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Abstract

Society is currently undergoing a digital revolution in which Internet-based
services offered to the user are increasingly personalized. Users are always
connected, with services that have increasing requirements in bandwidth,
latency and reliability. Thanks to cellular networks, mobility is also on the
rise, with services that are not only personalized to the users’ taste, needs
and characteristics, but also to their location. Around this concept, the
fifth generation of cell phones (5G) is postulated as a technology that will
enable many services thanks to its low latency, high bandwidths and pre-
cise positioning. Originally, 5G network-based location was anticipated to
have centimeter-level precision. However, initial estimates have since been
revised, and accuracy is now expected to be within several meters. Since
there is still no de-facto technology for indoor positioning as is the case
with outdoor satellite technology, different technologies have been thor-
oughly investigated during the development of this thesis. Awaiting the
implementation for 5G of time-based protocols in order to achieve more
accurate localization, the two most promising technologies at the present
time are Ultra Wide Band (UWB) technology and WiFi with the IEEE
802.11mc protocol that can be used as a placeholder for 5G as a precise
location provider. Both technologies use timestamps and protocols that
exchange multiple messages to accurately estimate the distance to the user.
However, having seen the potential of the different technologies, the study
of joint use has been carried out to see the advantages that can be ob-
tained. In addition, to improve accuracy, range and reduce deployment
costs, it can also be seen that these technologies can be combined with
other technologies or with different sensors.

In our pursuit of the development of algorithms to combine the differ-
ent 4G/5G, UWB or WiFi technologies, we have sought to study different
location-based applications and their respective requirements. Given that
centimeter-precise outdoor positioning has already been successfully accom-
plished, with technologies such as Real Time Kinematics (RTK), we aim



at achieving similar precisions in indoors scenarios, where the conditions
are challenging for signal propagation. Our proposed fusion technique and
the characterization of the technologies have been carried out in complex
scenarios such as indoor, construction or emergency scenarios since they are
very dynamic scenarios with many elements that produce reflections and
signal blockages that end up affecting the location precision.

In order to fulfil the objectives of the thesis, this study has focused on
developing prototypes and services that benefit from the fusion of techno-
logies. By leveraging the different integrated sensors within a smartphone,
we have successfully developed an application and platform capable of sim-
ultaneously accessing location data from multiple sources and employing
diverse location algorithms. These innovations have supported the research
of several projects exploring different localization techniques based on mul-
tiple technologies.

Finally, a unified architecture to validate localization algorithms for tech-
nologies that have not yet been released to the market has been proposed.
With the implementation of this architecture, early progress can be made in
the development and research of future mobile network technologies, such
as 6G, and novel services based on localization.



Resumen

La sociedad vive actualmente una revolución digital en la que los servicios
basados en Internet que se ofrecen al usuario son cada vez más personali-
zados. Los usuarios están siempre conectados, con servicios cada vez más
exigentes en ancho de banda, latencia y fiabilidad. Gracias a las redes ce-
lulares, la movilidad también va en aumento, con servicios que no sólo se
personalizan en función de los gustos, necesidades y características de los
usuarios, sino también de su ubicación. En torno a este concepto, la quinta
generación de telefonía móvil (5G) se postula como una tecnología que per-
mitirá numerosos servicios gracias a su baja latencia, sus grandes anchos
de banda y su posicionamiento preciso. En un principio, se preveía que la
localización basada en la red 5G tendría una precisión de centímetros. Sin
embargo, las estimaciones iniciales se han revisado y ahora se espera una
precisión de varios metros. Dado que aún no existe una tecnología de facto
para el posicionamiento en interiores como ocurre con la tecnología satelital
en exteriores, durante el desarrollo de esta tesis se han investigado a fondo
diferentes tecnologías. A la espera de la implementación en 5G de protoco-
los basados en el tiempo para lograr una localización más precisa, las dos
tecnologías más prometedoras en la actualidad son la tecnología de banda
ultra ancha (UWB) y WiFi con el protocolo IEEE 802.11mc que pueden
utilizarse como sustituto del 5G como proveedor de localización precisa.
Ambas tecnologías utilizan marcas temporales y protocolos que intercam-
bian múltiples mensajes para estimar con precisión la distancia al usuario.
Sin embargo, visto el potencial de las distintas tecnologías, se ha estudiado
su uso conjunto para ver las ventajas que se pueden obtener. Además, para
mejorar la precisión, el alcance y reducir los costes de despliegue, también se
ha visto que estas tecnologías pueden combinarse con otras o con distintos
sensores.

En nuestro afán por desarrollar algoritmos que combinen las distintas tecno-
logías 4G/5G, UWB o WiFi, hemos tratado de estudiar distintas aplicacio-
nes basadas en la localización y sus respectivos requisitos. Dado que ya



se ha logrado con éxito el posicionamiento con precisión de centímetros en
exteriores, con tecnologías como la navegación cinética satelital en tiempo
real (RTK), nuestro objetivo es alcanzar precisiones similares en escenarios
interiores, nuestro objetivo es alcanzar precisiones similares en escenarios
interiores, donde las condiciones son complicadas para la propagación de
la señal. Nuestra técnica de fusión propuesta y la caracterización de las
tecnologías se han llevado a cabo en escenarios complejos como interiores,
de construcción o de emergencia ya que son escenarios muy dinámicos con
muchos elementos que producen reflexiones y bloqueos de señal que acaban
afectando a la precisión de la localización.

Para cumplir los objetivos de la tesis, este estudio se ha centrado en desa-
rrollar prototipos y servicios que se beneficien de la fusión de tecnologías.
Mediante los diferentes sensores integrados en un smartphone, hemos de-
sarrollado con éxito una aplicación y una plataforma capaces de acceder
simultáneamente a datos de localización de múltiples fuentes y emplear di-
versos algoritmos de localización. Estas innovaciones han apoyado la inves-
tigación de varios proyectos que exploran diferentes técnicas de localización
basadas en múltiples tecnologías.

Por último, se ha propuesto una arquitectura unificada para validar algo-
ritmos de localización para tecnologías que aún no han salido al mercado.
Con la implantación de esta arquitectura se podrá avanzar pronto en el
desarrollo y la investigación de futuras tecnologías de redes móviles, como
la 6G, y novedosos servicios basados en la localización.
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Capítulo 1

Introducción

Este capítulo ofrece una introducción al trabajo realizado durante esta tesis. En la
Sección 1.1 se presenta la motivación de este trabajo, indicando cómo la localización es
un servicio fundamental para el futuro de las aplicaciones. A continuación, se presentan
los objetivos perseguidos en esta tesis en la Sección 1.3. Por último, se describe la
estructura del documento en la Sección 1.4.

1.1 Motivación

La localización consiste en determinar la posición de un objetivo con respecto a un
marco de coordenadas de referencia. Los sistemas de localización han constituido un
reto para la humanidad desde el principio de los tiempos, resuelto en primera instan-
cia utilizando las estrellas y otros cuerpos celestes como guía. Hoy en día, los sistemas
mundiales de navegación por satélite Global Navigation Satellite System (GNSS) se han
convertido en la columna vertebral y el principal proveedor de información Posición,
Navegación y Tiempo (PNT). Las futuras aplicaciones de los sistemas de transporte
inteligentes, como los coches autónomos o la completa integración de robots en las
industrias, dependen del posicionamiento absoluto y preciso para garantizar una nave-
gación segura que ya es una necesidad [1] y que se basará no solo en GNSS sino en
otras tecnologías como 5G/6G [2], WiFi [3] o tecnologías de Ultra Wide-Band (UWB)
[4].

Existe una dependencia cada vez mayor de la tecnología satelital para fines de cro-
nometraje o localización en escenarios donde ninguna otra tecnología es capaz de dar

1



2 1.1. MOTIVACIÓN

servicio, como los océanos o desiertos. Por ello, y gracias a una precisión cada vez mejor,
podemos afirmar que GNSS se ha impuesto de forma absoluta para el posicionamiento
en zonas de exterior. La tecnología GNSS ha experimentado un importante desarrollo
en los últimos años, especialmente con el despliegue de las constelaciones satelitales
europea (Galileo) y china (BeiDou), y la modernización del americano (Global Posi-
tioning System (GPS)) y del ruso (GLObal NAvigation Satellite System (GLONASS)).
Mediante el uso de GNSS en receptores de uso común obtenemos una precisión del or-
den de pocos metros [5]. Existen algunas técnicas como Real-Time Kinematic (RTK)
que permiten localizar al usuario de forma precisa e instantánea. Sin embargo, este
método es viable únicamente para entornos abiertos, es decir, espacios dónde la visión
hacia el cielo es posible sin grandes bloqueos. Es por ello que para zonas de interior,
donde nos encontramos con obstáculos principalmente como paredes o techos, el error
para el posicionar al usuario aumenta considerablemente y nos impide conocer la loca-
lización de éste de forma precisa. Es por ello que otras tecnologías buscan imponerse
en el mercado como la tecnología de-facto para este tipo de escenarios.

A lo largo de los años, se ha podido observar un evidente progreso tecnológico
en las redes de telecomunicaciones, especialmente en las redes móviles. A principios
de los años 90, la primera red de telefonía celular digital (Global System for Mobile
Communications (GSM)) fue instalada con un gran éxito comercial en el mundo [6].
Para esta tecnología, los requisitos exigidos por la red eran tremendamente inferiores a
los actuales. Con el paso de los años, la tecnología ha mejorado proveyendo al usuario
de unas ciertas capacidades nuevas, como el acceso a internet para la descarga de
archivos más pesados o el uso continuo de la red celular para usuarios que se desplazan
con alta velocidad, entre otros servicios. No obstante, con la aparición del 5G, que ya
es una realidad, se requieren unas características cada vez más complejas, incluyendo
una latencia reducida en el rango de milisegundos o un posicionamiento del usuario en
tiempo real y con una precisión muy alta, en el orden de los centímetros.

Aunque la red celular ha mejorado con el tiempo, no es la única tecnología que ha ido
evolucionando. Durante años, tecnologías como Bluetooth [7], UWB [8] y WiFi [9] han
mejorado y refinado sus protocolos para ofrecer al usuario una amplia gama de servicios,
al igual que la red celular. Mediante el uso de estas tecnologías, se logra una localización
precisa del usuario en interiores, aunque cada una de ellas posee limitaciones y distintos
niveles de precisión. Por otro lado, se ha anunciado por parte del 3rd Generation
Partnership Project (3GPP) que la nueva generación 5G podrá localizar a los usuarios
de manera precisa en entornos tanto interiores como exteriores [10]. Sin embargo, como
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su implementación aún es parcial, no se ha podido verificar el cumplimiento de este
requisito hasta el momento.

