Total Transmission Energy Wasted in S-FAMA, MultiACK & EarlyACK at BER 10-5 

Nodes S-FAMA MultiACK-SFAMA EarlyACK-SFAMA 

 Ew-SF  (J) Ew-MA (J) Ew-EA (J) 

5 2.5 1.25 2.5 

10 5 2.5 5 

15 7.49 3.75 7.5 

20 10 5 10 

 

Analysis of Packet Error Rates and improvement in Total Energy waste in MultiACK & 

EarlyACK is shown in Table 4.21. 

Table 4.21: Analysis of Packet Error Rates and Improvement in Total Energy waste in MultiACK & EarlyACK 

BER Pe PeM PeEA Ew-MA/Ew-SF Ew-EA/Ew-SF 

10-6 0.0002 0.0001 0.0002 0.50 1 

10-5 0.002 0.001 0.002 0.50 1 

10-4 0.02 0.01 0.0196 0.51 0.99 

10-3 0.18 0.095 0.17 0.53 0.93 

10-2 0.87 0.69 0.84 0.80 0.97 

 

Table 4.22, shows the comparison of the total energy consumption during successful 

transmissions in MultiACK (EC-MA) and S-FAMA (EC-SF).  The analysis shows that in 

MultiACK the total percentage of energy successfully used is 0.1% larger. 

Table 4.22: Energy Consumption Analysis at BER 10-5 

 S-FAMA MultiACK-SFAMA 

Nodes EC-SF 

(J) 

Ew-SF 

(J) 

EC-MA 

(J) 

Ew-MA 

(J) 

Energy Enhanced 

% 

5 1247.50 2.50 1248.75 1.25 0.10 

10 2495.01 5.00 2497.50 2.50 0.10 

15 3742.51 7.49 3746.25 3.75 0.10 

20 4990.01 9.99 4995.00 4.998 0.10 

 

4.4 Improvement Analysis 

4.4.1 MultiACK 

This section summarizes the improvement obtained by using MultiACK. The impact on the 

throughput is shown in Table 4.23. For all BERs, 10-2 to 10-6, MultiACK shows improvement. 

At higher BERs, the improvement is higher. The mechanism improves efficiency of S-FAMA 

by increasing the probability that an ACK would be received, and is useful in scenarios of ACK 

loss. The impact on delay for Scenario-I is calculated using the expressions for TTot-M-1 and TTot. 

We found that TTot-M-1 is 4.65 secs while TTot for S-FAMA is 6.51secs. Thus, MultiACK 

mechanism reduces delay in S-FAMA by 28.59%. The analysis on energy at BER 0.005, 100 

bits DATA packet shows that using MultiACK reduces the energy waste by 35.41%. The 

impact on transmission energy consumed during successful transmission is found to be 61.09% 
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compared to that of S-FAMA. This shows that the improvement is higher at high BER because 

total energy waste in S-FAMA and MultiACK varies directly with PER which varies directly 

with BER. 

Table 4.23: Impact of Improvement Factor on Throughput 

Impact of Improvement Factor on  Throughput 

BER MultiACK EarlyACK 

10-2 1.186 1.175 

10-3 1.005 1.001 

10-4 1.0005 1.00001 

10-5 1 1 

10-6 1 1 

4.4.2 EarlyACK  

This section summarizes the improvement obtained by using EarlyACK. The impact on the 

throughput is shown in Table 4.24. For BER 10-2, the improvement is 17.5%; for lower BERs 

10-4  to 10-6, the improvement is negligible. The difference in the throughputs of S-FAMA, 

MultiACK and EarlyACK is marginal. The analysis on delay shows that, for BER=0.005 and 

an ACK packet 100 bits long, TTot-EA is 4.72secs, while TTot for S-FAMA is 6.51secs. Thus, 

EarlyACK shows a reduction in delay by 27.50 %. For the same parameters, the transmission 

energy wasted is reduced by 23.87%. The energy consumed in successful transmissions is 

found to be 41.17 % more. In this regard, the impact of MultiACK is higher than EarlyACK. 