Debido a que los requisitos de los servicios basados en localización son cada vez
más elevados, el propósito de este trabajo consiste en fusionar las tecnologías más
utilizadas, o con mejor proyección, en entornos de interior con diferentes técnicas con
el fin de mejorar los servicios de red asociados a la localización que se le puede brindar
a un usuario final. En esta tesis se ha explorado cómo aprovechar la información
disponible de diversas fuentes de manera oportunista para mejorar la precisión del
servicio de localización, todo dentro de un marco común. El objetivo final es brindar
a los usuarios una experiencia de localización más precisa y en tiempo real, lo que
permitiría ampliar las opciones y personalización de los servicios que se les ofrecen, a
la vez que se gestiona de manera más eficiente los recursos disponibles.

1.2 Preliminares

Esta tesis se ha realizado en el Grupo de Mobile Networks (MOBILENET) de la Uni-
versidad de Málaga, perteneciente al Instituto Universitario de Investigación en Tele-
comunicación (TELMA). Este equipo de investigación se dedica a la mejora de las
redes de telecomunicaciones móviles actuales y al diseño de las futuras, especialmente
mediante el desarrollo de novedosas técnicas, como zero-touch networks [11]. El grupo
MOBILENET se originó en el año 2000 en una colaboración del Grupo de Ingeniería de
Comunicaciones (GIC) con Nokia Networks para crear un Centro de Investigación en
Comunicaciones Móviles, establecido en el Parque Tecnológico de Andalucía (PTA) en
Málaga, cuyo personal incluía personal experimentado de Nokia, así como más de 50
empleados y profesores del GIC. Uno de los proyectos de partida de esta colaboración
consistió en el desarrollo de una herramienta de resolución automática de problemas en
Radio Access Network (RAN), que sentó algunas de las bases para la incorporación de
datos reales de redes celulares y la experiencia de ingenieros en sistemas de resolución
automática de problemas.

Desde el inicio de su actividad, el grupo MOBILENET ha participado en proyectos
de desarrollo de técnica de gestión automática de red basada en Inteligencia Arti-
ficial (IA) en consorcios con empresas nacionales e internacionales. Algunos de los
más representativos son el proyecto EUREKA CELTIC "GANDALF: Monitorización
y autoajuste de parámetros RRM en una red multisistema" (2005-2008) y MONOLOC
(2011-2014). Durante el transcurso de estos proyectos, se desarrolló un simulador Long
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Term Evolution (LTE) a nivel de sistema que se fue mejorando sucesivamente para
incluir capacidades de localización.

Una parte sustancial del desarrollo de esta tesis se ha enmarcado parcialmente en el
proyecto europeo H2020 LOCUS [12] (LOCalization and analytics on-demand embed-
ded in the 5G ecosystem, for Ubiquitous vertical applicationS) con especial atención a la
localización de usuarios basadas en tecnologías dentro y fuera del 3GPP y la gestión in-
teligente de redes. Además, el estudio realizado en este proyecto se ha podido trasladar
a otros proyectos para la localización de operarios en zonas de construcción dentro del
proyecto TEDES-5G [13], a la localización de víctimas en escenarios de emergencia
en el marco del proyecto PENTA [14] o el uso de localización para mejorar el sistema
educativo dentro del proyecto MAORI [15].

1.3 Desafíos y objetivos

El principal objetivo de esta tesis consiste en mejorar el rendimiento de los sistemas
de localización basados en la red móvil en escenarios con condiciones de propagación
complejas mediante el uso de diferentes tecnologías radio de forma simultánea, como
la red celular, WiFi o UWB, en diferentes escenarios como interiores, zonas de cons-
trucción o emergencias. Es por ello que en este trabajo se abordan varios desafíos a
los que se enfrenta. El primero de ellos (Des. 1) consiste en mejorar la localización del
usuario antes de aplicar filtros para la navegación como el filtro de Kalman [16] o el
de partículas [17]. Para esto, se utilizará la información del entorno de las diferentes
tecnologías disponibles en un instante de tiempo específico, es decir, en el momento
previo al uso de los filtros. Para lograr esto, es necesario desarrollar un sistema para la
recopilación y procesamiento de medidas en tiempo real o diferido (Des. 2), lo que nos
permitirá analizar y caracterizar los algoritmos y tecnologías propuestas estudiadas a
lo largo de esta tesis (Des. 3). Una vez que hayamos estudiado las distintas tecno-
logías, será necesario comprobar la aplicabilidad directa y sencilla de la localización
precisa con multitecnología en el mundo real. Por lo tanto, se han desarrollado algunos
conceptos para aplicaciones basadas en la localización en el mundo real (Des. 4), como
la localización y detección de víctimas en escenarios de emergencia, el posicionamiento
de usuarios en interiores y el control automático de asistencia como un ejemplo de
aplicación de Smart Education. Por último, se busca enmarcar las pruebas realizadas
dentro de un marco global predefinido (Des. 5). A continuación, se recogen los desafíos
que se pretenden cubrir con esta tesis:
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Des. 1. Mejorar la localización de usuarios utilizando diversas tecnologías: Este
desafío se centra en encontrar formas de mejorar la precisión de la localización de
los usuarios al combinar diferentes tecnologías radio en un instante específico. En
lugar de depender únicamente de una tecnología, se busca aprovechar múltiples
tecnologías simultáneamente para obtener una ubicación más precisa.

Des. 2. Desarrollar un sistema de obtención de medidas de diferentes tecno-

logías: Para lograr la localización precisa utilizando múltiples tecnologías, es
necesario desarrollar un sistema que permita capturar las mediciones de estas
tecnologías simultáneamente para su posterior procesamiento.

Des. 3. Caracterizar diversas tecnologías precisas y comprobar sus ventajas y

desventajas: Una vez recopiladas las mediciones de las diferentes tecnologías,
es importante analizar y caracterizar cada una de ellas. Esto implica estudiar
sus capacidades, limitaciones, ventajas y desventajas para comprender mejor su
funcionamiento y determinar qué nos ofrece cada tecnología en cada uno de los
escenarios propuestos.

Des. 4. Desarrollar aplicaciones reales basadas en localización: Se pretende crear
servicios y aplicaciones basados en localización precisa en tiempo real que puedan
aprovechar los beneficios de la multitecnología. Estas aplicaciones tienen un
amplio alcance y pueden estar dirigidas a diversos sectores, incluyendo servicios
para el público en general, educación, construcción o situaciones de emergencia,
entre otros.

Des. 5. Conseguir un marco predefinido para realizar pruebas de localización:
Se pretende establecer un marco global predefinido para llevar a cabo pruebas de
localización. Esto implica definir un conjunto de criterios, protocolos y metodolo-
gías que permitan realizar pruebas comparativas de las tecnologías de localización
en diferentes escenarios y condiciones, para evaluar su desempeño de manera justa
y precisa.

Los servicios basados en la localización requieren una información de posiciona-
miento fiable, continua y precisa [18]. Para este fin, se han desarrollado varias tecno-
logías, como GNSS o UWB, y técnicas como RTK, reconocimiento de imágenes o
trilateración, que tratan de proporcionar información precisa de localización [19, 20].
Sin embargo, los escenarios de interior presentan grandes desafíos debido a las dificul-
tades en la propagación de ondas de radio, lo que resulta en que GNSS no pueda ofrecer
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una precisión adecuada y los errores pueden llegar a ser significativos, incluso de varias
decenas de metros. Los escenarios de interior suelen contener objetos metálicos que
reflejan y bloquean las señales, lo que produce efectos de multitrayectoria que pueden
afectar negativamente a la estimación de la localización e incluso generar zonas sin
información de localización disponible. Además, algunos escenarios interiores suelen
ser dinámicos, con cambios constantes debido a la movilidad de las personas dentro del
escenario, como en un centro comercial o en un campus universitario. En consecuencia,
se han desarrollado varias tecnologías para abordar estas limitaciones y proporcionar
servicios de localización precisos en entornos interiores donde GNSS no puede llegar. El
cálculo de la posición de un usuario es directamente proporcional a la precisión de las
medidas recogidas. En este trabajo, se han llevado a cabo siete objetivos que abordan
los desafíos propuestos anteriormente. Para ello, se hace un estudio en profundidad
sobre la viabilidad de combinar diferentes tecnologías que aportan diferentes rangos de
precisión (Obj. 1) para mejorar la estimación final de la localización obtenida mediante
trilateración así como la cobertura y la disponibilidad de los sistemas de localización
en entornos interiores. Para ello, es necesario comprobar mediante simulaciones si se
cumplen las principales premisas de mejora.

Dado que GNSS tiene limitaciones en cuanto a su capacidad para proporcionar po-
sicionamiento en interiores, diversas tecnologías están compitiendo para convertirse en
la tecnología predominante en este campo en los próximos años. Entre ellas se destacan
dos tecnologías que actualmente presentan grandes prestaciones que son UWB y WiFi.
Ambas tecnologías ofrecen un alto rendimiento, logrando precisiones de centímetros en
este tipo de entornos, aunque presentan ciertos inconvenientes como el alcance, el con-
sumo de energía o la implantación en el mercado. Mientras tanto, las redes 5G, aunque
todavía están en una fase inmadura de despliegue, prometen ofrecer una precisión de
pocos metros de error. En términos generales, la fusión de estas tres tecnologías de-
bería mejorar los resultados obtenidos tal y como se busca comprobar en el Objetivo 1.
Para ello, se deberá desarrollar un marco de trabajo o una aplicación (framework) que
permita recopilar los datos de forma individual (Obj.2) de las diferentes tecnologías en
escenarios reales.

A pesar de las buenas prestaciones que ofrecen UWB y WiFi, un objetivo de este
trabajo es profundizar en el estudio y la caracterización de ambas tecnologías en di-
ferentes escenarios para evaluar sus diferentes cualidades (Obj.3). Es por ello que se
plantea estudiar ambas tecnologías en escenarios que son cambiantes por su propia
naturaleza tales como escenarios de construcción y de emergencias, en los que no se
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puede realizar un modelo genérico. Para ello, se evaluará la precisión, el alcance y
la capacidad de penetración a través de diferentes plantas de un edificio y escombros,
utilizando el framework previamente diseñado para el objetivo anterior.

El propósito del estudio teórico y la caracterización de diversas tecnologías es su
implementación en el mundo real. Es por ello que se propondrán sistemas para la de-
tección y localización de víctimas en escenarios de emergencias (Obj. 4) y para mejorar
el rendimiento de los estudiantes en un marco de una educación inteligente (Obj. 5).
Para lograr este cuarto objetivo, se buscará reducir los tiempos de búsqueda al mínimo
ya que en un escenario catastrófico, una de las tareas más complejas es detectar, iden-
tificar y localizar a las víctimas, especialmente en situaciones donde están atrapadas
bajo los escombros. Este proceso es el primer paso en una serie de medidas, que in-
cluyen evaluar el estado de la víctima, establecer comunicación, liberarla y trasladarla
a un lugar seguro [21]. Por lo general, este primer paso se realiza mediante observación
directa, y no existe ningún diseño para informar al equipo de rescate sobre posibles
áreas en las que podrían encontrarse las víctimas. En cuanto al quinto objetivo, se
realizará un estudio sobre cómo utilizar la localización en una educación inteligente en
los próximos años. Una vez que se comprueben los avances y aplicaciones ya existentes
para una educación inteligente, se propondrá algún servicio basado en la localización
con el fin de mejorar la educación de los estudiantes.

Sin embargo, existirán muchas circunstancias en las que los usuarios no podrán
localizarse de forma precisa debido a una falta de un equipamiento más avanzado.
Por tanto, el posicionamiento que se puede obtener en estos escenarios se realizará
con la información de la potencia de la señal recibida. Debido a que la potencia
recibida puede no seguir un modelo de propagación determinista, en los casos en que
las condiciones ambientales permanecen relativamente estables, se observa que ésta
permanece constante a lo largo del tiempo. Por ejemplo, si consideramos una ubicación
muy próxima a un punto de acceso WiFi y la potencia medida disminuye inusualmente
debido a un obstáculo como una pared, este nivel de potencia permanecerá inalterado
a lo largo del tiempo mientras el obstáculo permanezca inmóvil. Como resultado, cada
punto en el espacio se asocia con un conjunto de valores emparejados que comprenden
identificadores de puntos de referencia y niveles de potencia recibida invariables. Este
tipo de técnicas altamente dependientes de mapas radio son muy costosas debido a
la fase inicial de recogida de medidas en el escenario. Por ello, se pretende estudiar
el impacto de técnicas de localización basadas en modelos (Obj. 6) que abaratan en
gran medida esta primera fase inicial ya que permite localizar a los usuarios con mapas
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inicialmente incompletos.

En esta tesis se realizarán diferentes pruebas de concepto y se mostrarán diversos
servicios y despliegues basados en la localización en diferentes escenarios, como son
de interior, construcción y emergencias, gracias al sistema desarrollado para recoger
las medidas del mundo real definido en el (Obj. 2). Con el aprendizaje adquirido,
se desarrollará un marco conceptual para definir una arquitectura con el propósito de
crear nuevos servicios basados en la localización (Obj. 7). Para ello, se llevará a cabo
un estudio en profundidad de los diferentes casos de uso en tecnologías que todavía
no han salido al mercado (por ejemplo, la tecnología 6G) para definir un sistema de
validación en una fase temprana de la tecnología. Estos sistemas de validación serán
bancos de pruebas o testbeds que se utilizan para probar y validar nuevas tecnologías,
productos o sistemas en un entorno controlado y seguro antes de su implementación
en un entorno real. Primero se definirán los requisitos de los diferentes servicios que
podemos encontrarnos en los próximos años. A continuación, se propondrá una ar-
quitectura que permite a la tecnología emergente enfrentarse a los nuevos desafíos y
desplegar una infraestructura para validar de manera temprana los objetivos que se
pretenden alcanzar.

Obj. 1. Estudiar la viabilidad de la fusión de tecnologías en un entorno simu-

lado. En dicha simulación se deberá crear un escenario con diferentes tecnologías
y diferentes grados de precisión para ver cuáles son los posibles beneficios de di-
cha fusión. Este estudio consistirá en caracterizar los rangos de dos tecnologías
de diferente precisión. En este objetivo se pretende comprobar si la fusión opor-
tunista de una localización imprecisa con rangos precisos consigue mejorar la
precisión de localización de los usuarios. Para ello, se deberá estudiar la pre-
cisión del sistema de localización en aquellas zonas en las que una localización
precisa no es posible pero sí se observa información útil de rangos precisos.

Obj. 2. Desarrollar un framework para obtener medidas reales y poder estu-

diarlas. Para poder llevar a cabo experimentos reales, es necesario la creación
de un framework que nos permita obtener las medidas necesarias para un es-
cenario concreto. Para ello, se deberá capturar aquellas medidas que puedan
aportar información de la distancia desde un punto de referencia a un objetivo.
Con este framework, se podrán llevar a cabo campañas de medidas en diferentes
situaciones en los que se encuentren objetos de diversa naturaleza que conlleva
reflexiones y atenuaciones como, por ejemplo, un escenario de interior. De esta
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forma, se podrá evaluar el rendimiento de la fusión de información de diferentes
tecnologías.

Obj. 3. Caracterizar las tecnologías de localización de interiores más promete-

doras en diferentes escenarios. Para comprobar la precisión de las tecnologías
más precisas en el mercado actual, se propone realizar un estudio de UWB, WiFi
y, a ser posible, la red 5G en diferentes escenarios como son un escenario típico de
interior, un escenario complejo como una obra o un escenario excepcional como
es un escenario de emergencia. Esto nos permitirá definir y comprobar diferentes
características de dichas tecnologías como son su precisión, alcance y capacidad
de penetración.

Obj. 4. Evaluar la localización en escenarios de interior con mapas incompletos.
Para ello, se desarrollarán técnicas basadas en mapas radio y se propondrán
algoritmos de localización basados en Machine Learning (ML) para la generación
de modelos que pretende minimizar los costes en la fase inicial de recogida de
datos y permite localizar en zonas del escenario que no han sido medidas.

Obj. 5. Proponer un sistema de detección y localización de usuarios en escena-

rios de emergencia. Para ello, se llevará a cabo un estudio del estado del arte
en el que se encuentran este tipo de sistemas y servicios. Además, se propondrá
un sistema que se beneficie de algunas tecnologías comúnmente utilizadas para
localización en escenarios de interior gracias a su robustez ante atenuaciones y
reflexiones.

Obj. 6. Estudiar y proponer una aplicación basada en la localización para una

educación inteligente. Gracias al intenso estudio que se realizará basado en
la localización, se estudiará la aplicabilidad de nuevos servicios basados en lo-
calización para mejorar el sistema educativo con tecnologías para una Smart
Education.

Obj. 7. Proponer una arquitectura flexible de bancos de pruebas o testbeds

para comprobar la viabilidad de algoritmos basados en localización

para tecnologías emergentes. En este sentido, se realizará un estudio sobre
servicios que se ofrecerán en la próxima generación celular (6G) y se propondrá
una arquitectura flexible para poder probar la viabilidad de algunos algoritmos y
técnicas. Esta arquitectura englobará un sistema predefinido en el que se podrán
realizar pruebas y poder validar la tecnología de forma temprana pudiendo así
enfrentarse a requisitos que demande la sociedad del futuro.
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1.4 Estructura de la Tesis

Este documento se ha estructurado en varios capítulos para mejorar su comprensión,
como se muestra en la Figura 1.1. En este primer capítulo se realiza una introducción al
tema junto con la motivación que nos ha llevado a realizar este trabajo y se definen los
objetivos del trabajo. A continuación, se presentan los antecedentes y conocimientos
necesarios para comprender el resto de la tesis. En el Capítulo 2 se presenta una
revisión del estado del arte de las tecnologías utilizadas en este trabajo para mejorar
el servicio de localización. Además, en el Capítulo 3, se exploran diferentes desafíos
que presentan las diversas técnicas de localización que serán la base para realizar la
fusión de las tecnologías aplicadas en esta tesis. Estas técnicas y tecnologías formarán
la base para la realización de las pruebas concretas que se validarán con los resultados
obtenidos y servirán para presentar su estudio en publicaciones de calidad.

El Capítulo 4 corresponde a las publicaciones que se han llevado a cabo en este
trabajo para cubrir los objetivos y sustentar esta tesis. Estas publicaciones se agrupan
en un bloque único debido a que abordan diversos aspectos relacionados con la locali-
zación, desde su estudio y aplicabilidad en entornos simulados hasta su implementación
en servicios como escenarios de emergencia o educación inteligente, así como el análisis
de las tecnologías en diferentes contextos. Por ello, se ofrece una guía detallada sobre
la relación entre las publicaciones y los objetivos y desafíos planteados en la tesis, así
como las herramientas y tecnologías utilizadas en cada caso. Cada una de las publica-
ciones incluidas en este capítulo examina un problema específico, realiza una revisión
en profundidad y detallada del estado del arte, presenta una solución al desafío y evalúa
los resultados obtenidos. En el Capítulo 5, se presentan las publicaciones en el orden
establecido en el capítulo para la justificación de esta tesis realizada por compendio
que cubre los objetivos propuestos.

Finalmente, el Capítulo 6 resume los resultados clave de la tesis y presenta las
conclusiones derivadas del trabajo realizado. Además, también se proponen nuevas
líneas de investigación que pueden ser abordadas en el futuro gracias a los hallazgos
obtenidos en este estudio.
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Figura 1.1: Estructura de la tesis





Capítulo 2

Tecnologías de localización en

escenarios de interior

En los últimos años, a medida que los dispositivos móviles se han convertido en una ex-
tensión natural del ser humano, la localización de los usuarios se ha convertido en una
dimensión clave en las comunicaciones. Con un crecimiento exponencial proyectado
para el mercado de los servicios que se ofrecerán en el futuro gracias a una precisión
submétrica, como la conducción autónoma [22] o la eXtended Reality (XR) [23], la
localización precisa de usuarios se convierte en soporte clave para muchos de los servi-
cios que consiguen trasladar al usuario y a su entorno al mundo digital. Esto abre una
amplia gama de posibilidades para el desarrollo de aplicaciones cada vez más exigentes,
que están destinadas a transformar nuestra vida cotidiana en el futuro.

En este capítulo se examinan diversas tecnologías empleadas para la localización de
usuarios en escenarios de interior. Se comienza explicando por qué GNSS no es viable
en espacios cerrados, seguido de un análisis detallado de varias tecnologías. Finalmente,
se concluye con el impacto y la utilización previstas de estas tecnologías en el futuro.

2.1 Problemas de localización con GNSS

El posicionamiento ha constituido un reto para la humanidad desde el principio de
los tiempos, resuelto en primera instancia utilizando diferentes cuerpos celestes como
guía [24]. Sin embargo, con la introducción de la tecnología satelital GPS en los años
60, se estableció un sistema principal para la provisión de información de localización

13
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[25]. En los últimos años, la tecnología GNSS ha experimentado un gran avance,
gracias a la modernización de sistemas ya existentes como GPS o GLONASS [5] y a la
implementación de nuevas constelaciones satelitales como Galileo [26] o Beidou [27].

GNSS es un sistema de satélites que orbitan alrededor de la Tierra y transmiten
señales de radio para proporcionar información sobre su propia posición en el espacio.
La localización por satélite básica implica resolver un problema geométrico basado en
la distancia entre los satélites y un objetivo determinado como se muestra en la Figura
2.1 [28]. Para calcular esta distancia, se utiliza el tiempo que tarda la señal de radio
en llegar al objetivo multiplicado por la velocidad de la luz (también conocido como
tiempo de vuelo o Time of Flight (ToF)). El ToF se determina midiendo la diferencia
de tiempo entre el envío del mensaje desde el satélite y su recepción en el receptor.
Además, cada satélite utiliza un código identificador que permite a los receptores saber
qué satélite está emitiendo la señal y proporcionar información sobre su órbita [29]. La
posición de los satélites es fundamental para calcular la posición del objetivo mediante
trilateración, un método que utiliza la posición conocida de los puntos de referencia (es
decir, los satélites) y la distancia a ellos, que se explicará más adelante. Se requieren
al menos cuatro satélites para determinar la posición del objetivo en tres dimensiones
(3D) [30].