Table 4.24: Impact of Improvement Factor on Delay and Throughput for MultiACK and EarlyACK 

BER S-FAMA MultiACK EarlyACK 

PER 

(Pe) 

Delay 

(TTot) 

Throughp

ut  

(S) 

PER 

(Pe-M) 

Delay 

(TTot-

M) 

Through

put  

(SM-1) 

% 

Impr

ovem

ent 

PER 

(Pe-EA) 

Delay 

(TTot-

EA) 

Through

put  

(SEA) 

% 

Impr

ovem

ent 

10-2 0.87 15.03 3.03x10-4 0.69 7.47 3.59x10-4 18.48 0.84 12.79 3.56x10-4 17.5 

10-3 0.18 3.80 3.83x10-4 0.10 3.59 3.84x10-4 0.52 0.17 3.77 3.84x10-4 0.26 

10-4 0.02 3.44 3.86x10-4 0.01 3.42 3.86x10-4 0 0.02 3.44 3.86x10-4 0 

10-5 2x10-3 3.40 3.86x10-4 10-3 3.40 3.86x10-4 0 2x10-3 3.40 3.86x10-4 0 

10-6 2x10-4 3.40 3.86x10-4 10-4 3.40 3.86x10-4 0 2x10-4 3.40 3.86x10-4 0 

4.5 Comparative Analysis  

The comparative analysis at BER 10-5, summarized in Table 4.25 and Table 4.26, shows that 

the improvement in Early ACK is less than in Scenario-I of MultiACK. The analysis shows 

highest performance for MultiACK Scenario-I. The EarlyACK improvement is second and for 

MutliACK Scenario-II there is no improvement. 
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Table 4.25: MutliACK & EarlyACK Comparative Analysis of Throughput Improvement vs Tdata 

Comparison of  

Throughput Improvement(%) vs Tdata, for 

MultiACK-Scenario-I & II and EarlyACK for BER=10-5, Nodes=16 

Tdata Scenario-I Scenario-II EarlyACK 

1 7.13x10-3 -3.57 1.45x10-5 

3 1.37x10-2 -3.36 3.12x10-5 

15 4.11x10-2 -2.46 9.37x10-5 

30 5.99x10-2 -1.82 1.31x10-4 

Table 4.26: MutliACK & EarlyACK Comparative Analysis of Throughput Improvement for BER 10-5 

Nodes=16 BER=10-5 Tdata=1 Tdata=3 Tdata=15 Tdata=30 

MultiACK Scenario-I 8.23x10-3 1.57x10-2 4.48x10-2 6.34x10-2 

MultiACK Scenario-II -3.57 -3.36 -2.46 -1.82 

EarlyACK 1.45x10-5 3.12x10-5 9.37x10-5 1.31x10-4 

 

The throughput versus offered load for S-FAMA is shown in Figure 4.22 for BER = 10-5 and 

16 nodes for Tdata=1 slot and 3 slots. The throughput is larger for Tdata=3. The throughput of S-

FAMA may be compared with that of MultiACK and EarlyACK, shown in Figures 4.23 and 

4.24 respectively. 

 

 

Figure 4.22: Comparison of Throughput vs Offered Load in S-FAMA for Tdata =1 and Tdata=3slots. 

The curves for varying offered load in Figure 4.23 confirm that the proposed mechanism of 

MultiACK improves the throughput of S-FAMA, though marginally. The maximum 

improvement for Tdata=1 is 0.026% at an offered load of 𝜆 ranging from 0.036-0.039 

packets/second. The maximum throughput improvement with Tdata=3 is 0.039% at λ ranging 

from 0.0281 to 0.0284. 
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Figure 4.23: Comparison of Throughput Improvement vs Offered Load in S-FAMA with MultiACK for Tdata=1 

& 3 slots. 