Satélite 1 Satélite 2

Satélite 3

Figura 2.1: Posicionamiento básico con GNSS

A pesar de ofrecer un servicio global, el rendimiento de GNSS puede degradarse
fácilmente debido a una gran variedad de factores. Así, los fenómenos naturales (por
ejemplo, la influencia de las capas ionosférica y troposférica de la atmósfera [31]),
la reflexión de la señal por multitrayectoria, el bloqueo de la señal con Non Line
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of Sight (NLoS) y las amenazas radioeléctricas (por ejemplo, las interferencias y la
suplantación de identidad [32]) constituyen importantes retos para el GNSS. De-
pendiendo del tipo de observación por satélite que se utilice y del conjunto de datos de
corrección que se aplique, se puede enumerar una amplia variedad de técnicas de nave-
gación [5, 28]. Aunque técnicas como RTK pueden lograr una precisión de centímetros
en espacios abiertos de manera casi instantánea, su viabilidad se limita a lugares donde
hay visibilidad del cielo sin grandes bloqueos y requiere unos equipamientos altamente
costosos [33]. En consecuencia, en zonas de interior, los obstáculos hacen que el mar-
gen de error en la localización de usuarios aumente significativamente, lo que limita
la eficacia de técnicas precisas como RTK. A pesar de que GNSS se ha convertido
en un estándar común para la localización en exteriores, el campo de la localización
en interiores sigue siendo un área abierta a la investigación, con varias tecnologías
compitiendo por su desarrollo.

2.2 Tecnologías para la localización de usuarios en

interiores

Dado que la información satelital se ve muy condicionada debido a los bloqueos de los
edificios, desde hace unos años existen varias tecnologías que buscan convertirse en el
estándar de posicionamiento en interiores como sucede con GNSS en la navegación de
exteriores. A continuación, se detallarán las características de estas tecnologías.

2.2.1 Red Celular

Una de las tecnologías más prometedoras para la localización en interiores son las
redes móviles gracias a su ubicuidad. Las redes celulares 2G, 3G y 4G operan en un
amplio espectro de frecuencias, que van desde los 800MHz hasta los 2600 MHz. Sin
embargo, los esfuerzos de investigación y desarrollo de estas generaciones celulares se
han enfocado en los servicios de voz y en el tráfico de datos para el consumo humano, lo
que ha dejado en segundo plano el desarrollo de la localización precisa. Actualmente,
la precisión de la localización con la red celular LTE-Advanced (LTE-A) de forma
autónoma sin el apoyo de GNSS en escenarios de interior es inferior a 50 metros en al
menos el 40% de los casos [18].

En la actualidad, el uso generalizado de la localización en muchos servicios ha
generado una demanda de localización precisa para la nueva generación de redes móviles
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5G [34]. Servicios como el beamforming [35] o control de flotas [36], necesitan la
localización de los User Equipment (UE)s para poder gestionar la red de forma más
eficiente.

Dado que la red celular no posee un sistema de localización preciso, en la última
década, el 3GPP decidió incluir la información satelital como parte del protocolo para
obtener la ubicación de los usuarios [37]. En la Release 15, la red celular utiliza la
tecnología GNSS que se transmite a la red a través del protocolo de posicionamiento
LTE Positioning Protocol (LPP) [38].

A pesar de que nos encontremos en una fase temprana de despliegue del 5G, el 3GPP
ha anunciado que ofrecerá una precisión de menos de 3 metros en ambas dimensiones
horizontales y verticales, y de hasta 10 metros en el plano vertical en espacios abiertos
para el 80% de los casos [10]. Para ello, se implementarán distintos protocolos, como
el multi-Round Trip Time (RTT) [39], que utiliza marcas temporales para medir la
distancia entre la celda servidora y las celdas vecinas, y así mejorar la precisión del
sistema. El 3GPP ha señalado en informes técnicos, como [10], que el uso de RTT puede
emplearse en ambos espectros de frecuencia definidos en 5G, Frequency Range (FR)1
para frecuencias inferiores a 6GHz y FR2 para la banda milimétrica (mmWave). Este
protocolo se utilizará en las señales de subida y bajada tanto de la celda servidora
como de las celdas vecinas, con el objetivo de obtener una ubicación precisa de los
usuarios sin que ello conlleve un mayor coste energético. Aunque se están preparando
los fundamentos para el desarrollo de Beyond 5G (B5G) o 6G, los servicios basados en
la localización en la red B5G/6G necesitarán información de posicionamiento fiable,
continua y precisa para aprovechar todo su potencial [18].

Por otra parte, las redes móviles están evolucionando hacia celdas más pequeñas y,
por tanto, estarán presentes en la mayoría de los entornos interiores. La implementación
de frecuencias más altas como mmWave [40], junto con la capacidad de beamforming
(gracias al Multiple Input Multiple Output (MIMO) [41]) y una alta densidad de celdas,
permitirá una precisión muy alta en escenarios muy acotados. Esta implementación
ayudará a reducir los errores de localización, incluso por debajo de un metro en la
próxima generación de redes móviles (6G) [42]. Es por ello que se están llevando a cabo
estudios y proyectos como Hexa-X [43] o Rise-6G [44] para prever cómo evolucionarán
las redes celulares en los próximos diez años.
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2.2.2 Bluetoth y BLE

Bluetooth es una especificación para las Personal Area Network (PAN), tal y como se
estandarizó en la norma IEEE 802.15.1 [45]. Se trata de una tecnología de comunica-
ciones inalámbricas de corto alcance con un rango máximo aproximado de 100 metros
para dispositivos de clase 1 [46]. Permite una comunicación de bajo coste y bajo ancho
de banda para conectar dispositivos electrónicos como teléfonos móviles, auriculares,
tabletas, ordenadores portátiles, impresoras, etc. Además, se pueden conectar varios
dispositivos Bluetooth para formar redes malladas jerárquicas (Piconets) [47]. Desde su
concepción inicial, Bluetooth ha experimentado diversas evoluciones en sus versiones
con el objetivo de mejorar tanto su velocidad como sus características. La tecnolo-
gía de posicionamiento Bluetooth localiza el objeto midiendo la intensidad de la señal
[48]. En ambientes interiores complejos y cambiantes, los sistemas de posicionamiento
Bluetooth se enfrentan a los desafíos de atenuaciones, reflexiones y bloqueos que hacen
que tengan una baja precisión.

La versión más actual de la tecnología Bluetooth es conocida como Bluetooth de
bajo consumo, o Bluetooth Low Energy (BLE). Esta versión tiene varias propiedades
interesantes que han hecho que grandes empresas se centren en esta tecnología para me-
jorar la precisión de la localización de los dispositivos [49]. A diferencia de la tecnología
Bluetooth ordinaria, en la que es necesario emparejar los dispositivos, en los disposi-
tivos BLE pueden utilizarse en modo de difusión sin necesidad de emparejamiento.
Además, BLE es una tecnología prometedora en las implementaciones del Internet of
Things (IoT) [50, 51]. La localización mediante BLE se basa en mediciones de RSSI,
que se pueden aplicar de diferentes formas en las distintas técnicas. Bajo condiciones
específicas, se puede obtener una precisión de solo unos pocos metros de error, espe-
cialmente en Line of Sight (LoS) y con proximidad a balizas o puntos de referencia
[52]. Esta tecnología es especialmente interesante en algunas aplicaciones ya que no
requieren de un hardware costoso, además de que el número de dispositivos IoT está
creciendo exponencialmente y muchos de ellos llevan integrado la tecnología BLE. Gra-
cias a su amplio alcance, esto permite mejorar los sistemas de detección y aumentar
la densidad de dispositivos que monitorean la ubicación de usuarios que no necesitan
servicios de alta precisión, lo que resulta en una mayor cobertura y despliegue.
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2.2.3 Banda Ultra Ancha (Ultra Wide Band, UWB)

La tecnología de banda ultraancha (UWB) es una tecnología radio de comunicación de
corto alcance y gran ancho de banda que cuenta con pulsos extremadamente cortos (del
orden de nanosegundos), lo que le otorga una fuerte resistencia a las condiciones de
propagación con multicamino [53]. Esto puede ser beneficioso para calcular la distancia
a un objetivo en entornos con características de propagación difíciles [54]. Para su
funcionamiento, se utiliza un generador de ondas de alta frecuencia, que emite ondas
UWB que ocupan un ancho de banda de frecuencias mayor a 500 MHz o al 20% de la
frecuencia portadora.

Para evitar interferencias con otros servicios de radio, la Comisión Federal de Comu-
nicaciones (Federal Communications Commission (FCC)) de EE. UU. ha restringido el
uso sin licencia de la UWB a una densidad de potencia isotrópica equivalente de -41,3
dBm/MHz [55] y ha restringido la banda de frecuencias a 3,1 GHz - 10,6 GHz [56].
La Figura 2.2 muestra la coexistencia de la tecnología UWB con otros estándares de
radiofrecuencia.

GNSS GSM WLAN 802.11 mc/b/g
Bluetooth

WLAN 802.11a

UWB

Frecuencia (GHz)
1.6 1.9 2.4 3.1 5 6 8.5 10.6

Potencia
de señal

-41dBm/MHz

Figura 2.2: Espectro de frecuencias en los que operan varias tecnologías

Las restricciones legales en cuanto a la potencia de la señal limitan el alcance
operativo a menos de 100 metros [56]. Por otro lado, la baja densidad espectral de
potencia limita las interferencias de las señales UWB con otros receptores de banda
estrecha [56]. Las señales UWB autorizadas operan en la longitud de onda de las
microondas, lo que les permite penetrar materiales como el hormigón, el vidrio y la
madera a través de los componentes de baja frecuencia en el espectro de la señal aunque
a frecuencias más altas, esas capacidades desaparecen [57]. Uno de los motivos por los
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que UWB proporciona una precisión tan alta es debido a que utiliza el protocolo RTT
en el que el paquete de datos se marca temporalmente en el momento de su envío
a un receptor y este lo retransmite de vuelta pasado un tiempo concreto. De esta
forma, se consiguen eliminar las derivas temporales entre los diferentes relojes ya que
el único reloj que se utiliza para el cálculo de las distancias es el del transmisor. La
tecnología UWB también es capaz de ofrecer un alto rendimiento para la transferencia
de datos debido a su amplio espectro. El principal inconveniente es el elevado consumo
energético que tiene asociado debido a la necesidad de un ancho de banda amplio
para el intercambio de paquetes [58, 59]. El uso del protocolo RTT para localización
incrementa aún más este consumo debido al intercambio de múltiples paquetes.

2.2.4 WiFi FTM

Debido a su rentabilidad, disponibilidad y actual despliegue mundial, la red WiFi ha
sido sujeto de muchos estudios de investigación para mejorar el posicionamiento de
interiores [60, 61]. Los sistemas de localización basados en WiFi pueden aprovechar la
infraestructura ya existente en espacios interiores, lo que ofrece una cobertura global
con costes muy reducidos para el operador. En las primeras versiones del protocolo
WiFi (IEEE 802.11), la localización se estimaba mediante la potencia de la señal [60].
Los efectos de diversos elementos del entorno, como el cuerpo humano, los dispositivos
electrónicos, puertas y materiales de construcción, han sido objeto de diversos estudios
extensivos para mejorar la precisión de la localización [62, 63, 64]. Sin embargo, una
localización basada en las mediciones de potencia, como se explica más adelante en los
apartados 3.4 y 3.5, con constantes cambios en el entorno hace que sea inviable una
precisión cercana al metro de error.

El estándar IEEE 802.11mc incluye la medición precisa del tiempo (Fine Time
Measurement (FTM)) para la estimación de la distancia del UE al router mediante
la inserción de marcas temporales y utilizando el protocolo RTT [65, 61] al igual que
sucede en UWB. Esta versión pretende transformar el sector del posicionamiento en
interiores en los próximos años, a medida que los nuevos equipos WiFi den soporte al
protocolo IEEE 802.11mc de forma generalizada. El protocolo estima con una precisión
en torno al metro [66] la distancia de cualquier usuario que soporte el protocolo WiFi
FTM sin necesidad de estar conectado al router [67]. La información se calcula en
la parte del UE para preservar la privacidad, ya que la información sensible sobre
la ubicación no se comparte entre los nodos de la red. En [61, 68], se estima que la
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precisión para el posicionamiento WiFi FTM es de alrededor de un metro en escenarios
del mundo real con despliegues densos de routers WiFi o Access Point (AP). Los
dispositivos WiFi de Google lideran actualmente el desarrollo de esta tecnología, ya
que fueron los precursores de dicho protocolo. No obstante, cada vez más routers están
incluyendo este protocolo [69]. La tecnología WiFi FTM funciona sobre la banda de
5GHz y, en función del ancho de banda asignado, posee diferentes precisiones. Para las
estimaciones de alcance con un 90% de error de Cumulative Density Function (CDF),
se espera que tenga las siguientes tolerancias como se muestra en la siguiente Tabla
2.1.

Ancho de Banda [MHz] Precisión del error [m] al 90%
80 2
40 4
20 8

Tabla 2.1: Comparación del nivel de precisión de WiFi FTM en función del ancho de
banda [69, 66]

2.2.5 Conclusiones de las diferentes tecnologías

Las últimas tendencias del mercado muestran que la tecnología UWB puede convertirse
pronto en un estándar de facto (aunque esta predicción está siendo desafiada reciente-
mente por el IEEE 802.11 mc). Por eso, algunos smartphones ya han integrado chips
UWB y WiFi FTM en sus móviles como Samsung o Xioami, en los últimos años. Las
dos tecnologías UWB y WiFi FTM para la localización en interiores parecen ser tam-
bién una rivalidad entre dos grandes empresas: Apple apuesta por UWB [70] frente a
Google que lo hace por WiFi FTM [69]. Sin embargo, los últimos teléfonos de Google,
los Google Pixel 6 y 7, ya constan de chips UWB integrados. WiFi FTM fue estan-
darizado por primera vez por la Wi-Fi Alliance en 2016 [66] y ha sido soportado en
Android desde al menos 2018. Apple, con los AirTags y iPhones (a partir del iPhone
11 [71]) , comenzó a comercializar dispositivos que soportan UWB en el rango de 6-8,5
GHz a finales de 2019 [72, 73].

En los próximos años se espera que aparezcan nuevas aplicaciones basadas en
Localization-as-a-Service (LaaS) en la futura red 6G. Se están proponiendo servicios
como los vehículos autónomos [74], las redes sociales [75], servicios de salud e-Health
[76, 77], la localización de víctimas en escenarios de emergencia (inundaciones, incen-
dios, terremotos...) [78], realidad extendida en videojuegos [79], educación inteligente
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[80] o la navegación de robots autónomos no tripulados [81]. Asimismo, la localización
como una nueva dimensión también puede beneficiar a los procedimientos de gestión
de redes, como la predicción del tráfico basada en la localización [82]. La Tabla 2.2
resume los requisitos de precisión y latencia, así como los desafíos que supone su imple-
mentación. Esto indica que en el futuro, diferentes tecnologías tendrán que coexistir
para poder cumplir con los requisitos de los usuarios.

Requisitos de ubicación (más restrictivos) Desafíos de la in-
vestigación

Caso de uso Precisión Latencia
Coches de conducción autónoma < 1 m < 100 ms Coexistencia con

conducción hu-
mana

Redes sociales < 10 m < 5 s Detección de
bots, privacidad
del usuario.

e-Health < 1 mm < 50 ms La cirugía a
distancia tiene
unos requisitos
muy elevados

Escenarios de emergencia < 5 m Pocos segundos Falta de in-
fraestructuras,
víctimas bajo
los escombros

Sensores hápticos y juegos < 10 cm < 20 ms Requisitos muy
restrictivos en el
interior

Educación inteligente < 10 cm < 20 ms Requisitos muy
restrictivos en
interiores, alta
densidad de
usuarios

Robots autónomos < 10 cm < 50 ms Escenarios inte-
riores con mucho
desorden

Tabla 2.2: Resumen de los requisitos y retos de los casos de uso de la localización 6G





Capítulo 3

Técnicas de localización en interiores

En los últimos años, las necesidades del ser humano de posicionamiento han cambiado
significativamente de exterior a interior. Tras conseguir un sistema robusto y fiable en
exteriores como es GNSS, la tecnología se enfrenta ahora al reto de proporcionar una
localización precisa en entornos interiores, donde no existe el apoyo de GNSS. Debido a
esta necesidad de precisión en la localización de personas y objetos en espacios cerrados,
se ha producido un gran avance en el desarrollo de diversas técnicas y tecnologías para
lograr la localización efectiva en interiores.

Existen múltiples técnicas para localizar a los usuarios. En este capítulo se tratan
las distintas técnicas de localización más utilizadas que consiguen una estimación de
la localización del UE gracias a un conjunto de lecturas sobre los puntos de referencia.
Hay varias técnicas que pueden utilizarse, en función del tipo de información y los
recursos disponibles así como de los requisitos de rendimiento. La Figura 3.1 ilustra y
resumen las principales técnicas de localización estudiadas en esta tesis.

3.1 Localización por proximidad

La forma más sencilla de localización es por proximidad a un punto de referencia
(Figura 3.1a). La localización por proximidad obtenida en este caso es igual a la
posición de dicho punto de referencia, ya que es el punto de menor distancia al resto de
puntos del área. La estimación de la posición sucede en un área de cobertura del punto
de referencia con diferentes grados de certeza. Los puntos más alejados del punto de
referencia tendrán una certeza menor, porque la probabilidad de detección se reduce

23
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Localización del usuario
Punto de Referencia
Localización estimada

(a) Localización por proximidad

Localización del usuario
Punto de Referencia
Distancia Real
Distancia estimada
Localización estimada

(b) Trilateración

Localización del usuario
Punto de Referencia
Ángulo Real
Ángulo Estimado
Localización estimada

(c) Ángulo de llegada/salida

Localización del usuario
Punto de Referencia
Medida almacenada
Medida Actual
Localización estimada

1 2

5 6

3 4

7 8

9 10 11 12

(d) Fingerprinting

Figura 3.1: Principales técnicas de localización
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Figura 3.1: Principales técnicas de localización
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con la distancia. Esta técnica se utiliza, por ejemplo, en las redes móviles mediante
técnicas como la obtención del identificador de celda o Cell IDentification (CID) para
asumir la posición de un usuario dentro de un área de cobertura y ofrecerle una serie
de recursos. Por ejemplo, en 2G cuándo un usuario llama al servicio de emergencias, se
manda la localización obtenida con la red de forma que se tenga localizado al usuario
en una región aproximada (< 200 metros) [83]. Este tipo de técnicas también se pueden
combinar con una base de datos de localizaciones conocidas, en Bluetooth Low Energy
(BLE) [84, 85], para aplicaciones en las que la precisión no suele ser muy alta. Para
este caso, un ejemplo claro son las audioguías los museos que basan la información que
transmiten en función de la posición más cercana al punto de referencia o beacon [86].

3.2 Trilateración

Este método de localización se basa en el uso de distancias o rangos como se muestra
en la Figura 3.1b. El rango a cada punto de referencia (de posición conocida) define
una circunferencia sobre la que se puede localizar el objetivo. La intersección de cuatro
esferas (o tres circunferencias en localización 2D) se utiliza para estimar la ubicación
del objetivo. Para medir la distancia utilizando tecnologías inalámbricas, existen varios
métodos disponibles:

• Estimación basada en la potencia (Received Signal Strength Indicator (RSSI)):
este método estima la distancia a un punto de referencia basándose en la ate-
nuación que sufre la señal hasta que llega al objetivo. Para ello, se parte de
una potencia de transmisión conocida y se invierte un modelo de propagación
adecuado al tipo de tecnología radio, la frecuencia y el entorno en el que se en-
cuentra el dispositivo. El modelo de propagación debe seleccionarse teniendo en
cuenta factores clave como la existencia de línea de visión directa así como el
tipo de escenario en el que se encuentra el UE. A pesar de que este método
se utiliza con frecuencia en redes móviles, Bluetooth o WiFi (excepto en WiFi
FTM), su margen de error es elevado debido a la rápida atenuación de la señal y
a la propagación multitrayecto. [87, 88, 89, 90].

• Mediciones de tiempo de vuelo (Time of Flight (ToF)): este método se basa en
calcular el tiempo que tarda una señal en viajar desde un punto de referencia
hasta el objetivo, y tiene la ventaja de ser más resistente a las interferencias,
condiciones de multitrayecto y atenuaciones frente a otros métodos. Incluso con



CAPÍTULO 3. TÉCNICAS DE LOCALIZACIÓN EN INTERIORES 27

NLoS, la precisión es mayor que con los métodos basados en la potencia [91].
Aunque la medición directa de ToF requiere una sincronización muy precisa entre
el objetivo y los puntos de referencia, lo que puede resultar costoso, se puede
utilizar el protocolo RTT para medir el tiempo de ida y vuelta de la señal y
estimar el ToF en ambos sentidos utilizando solo el reloj del extremo transmisor.
De esta forma también se cancelan las derivas que puedan sufrir los relojes frente
a un reloj de referencia. Esta técnica se emplea en tecnologías como UWB [92] y
WiFi-FTM [69], que pueden lograr una precisión de un metro aproximadamente.
El ToF también se ha probado en 5G [93] para estimar la localización de los UE.

• Diferencia entre Tiempos de Llegada (Time Difference of Arrival (TDoA)): Una
forma alternativa de calcular las distancias es estimar la diferencia de ToF de
una señal entre diferentes puntos de referencia y el objetivo [94]. Esta diferencia
se puede traducir en una diferencia de distancias, que se utiliza para definir una
hipérbola en lugar de una circunferencia en el que se encuentra un usuario. La
posición del usuario se puede estimar mediante la superposición de estas hipér-
bolas en lugar de circunferencias [95]. Aunque esta técnica es precisa, requiere
que los puntos de referencia estén sincronizados con precisión para minimizar
posibles errores.