Throughput improvement in EarlyACK with Tdata=1 and Tdata=3, BER= 10-5, N=16, n=1 is 

shown in Figure 4.24. The curves show that the EarlyACK throughput is esentially that of 

S-FAMA. The maximum improvement for Tdata=1 is 5.12× 10−5 % at an offered load of 𝜆 

ranging from 0.036-0.038 packets/second. The maximum throughput improvement with 

Tdata=3 is 7.69× 10−5 % at λ ranging from 0.028 to 0.029. 

 

Figure 4.24: Comparison of Throughput Improvement vs Offered Load in S-FAMA with EarlyACK for Tdata=1 

& 3 slots. 
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Figure 4.25: Comparison of Throughput Improvement vs Offered Load for MultiACK and EarlyACK for 

Tdata=1 & 3 slots. 

Comparison of MultiACK and EarlyACK performance with respect to offered load is shown 

in Figure 4.25. It can be clearly seen that MultiACK outperforms EarlyACK. EarlyACK 

throughput improvement compared to MultiACK is very low and appears almost flat in the 

figure. However, EarlyACK can be useful in preventing the repetition of the DATA 

retransmission in case of ACK loss. 

Table 4.27 summarizes the analysis on the proposed variants. The computations are shown for 

Tdata=1 and BER 10-3 to 10-6. The results show that MultiACK performance is best in terms of 

packet error rate, delay, transmit energy, throughput and throughput improvement. The 

throughput improvement is 0.50% at BER 10-3, whereas EarlyACK gives improvement of 

0.1026%. MultiACK and EarlyACK both provide improvement in throughput but MultiACK 

outperforms EarlyACK. Thus, the MultiACK and EarlyACK mechanisms may be preferred 

over S-FAMA, as they are useful particularly in cases of ACK loss. They save energy and 

reduce cost by preventing the repetition of the entire RTS/CTS and DATA transmission cycle. 
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Table 4.27: Quantitative Analysis of S-FAMA, MultiACK and EarlyACK Protocols at BER 10-3 to 10-6 for 

Underwater Acoustic Networks 

Protocol BER PER 
Delay 

(s) 

Transmit 

Energy 

waste (J) 

Energy 

Waste 

Reduction 

% 

Avg. 

Throughput 

(bps) 

Throughput 

Improvement 

(%) 

S-FAMA 

10-3 
1.81x10-1 3.80 226.75 

0 

3.83x10-4  

 

 

0 

10-4 1.98x10-2 3.44 24.75 3.86x10-4 

10-5 2.00x10-3 3.40 2.50 3.87x10-4 

10-6 2.00x10-4 3.40 0.25 3.87x10-4 

MultiACK

-SFAMA 

10-3 9.53x10-2 3.59 119.13 47.46 3.85x10-4 0.50 

10-4 1.00x10-2 3.42 12.50 49.50 3.87x10-4 4.42x10-2 

10-5 9.99x10-4 3.40 1.25 50.00 3.87x10-4  4.37x10-3 

10-6 9.99x10-5 3.40 0.13 48.00 3.87x10-4 4.36x10-4 

EarlyACK

-SFAMA 

10-3 
1.69x10-1 3.77 210.75 7.06 3.84x10-4 0.10 

10-4 1.96x10-2 3.44 24.50 1.01 3.86x10-4 9.20x10-4 

10-5 2.00x10-3 3.40 2.50 0. 3.86x10-4  9.08x10-6 

10-6 2.00x10-4 3.40 0.25 0 3.86x10-4 9.06x10-8 

4.6 Conclusion 

In this chapter we have analyzed the performance of the two proposed variants of S-FAMA, 

namely MultiACK and EarlyACK, with respect to throughput, delay, BER, data packet size 

and energy consumption. Quantitative analysis was done using the results obtained from the 

analytical expressions derived in Chapter 3. In Scenario-I, the duration of the MultiACK packet 

was kept the same as the control packet, and TMultiACK was one slot, while in Scenario-II the 

duration of the MultiACK packet is larger than the control packet and TMultiACK is 2 time slots. 