No obstante, los rangos pueden contener errores por diversas razones, como la im-
precisión y deriva de los relojes, bloqueos, desvanecimientos, reflexiones, etc. Estos
errores pueden provocar que las circunferencias o hipérbolas utilizadas en la trilatera-
ción intersecten en múltiples puntos o en ninguno, como se ilustra en la Figura 3.1b
para la localización en 2D, lo que genera áreas de incertidumbre representadas por el
área roja. Los rangos reales se representan con líneas discontinuas, mientras que los
rangos estimados con errores se muestran con líneas continuas. Los lugares más oscuros
del área de incertidumbre indican una mayor confianza en la ubicación en función de la
información disponible. Cabe destacar, que la posición real no se encuentra dentro del
área de estimación, lo que refleja que habrá un error una vez resuelta la incertidumbre.
Para resolver la incertidumbre, se pueden emplear técnicas como el método de mínimos
cuadrados Least Square (LS) [96] o los mínimos cuadrados ponderados Weighted Least
Square (WLS) [97], como se explica en el Capítulo 5.

Para realizar trilateración de forma efectiva, es necesario una cierta cantidad de
puntos de referencia distribuidos en el área a cubrir, de forma que todos los puntos
del área estén cubiertos al menos por cuatro de ellos (o tres en el caso de 2D). Esto
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puede suponer un desafío, especialmente en escenarios de interior, donde la presen-
cia de obstáculos puede provocar bloqueos y desvanecimientos de la señal. Por ello,
dependiendo del área que se quiera cubrir y de la capacidad de cobertura de las tecno-
logías disponibles, el costo de implementar dispositivos y la densidad requerida podrían
ser elevados, o de lo contrario, podrían existir áreas sin cobertura.

3.3 Ángulo de llegada/salida

Es posible estimar el ángulo con el que la señal de los puntos de referencia llega al
objetivo, conocido como ángulo de llegada (Angle of Arrival (AoA)), o el ángulo con
el que el punto de referencia transmite una señal, conocido como ángulo de salida
(Angle of Departure (AoD)). Los sistemas MIMO pueden estimar el AoA [98] o realizar
beamforming [99], que consiste en seleccionar el haz o beam en el que se emitirá la señal,
para obtener el AoD. A diferencia de la trilateración, para determinar la ubicación del
UE se necesitan al menos tres mediciones en 3D, tal y como se muestra en la Figura 3.1c,
o dos en 2D. Para esta técnica, al igual que en trilateración, el área de incertidumbre
en las mediciones de ángulo puede resolverse mediante las técnicas de LS, WLS, etc.
AoA se ha utilizado en simulaciones de 5G [100] logrando una precisión submétrica. Sin
embargo, el AoA sufre en gran medida por las condiciones de multicamino y reflexiones
[101].

3.4 Fingerprinting

En escenarios de interior, calcular distancias o ángulos se puede convertir en un reto
especialmente difícil de superar que puede dar lugar a errores significativos. Aunque
la medición de ToF reduce en gran medida estos errores, no siempre es viable, debido
al elevado coste que supone el despliegue de dispositivos que soporten está técnica.
Sin embargo, existen varias tecnologías que suelen estar disponibles en escenarios de
interior, como oficinas y zonas residenciales, que ofrecen múltiples APs como son la red
celular [102], WiFi [103] o Bluetooth [52]. Es por ello que un UE podrá ver un gran
número de APs en este tipo de escenarios. Esto hace posible el aprovechamiento de
estas señales para la localización del usuario.

Aunque la potencia recibida puede no seguir un modelo de propagación específico,
si el entorno no cambia drásticamente, la potencia tiende a permanecer estática en el
tiempo. Por ejemplo, si en un punto del escenario que está cerca de un AP de WiFi
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la potencia medida es anormalmente baja debido a un obstáculo como una pared, esta
situación no cambiará con el tiempo si el obstáculo y el punto de acceso permanecen
estáticos. Así, cada punto en el espacio yi tendrá un vector asociado a las potencias
recibidas R = (RSSI1, RSSI2, ..., RSSIN) que indica la potencia recibida de la señal
asociado a los diferentes N APs que no cambia con el tiempo. Este vector identifica a
cada punto en el espacio con las medidas radio visibles en ese punto. Este mapa radio
es la base del fingerprinting (Figura 3.1d).

La toma de medidas en fingerprinting tiene, por tanto, dos fases como se ilustra
en la Figura 3.2. Una fase de entrenamiento, en el que se recoge un mapa con las
medidas radio del entorno R (normalmente dividiendo el mapa en una cuadrícula de
tamaño fijo), y una fase de explotación, en el que se comparan las potencias medidas
r = (rssi1, rssi2, ..., rssiN) en un momento determinado con cada uno de los puntos
del mapa radio. Aquel punto que tenga mayor similitud con las medidas capturadas
será la posición final del usuario. La precisión del sistema depende del tamaño de la
cuadrícula y de sus divisiones definidas durante la fase de entrenamiento. Existe un
compromiso entre la precisión y la complejidad, ya que una cuadrícula precisa también
implica una fase de entrenamiento mucho más larga. Por tanto, fingerprinting puede
alcanzar una gran precisión cuando la densidad de puntos de referencia es alta.

Aunque la técnica de fingerprinting puede lograr alta precisión con baja inversión en
infraestructura, ésta presenta importantes limitaciones. El principal inconveniente es la
compleja fase de entrenamiento, lo que restringe su aplicabilidad en ciertos escenarios,
como en casos de desastres naturales donde la exploración previa es imposible, o en
zonas rurales donde se debe cubrir una gran extensión. Otra desventaja relevante es que
en escenarios cambiantes tanto de infraestructura, como en zonas de construcción, o de
cantidad de usuarios, como centros comerciales, los valores de los mapas radio pueden
variar drásticamente debido a los nuevos obstáculos en el escenario. Esto implica que
la precisión no pueda mantenerse constante durante el tiempo o requiere de frecuentes
reentrenamientos del mapa. Estos inconvenientes hacen que la técnica de fingerprinting
no pueda ser escalable a nivel global como sucede con GNSS.

3.5 ML para la creación de modelos

La técnica de fingerprinting presenta una limitación significativa al requerir de un mapa
radio completo sobre el entorno para su funcionamiento preciso. Incluso la omisión de
un solo punto del mapa puede generar una cobertura incompleta e inducir a mayores
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AP(1)
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Figura 3.2: Fases de fingerprinting

errores, cuanto menos precisa sea la división del mapa. Para superar este problema,
un enfoque comúnmente utilizado es emplear algoritmos de ML para crear un modelo
del entorno, que luego puede ser utilizado para estimar la posición durante la fase
de explotación. La creación de estos modelos reduce significativamente la necesidad
de una campaña sistemática de medidas además de que pueden tenerse en cuenta
otras variables para un mismo escenario como la hora del día u otras variables del
entorno [104]. Este tipo de técnicas son reconocidas por su simplicidad y eficiencia
computacional para estimar la posición [105].

Los Decision Tree Regressor (DTR)s utilizan una estructura de árbol para modelar
el comportamiento del sistema dando como salida del sistema una posición (ŷ̂ŷy) [106].
Esta estructura se genera a través de un conjunto de reglas de comparación jerárquicas
que se aplican de manera secuencial. Cada regla, o rama del árbol, produce un resultado
que conduce a un nodo final, u hoja, que determina la salida del regresor, como se ilustra
en la Figura 3.1e. Al igual que en fingerprinting, el aprendizaje del DTR consta de
tres fases: entrenamiento, validación y explotación. Durante la fase de entrenamiento,
se utiliza un subconjunto de datos para crear un árbol tal que minimice el error de
regresión. El subconjunto de datos de validación se utiliza para evaluar la eficacia del
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modelo. En este trabajo, se han estudiado diferentes algoritmos basados en DTR que
fueron elegidos debido a su alta precisión y baja complejidad: Random Forest (RF)
[107] y Adapting Boosting (Adaboost) [108].

3.5.1 Random Forests

RF es una técnica de ML que emplea una colección de modelos individuales (conocidos
como modelos base) para generar una predicción final. Esta técnica de conjunto es
especialmente útil para tareas de localización, ya que pueden combinar eficazmente
las predicciones de múltiples árboles de decisión para determinar la ubicación de un
dispositivo [109, 110].

La aplicación de RF es relativamente sencilla, ya que utilizan árboles de decisión,
lo que las hace eficientes desde el punto de vista computacional. Además, RF es
resistente al ruido de los datos, ya que emplea el método bootstrapping para generar
árboles de decisión durante su fase de entrenamiento. Durante este proceso, se definen
N características, que en el caso de la localización son los APs, que consisten en
mediciones RSSI y la ubicación final del usuario. Para ello, se genera un número
definido de árboles S entrenados en varios subconjuntos de los datos aleatorios con
características y muestras diferentes. Para generar la predicción final (ȳ̄ȳy) del proceso
de localización, se promedian las predicciones de todos los árboles de decisión (ŷîyîyi),
como se muestra en la Figura 3.1f. El promedio de todos los resultados de localización
mitiga el impacto de cualquier árbol de decisión individual que pueda producir una
estimación inexacta. Esta técnica es muy eficaz, lo que permite que pueda ser utilizada
en aplicaciones en tiempo real.

A pesar de combinar múltiples modelos, RF puede ser eficiente computacionalmente
dado que los árboles de decisión se entrenan en paralelo, por lo que el proceso de
generación de modelos puede ser rápido [111]. Sin embargo, el modelo resultante
puede causar problemas de memoria en caso de entrenar al modelo con una cantidad
extremadamente grande de datos. Otro problema es justo el contrario. Con pocos
datos de entrenamiento, los árboles de decisión suelen tender al overfitting más que
otras técnicas.
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3.5.2 Adapting Boosting (Adaboost)

Adaboost utiliza las predicciones de diferentes modelos individuales (gi), conocidos
como Weak Learner (WL)s, para llegar a una predicción final (ŷ̂ŷy) [112]. Los WLs se
generan mediante un proceso denominado boosting, que consiste en entrenar de forma
iterativa el modelo con nuevos subconjuntos de datos, haciendo hincapié en cada ronda
en los puntos de datos que se clasificaron incorrectamente en la iteración anterior.
Gracias a esta iteración, se le asigna un peso asociado (λi) a cada WL que ajusta el
regresor para minimizar el error. La Figura 3.1g ilustra el método de combinación de
las predicciones de todos los WLs en el conjunto para hacer la predicción final. En esta
tesis se estudian dos algoritmos de entrenamiento basados en Adaboost: Decision Tree
Adaboost (DTA) y Linear Tree Adaboost (LTA). En el método DTA, las posiciones de
varios WLs asociados a una regla de decisión se promedian en la predicción final [113].
DTA es útil cuando se trabaja con problemas de clasificación sobre posiciones utilizadas
en la fase del entrenamiento como en fingerprinting. Por contra, el método LTA genera
una función de interpolación entre las diferentes salidas dentro de un conjunto de reglas
de decisión [114, 115] para obtener la posición final del usuario. LTA es más preciso
que otros modelos en entornos parcialmente mapeados y cuándo la posición del usuario
consiste en un problema de regresión, es decir, cuando no existe un número finito de
soluciones finales. En este caso, el objetivo de LTA es predecir un valor numérico en
lugar de una etiqueta de clasificación. Por tanto, DTA permite posicionar a los usuarios
de forma precisa en posiciones previamente entrenadas frente a LTA, que predice la
localización del usuario.

Adaboost posee la capacidad de adaptarse y aprender de los cambios en los datos
a lo largo del tiempo [116], lo que lo hace crucial en entornos dinámicos donde las
características inalámbricas son propensas a variar. Sin embargo, si no se controla
adecuadamente, puede ser llegar al sobreajuste, reduciendo así la capacidad de genera-
lización en nuevos datos y esto se verá reflejado en términos de precisión, a pesar de no
ser algo típico de este modelo [117]. Además, es un modelo consistente frente al ruido
o valores atípicos en los datos de entrenamiento de los modelos [112]. Aunque logra
una gran precisión, especialmente en LTA, una desventaja significativa de Adaboost es
sus altos requisitos computacionales [118] para la estimación final que lo deriva a un
método inviable para aplicaciones en tiempo real.
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3.6 Comparación de las diferentes técnicas

Las diferentes situaciones en las que se puede encontrar un usuario, los avances tecnoló-
gicos y la rigidez de los requisitos de los diferentes servicios hacen que no exista una
única técnica óptima para localizar al usuario. La técnica de trilateración en los últi-
mos años se ha convertido en una técnica muy utilizada por muchos ya que diferentes
tecnologías como UWB o WiFi FTM permiten rangos de niveles submétricos. Por otro
lado, con la llegada del 5G, las antenas pueden realizar beamforming lo que promoverá
el uso de técnicas basadas en ángulos que hasta ahora no se habían explotado en gran
medida. El gran auge de ML hace que técnicas como fingerprinting, que han sido de
las más estudidas hasta la fecha, entren en desuso gracias a las técnicas basadas en
modelos. La Tabla 3.1 muestra un resumen comparativo de las características de las
técnicas de localización en interiores más utilizados.

Método Medición Precisión Ventajas Desventajas

Proximidad Potencia
de señal Muy baja

- Simple y bajo coste
- No es necesario una
sincronización temporal

- Es un método muy dependiente
al escenario ya que depende en
gran medida de desvanecimientos
y reflexiones

Trilateración Distancia Muy Alta
- El uso de marcas temporales
hace que tenga una precisión
alta.

- Necesidad de sistemas que
soporten marcas temporales
y protocolos para poder
eliminar las desviaciones del
reloj del sistema

Ángulo de
llegada/salida Ángulo Alta

- Únicamente necesita de
dos fuentes para una
localización en 2D.
- No es necesario una
sincronización temporal

- Requiere condición de LoS
- Las reflexiones anulan este
método.
- Necesidad de antenas con
beamforming.

Fingerprinting Potencia
de señal Media - Sistema muy sencillo

- Necesidad de fase de
entrenamiento extensa.
- Cambios en el escenario
requieren nuevos entrenamientos.
- No escalable.

Random Forest Potencia
de señal Media-Alta

- Sistema muy eficiente
- Resistente a overfitting
- Aplicabilidad en tiempo real

- Necesidad de muchos recursos
para la fase de entrenamiento

Adaboost Potencia
de señal Alta

- Se adapta a los cambios del entorno
- Alta precisión
- Menor frecuencia de reentrenamientos
- Permite escenarios radioeléctricos grandes

- No apto para tiempo real.
- Computacionalmente muy intenso.

Tabla 3.1: Resumen de las distintos métodos de localización





Capítulo 4

Esquema de la investigación

Este capítulo analiza detalladamente los trabajos desarrollados a lo largo de esta tesis
así cómo las metodologías utilizadas y los desafíos que cubren cada uno de ellos. Este
Capítulo está estructurado en dos partes. La primera, Sección 4.1, detalla los tra-
bajos realizados en esta tesis y cómo se relacionan con sus objetivos. Cada artículo
es descrito y se enfatizan sus contribuciones al campo de estudio. La segunda parte,
Sección 4.2, presenta y explica la metodología de investigación utilizada, incluyendo
las herramientas, técnicas y equipos utilizados para el desarrollo de esta tesis.

4.1 Descripción de las publicaciones

En esta sección se presentan los resultados obtenidos a partir de la investigación rea-
lizada en esta tesis convertidas en publicaciones de calidad en revistas. Para ello, se
abordan los desafíos y objetivos previamente establecidos en la Sección 1. La Figura
4.1 muestra la relación entre los retos, objetivos y resultados alcanzados. El primer
desafío con el que nos encontramos es con mejorar la localización de los usuarios me-
diante la utilización de diferentes fuentes de información, para ello, se ha realizado un
estudio simulado para comprobar si conseguimos mejorar la localización de los usua-
rios fusionando la información de localización de diversas fuentes. Tras comprobar la
viabilidad del sistema, se ha desarrollado un framework para obtener la información
de localización de diferentes tecnologías para poder así caracterizarlas y desarrollar
aplicaciones reales basadas en la localización. Por último, gracias a la experiencia ad-
quirida durante todo el trabajo de esta tesis, se ha observado la falta de un marco
común para realizar pruebas de validación de tecnologías de localización. Por ello, se

35
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ha propuesto una arquitectura flexible que permita verificar nuevas técnicas o tecnolo-
gías de localización en una fase temprana de desarrollo. Cada artículo de investigación
se representa en la figura como un bloque individual dentro de una línea común que
son los diferentes mecanismos y técnicas para una localización con multi-tecnología
que cubren los desafíos y objetivos propuestos. En las subsecciones siguientes, se pro-
porciona un resumen de cada una de las publicaciones que sustentan esta tesis. Los
resultados obtenidos en [I], [II], [III], [IV] y [V] son aquellos artículos ya publicados
en revistas de alto impacto que sirven para avalar la tesis. Los otros dos artículos se
encuentran en fase de revisión y cubren parte de los desafíos y objetivos propuestos.

Desafíos Objetivos Resultados

4.1.1. Opportunistic fusion of 
ranges from different sources 

for indoor positioning

4.1.2. WiFi FTM, UWB and 
Cellular-Based Radio Fusion 

for Indoor Positioning

4.1.6. Exploring Indoor Locali-
zation for Smart Education

4.1.3. UWB and WiFi 
characterization for localiza-

tion in construction sites

4.1.4. Evaluation and Compari-
son of 5G, WiFi and fusion 
when incomplete maps for 

Indoor Localization

4.1.5. Victim Detection and 
Localization in Emergencies

4.1.7. Designing a 6G testbed 
for location: use cases, challen-
ges, enablers and requirements

1. Mejorar la localización de 
usuarios utilizando diversas 

tecnologías

2. Desarrollar un sistema de 
obtención de medidas de 

diferentes tecnologías

3. Caracterizar diversas 
tecnologías precisas para ver 

sus ventajas/desventajas

4. Desarrollar aplicaciones 
reales basadas en localización

5. Conseguir un marco prede-
finido para realizar pruebas 

de localización

Obj.1. Estudiar la viabilidad 
de la fusión de tecnologías en 

un entorno simulado

Obj.2. Desarrollar un framework 
para obtener medidas reales y 

poder estudiarlas

Obj.3. Caracterizar las 
tecnologías precisas en 
diferentes escenarios

Obj.4. Evaluar la localización en 
escenarios de interior con mapas 

incompletos

Obj.5. Proponer un sistema de 
detección y localización de usua-
rios en escenarios de emergencia

Obj.6. Estudiar y proponer una 
aplicación basada localización 
para una educación inteligente

Obj.7. Proponer una arquitectu-
ra flexible para probar compro-
bar la viabilidad de algoritmos 

basados en localización

Figura 4.1: Objetivos, Desafíos y Publicaciones
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4.1.1 Opportunistic fusion of ranges from different sources for

indoor positioning [I]

Este primer trabajo cubre el primer estudio teórico para comprobar la viabilidad de
realizar fusión de tecnologías en esta tesis. Este trabajo sirve como punto de partida
para continuar con experimentos reales y desarrollar más en profundidad los futuros
estudios relacionados. Para ello, primero se necesita conocer el contexto acerca de la
localización mediante la fusión de tecnologías y, segundo, es necesario comprobar la me-
jora que se consigue mediante la fusión de rangos. Esta mejora no solamente se centra
en términos de precisión, también se estudia la reducción de costes de despliegue, el
aumento del área de cobertura y la disponibilidad del servicio de localización. Además,
se abordan varias cuestiones como el aprovechamiento de los rangos precisos en zonas
dónde la localización precisa no es posible (Obj. 1). En concreto, este artículo se centra
en las tecnologías UWB y LTE como dos tecnologías contrapuestas. UWB posee una
gran precisión pero las restricciones energéticas a las que puede transmitir impide que
su alcance sea inferior a la centena de metros [119]. Por contra, LTE ofrece una mayor
cobertura pero con unos rangos más imprecisos. Además, en este trabajo se propone un
protocolo de comunicación dentro del New Radio Positioning Protocol A (NRPPa) para
fusionar de forma directa la información de UWB en infraestructura de la red celular.
Para realizar la fusión, tal y como se describe en el artículo, ésta debe realizarse en el
mismo instante en el que se conocen las distancias a los puntos de referencia. De esta
forma, cualquier dispositivo que ofrezca la distancia a un objetivo, independientemente
de que sea UWB u otra tecnología, podrá utilizarse como fusión oportunista.

4.1.2 WiFi FTM, UWB and Cellular-Based Radio Fusion for

Indoor Positioning [II]

En este segundo trabajo se lleva a cabo el diseño de un framework que recoge todas
las medidas de LTE, UWB y WiFi para poder llevar a cabo un estudio con medidas
reales (Obj. 2). Además, el desarrollo de este sistema de recogida de datos es crucial ya
que nos permite caracterizar las diversas tecnologías fuera del entorno simulado. Este
trabajo se puede considerar la evolución del trabajo anterior. Además, este sistema nos
permite la creación de aplicaciones de localización de usuarios en tiempo real siendo la
base para los trabajos futuros.

En primer lugar, se lleva a un escenario real el estudio de las distintas tecnologías.
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En este caso, las distancias obtenidas mediante la red LTE se realizan mediante el
estudio de la potencia disipada y modelos de propagación asociados a escenarios de
interior. Por contra, UWB y WiFi utilizan medidas con marcas temporales para obtener
la distancia hasta el UE. Estos rangos son precisos gracias a que se obtienen mediante
marcas temporales y se basan en el protocolo RTT de forma que se consiguen eliminar
las desviaciones y los offsets que puedan tener localmente algunos relojes. Este tipo de
medidas, tal y como se muestra en el estudio, consigue alcanzar precisiones submétricas.