In both scenarios the length of the ACK packet was shortened to 0.025s. Comparison of results 

show that Scenario-I outperforms original S-FAMA while Scenario-II shows improvement 

only for BER 10-2, Tdata=1 and 3 slots. For BER 10-3, it shows improvement for Tdata=15 and 

30 slots only. There is no improvement seen for lower BERs. In Scenario-II, increasing 

TMultiACK to 2 time slots increases TTot-M-2, which adds delay and reduces improvement. 

The results of EarlyACK also show improvement. However, the comparative analysis of 

MultiACK and EarlyACK performance shows that MultiACK Scenario-I is better. 

Overall the improvement factors for the MultiACK Scenario-I and EarlyACK show that both 

mechanisms outperform the original S-FAMA. Both variants may have practical usefulness in 

case of ACK loss, by saving energy and time in critical periods.  
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CHAPTER 5 : CONCLUSION  

This chapter concludes the research work carried out for this thesis. This thesis was aimed to 

improve the S-FAMA protocol by providing additional features that enhance its operation. We 

started with the description of the underwater environment characteristics along with the 

challenges faced during underwater communication. Underwater acoustic communication is 

badly affected by factors such as temperature, density, path loss, noise, multi-path propagation, 

Doppler effect, propagation delay etc. Since the underwater environment is different from 

terrestrial environment, terrestrial MAC protocols are unsuitable and cannot be used directly 

for underwater communication. 

Initial analysis was carried out on the existing MAC algorithms and protocols, to evaluate their 

performance. The performance was evaluated and compared as a function of throughput, delay, 

BER, varying DATA packet sizes and energy consumption. Simulations were performed to 

measure these performance metrics of existing MAC protocols under different parameter 

settings.  

Based on the quantitative analysis of results of existing MAC protocols, five MAC protocols 

were selected, namely, ALOHA, CSMA, MACA, FAMA and S-FAMA for further evaluation. 

The performances in terms of throughput and delay were evaluated and compared.  

S-FAMA, a variant of FAMA, was selected. Although S-FAMA avoids collisions and saves 

energy by slotting time, we identified from that, if an ACK is lost, the entire RTS/CTS and 

DATA cycle must be repeated. Retransmission of the entire cycle consumes a significant 

amount of energy. To solve this issue, we proposed two solutions, namely MultiACK and 

EarlyACK, to handle cases when an ACK packet fails to reach the transmitter.  

In the MultiACK mechanism, instead of sending one ACK packet, we send i-ACK packets, an 

ACK-Train. Two scenarios were proposed for MultiACK. In the first scenario, Scenario-I, the 

duration of the ACK-Train (i×TACK) is kept the same as that of the control packet (TCTS); the 

size of the ACK packet is shortened to accommodate the train of ACK packets. In Scenario-II 

the duration of the ACK-Train (i×TACK) is greater than one slot (1Tslot+TCTS).  We proved 

analytically that adding the features of MultiACK to the S-FAMA improves its throughput and 

efficiency in case of Scenario-I. The results for Scenario-II showed no improvement, because 

the additional time slot required offsets the benefits of the ACK-Train.  

The second proposed mechanism, EarlyACK, prevents the repetition of the data transmission 

cycle if an ACK is lost. In the EarlyACK mechanism, when the receiver receives an RTS (with 

the same UID) it understands that the receiver has not received an ACK for the sent DATA. It 

sends an EarlyACK for the lost ACK instead of sending a CTS. We evaluated its performance 

as a function of number of nodes, transmission range, data length, BER and offered load. The 

results show that it improves the throughput improvement of original S-FAMA. Though the 

throughput increase is marginal, it increases reliability in terms of ACK loss. With a number 

of retries of 1 and 2 Early ACK enhances the throughput.  

A comparative analysis of the three protocols, S-FAMA, MultiACK and EarlyACK has been 

discussed followed by the quantitative analysis. Both mechanisms would be useful in cases of 
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ACK loss and where energy savings in the sensor nodes is required, but MultiACK-Scenario-I 

outperforms EarlyACK. 

The research has its innovation in terms of incorporating MultiACK and EarlyACK 

mechanisms in S-FAMA. We derived mathematical expressions for both of them and evaluated 

their performance. Though our proposed mechanism provides marginal improvement in 

throughput, its efficacy can be seen in case of ACK loss. As the cost of losing an ACK is very 

high, MultiACK saves both cost and energy. We also calculated the improvement factor, which 

shows that the probability of receiving an ACK correctly by using MultiACK is improved by 

65.05%. 

This is the first attempt and first approach of trying the two mechanisms of MultiACK and 

EarlyACK in S-FAMA without violation of S-FAMA algorithm. This unique approach was 

tested and validated using software tools. This research will help in academia as well as 

industry, by adopting these techniques to enhance the key features of existing MAC protocols 

for underwater communication.  
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Management and Organization Experience 

Head of Electrical Engineering & Management Sciences: Looks after the entire B.E. 

program from Curriculum design to Accreditation from Pakistan Engineering Council 

(PEC);  

Successfully launched and takes care of MS-Engineering Management Program at IoBM 

from Fall 2014. (HEC approved) 
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awaited) 

Launching of Mechatronics Engineering program is also in process (documents submitted 
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ICEL-17, DIRECTOR of TRACK-3, The Engineering Track, October 21-22, 2017 

Organized Workshop on “Outcome Based Education” (OBE) System, “Improving 

Education Deliverance and Attainment Standards”, May 13, 2017, College of Engineering 
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& Sciences, Institute of Business Management. 

Guest Speaker Session On “University: Catalyst for Change”, January, 2017 

Industrial Projects Experience 

 Project Supervisor: “Wi-Fi Controlled Power Generation by Combined Cycle”, 

International Conference on Experiential Learning-2017 at Institute of Business 

Management, October 21-22, 2017.  

 Course projects made by students (Spring-2018):  

- Automated Electromagnetic Crane,  

- The home automation system,  

- Robotic Arm,  

- Radar System,  

- Automated water filling system. 

 Industrial visit of Electrical Engineering students to K. Electric Power Plant: March 06, 

2017 

 Industrial Linkages for students in MS-Engineering Management: Thesis/Projects 
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Other related experience 

 Reviewer  Research papers, for the Elsevier Editorial System 

- Global Communication for Wireless and Optical Communication (GCWOC):  

- Papers reviewed for GCWOC-16, GCWOC-17, GCWOC-18, Univ. of Malaga, Spain 

 Member Technical Program Committee, GCWOC-16, GCWOC-17, GCWOC-18,  Univ. 

of Malaga, Spain  

 Supervised 12 MS-Telecomm. Engineering (MS-TE) students from 2007-2011 at 

PAFKIET. The MS program involved developing a thesis with original research results. 

Details can be seen on PAFKIET Website. 

 Member of Curriculum Review Committee, Pakistan Engineering Council. Appointed 

as Expert for finalizing curriculum of Telecomm. Engineering for Engineering Practice 

Examination (EPE)-2009. 

 Restructured Research and Independent Study work for MS students. Added new courses 

to the curriculum 2006-2009 at PAFKIET 

 Chairperson Women Advisory Committee, PAF-Karachi Institute of Economics and 

Technology, 2007- To 2011 

 Thesis & Research supervisor of MS-TE students at PAFKIET. 

 Final Year Engineering Project  supervisor of BE students, College of Engineering, PAF-

Karachi Institute Of Economics and Technology 

 Mentor for undergraduate students,  College Of Engineering, PAF-Karachi Institute of 

Economics and Technology, 2006-To 2011 

 

 

 

 