En segundo lugar, se realizó el estudio y análisis de diferentes técnicas de pesado
basadas en la continuidad y la precisión que ofrecen las medidas a lo largo del tiempo.
Esta información es muy útil para sistemas de navegación en escenarios estáticos ya que
permite entrenar al sistema para reconocer si existen puntos de referencia que ofrecen
malas medidas, ya sea por un fallo o una configuración errónea del dispositivo.

Por tanto, en este trabajo se demuestra que la fusión de tecnologías es muy útil
para mejorar la localización en escenarios de interior y, por ende, la navegación de
los usuarios a lo largo de este tipo de escenarios. Además, se demuestra como la
localización final del UE mejora considerablemente añadiendo únicamente un elemento
de alta precisión como un anchor de UWB o un router de WiFi en escenarios de baja
precisión como es el caso de LTE.

4.1.3 UWB and WiFi characterization for localization in

construction sites [III]

UWB y WiFi pueden considerarse tecnologías de localización según el criterio del
3GPP, que designa esta calificación a tecnologías de localización que alcancen un error
inferior a 3 metros en el 80% de los casos tanto en el plano horizontal como vertical
[120]. Sin embargo, en este tercer artículo se caracterizan ambas tecnologías para el
posicionamiento en escenarios hostiles para la propagación de la señal como son los
escenarios de obra (Obj. 3).

Gracias al framework desarrollado para cumplir el Obj. 2 en el anterior estudio, se
permite realizar una investigación de UWB y WiFi tanto de su precisión, como de su
alcance y capacidad de penetración en este tipo de escenarios. En términos de precisión,
los resultados en este escenario se comparan con los obtenidos en el anterior trabajo
debido a sus similitudes. En este escenario de obra, se muestra como los resultados
obtenidos por UWB son sorprendentemente pobres en términos de alcance y capacidad
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de penetración. A pesar de que WiFi ofrece una estimación de la distancia al UE
menos precisa que UWB, esta tecnología consigue cubrir en gran medida el escenario
de construcción e incluso consigue llegar a distintas plantas para ofrecer el servicio de
localización. La localización de los obreros en este tipo de escenarios es muy útil para
poder advertirles de que se encuentran en zonas peligrosas por diversas causas como
derrumbes o el paso de camiones o grúas [121]. Es por ello que una vez demostrado
el comportamiento de UWB y WiFi para la localización de usuarios en escenarios
complejos de construcción, se planteen estas mismas tecnologías en escenarios aún más
complejos como son los escenarios de emergencia (Obj. 4). Para ello, ya se parte con
un conocimiento previo sobre cómo funcionan ambas tecnologías en escenarios donde
la señal sufre grandes variaciones debido a las condiciones de propagación.

4.1.4 Evaluation and Comparison of 5G, WiFi and fusion with

incomplete maps for Indoor Localization [VI]

Existen casos en el que las medidas de distancias no están disponibles debido a la
necesidad de un equipamiento más costoso. En estos casos, la localización basada en
mapas radio toma mucho valor ya que permite localizar a los usuarios con medidas muy
poco precisas como es el caso de la potencia de la señal recibida. Por ello, el enfoque de
este artículo ha sido la dependencia con el mapa radio de técnicas como fingerprinting.
Este tipo de técnicas son altamente dependientes de la granularidad del mapa radio.
Una mayor división de cuadrículas se traduce en precisión de localización así como en
un mayor coste asociado a esta primera fase de recogida de medidas. Por esta razón, se
han estudiado diferente técnicas basadas en modelos de ML que permiten localizar a
los usuarios en mapas radio con muy pocas muestras. Además, el uso de modelos para
localización tiene otras ventajas como expandir el servicio de localización más allá del
área medida, reducir los costes de reentrenamiento por cambios del entorno y reducir
el número de puntos necesarios para modelar el mapa radio.

En este caso, el uso de fusión de tecnologías cobra mucho interés ya que, al igual que
en los otros trabajos, la fusión de información en la entrada de los diferentes algoritmos
demuestra que mejora la precisión de la localización de los usuarios, abarata costes de
despliegue y aumenta la disponibilidad del tiempo de servicio.
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4.1.5 Victim Detection and Localization in Emergencies [IV]

La gestión de catástrofes es un tema de la máxima importancia en la sociedad moderna.
Naturalmente, a medida que avanza la tecnología, se encuentran nuevas aplicaciones
para la gestión de catástrofes. Estas aplicaciones están sujetas a entornos muy di-
fíciles en catástrofes, donde la infraestructura existente, como las estaciones base o
los puntos de acceso, suele ser inaccesible. Además, el tiempo es un recurso limitado
para las víctimas en todo momento. En este trabajo se hace un estudio de diferentes
redes inalámbricas, en particular UWB, WiFi y LTE para poder llevar aplicaciones
que sirvan de apoyo a los rescatadores en escenarios catastróficos. Gracias al estudio
anterior, se conocían de antemano algunas características de las tecnologías UWB y
WiFi. A pesar de todo, al ser mucho más complejo el escenario, se añadió la tecnología
celular gracias a sus gran capacidad de cobertura y servicio. Sin embargo, en este caso
concreto, LTE sufre tantas atenuaciones que no es posible llevar a cabo un estudio de
sus características.

En este trabajo, se propone un sistema para detectar y localizar víctimas en esce-
narios catastróficos, más en concreto, en lugares sacudidos por un terremoto dónde las
víctimas se encuentran bajo escombros (Obj. 4). Para ello, se realizó un estudio de
las diferentes técnicas utilizadas, su grado de implementación y su precisión. Además,
se propone un sistema que aprovecha las ventajas de diferentes tecnologías para un
servicio de rescate rápido y preciso. Además, se hace un estudio de la tecnología BLE
para su implementación para localización en la que queda descartada. Sin embargo, su
uso para la detección de víctimas puede ser muy útil en este tipo de escenarios.

Para el estudio de este trabajo se ha replicado a un usuario atrapado entre escombros
y se ha utilizado el framework para poder recoger medidas de las distintas tecnologías
(para cumplir con el Obj. 2). En este escenario simulado, se enterró un teléfono móvil
en una pila de escombros con elementos metálicos que dificultasen la propagación de
las señales radio y degradasen las medidas. Como en el artículo anterior, la tecnología
WiFi se postula como una tecnología muy poderosa en escenarios más complejos ya que
posee una capacidad de penetración mayor y mantiene en buen medida los resultados
a la hora de la localización de víctimas. Aún así, tal y como se indica en el artículo,
utilizar diferentes tecnologías siempre es beneficioso ya que pueden complementarse
para conseguir un sistema más preciso y eficaz, por lo que sigue demostrando la validez
de nuestro primer estudio para cumplir con el Obj. 1.
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4.1.6 Exploring Indoor Localization for Smart Education [VII]

La localización de los usuarios es crucial para el desarrollo de diversas aplicaciones
e, incluso, de diferente naturaleza. Debido al carácter de esta tesis y en el marco
universitario en el que se ha desarrollado, se ha investigado el uso de la localización
para una educación inteligente. La amplia adopción de la tecnología WiFi y de la
red celular, a la espera de ver cómo avanza la tecnología de UWB en los próximos
años, hacen que ambas tecnologías sean cruciales en el posicionamiento de usuarios
del futuro. En este trabajo se examina el potencial de la localización de interior en
diferentes aplicaciones para llevar a cabo una educación inteligente (Obj. 5). Existen
diversas aplicaciones como la navegación en espacios de interior (también abordada
en el artículo [II]), la XR, los hologramas, el control de aforo o asistencia de forma
automatizada. Por ello, se ha propuesto realizar una prueba de concepto basada en
el control automático de asistencia para demostrar la utilidad del posicionamiento en
este ámbito. También se ha investigado el impacto de la fusión de las tecnologías en
diferentes algoritmos de ML para rastrear la presencia de los estudiantes en un aula
y maximizar de esta forma los tiempos de aprendizaje, entre otros de sus posibles
beneficios.

4.1.7 Designing a 6G testbed for location: use cases,

challenges, enablers and requirements [V]

Tras la experiencia adquirida de los trabajos anteriores, una dificultad que nos encon-
tramos ha sido la falta de entornos de experimentación y un framework de validación.
Por ello, en este trabajo proponemos una arquitectura completa que sirva a lo largo de
todo el ciclo de Investigación y Desarrollo (I+D) de tecnologías, técnicas y servicios de
localización en redes móviles; más concretamente para la 6G que en la actualidad está
en pleno desarrollo.

En este trabajo se hace un estudio sobre los requisitos y las necesidades de localiza-
ción para los diferentes casos de uso que se pueden generar en la próxima generación de
móviles 6G. Además, se tratan los principales aspectos que permitirán una localización
que cumpla con las demandas del 6G como son el aumento de frecuencias y anchos de
banda que mejoran la precisión de los rangos en técnicas como trilateración, la virtua-
lización de diferentes elementos de red, el Open Radio Access Network (Open RAN)
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o el Edge Computing para mejorar el procesamiento de los datos para el servicio de
localización y la coexistencia con otras tecnologías tal y como se trata en esta tesis
para aumentar el número de dispositivos de referencia ofreciendo en el servicio de
localización un aumento de precisión, cobertura y disminución de costes. Para ello,
se propone una metodología que permita verificar en una fase temprana, si las téc-
nicas y algoritmos propuestos para la localización de usuarios (Obj. 6) sirven para la
tecnología propuesta. Esta metodología propone que las arquitecturas de los distin-
tos testbeds pueden ser nómadas o cambiantes de manera que puedan ser exportadas a
otras tecnologías que estén en desarrollo para verificar que se cumplen con los requisitos
previamente definidos.

4.2 Metodología de investigación

La tesis ha seguido una metodología estructurada compuesta por varias etapas, como
se puede observar en la Figura 4.2. A continuación, se detallan cada una de estas
etapas:

• Revisión de antecedentes. En la primera etapa de la metodología, se llevó a cabo
una revisión exhaustiva de los antecedentes sobre diferentes técnicas y tecnologías
de localización así como la fusión de las tecnologías. Sin embargo, en la mayoría
de trabajos disponibles en la amplia literatura se han centrado los esfuerzos en
la fusión con los sensores inerciales como el acelerómetro y el giróscopo para el
uso de la navegación como sistema de localización precisa.

• Formulación del problema. En esta segunda etapa, se descubrió la escasez de
trabajos de investigación realizados acerca de fusionar diferentes tecnologías ya
sea mediante rangos o, simplemente, información de potencia recibida. Por tanto,
la falta de investigación en este campo permitió definir una serie de retos y ob-
jetivos para comprobar los beneficios que aporta la fusión de información con
multi-tecnología para una localización precisa. Además, se propone verificar me-
diante simulaciones y experimentos reales la aplicabilidad de la fusión en diferen-
tes escenarios. De esta forma, se definieron en detalle las cuestiones que debían
investigarse y se planificaron los enfoques para resolverlas.

• Adquisición y preparación de los datos. La tercera fase de esta metodología
consistió en recopilar y preprocesar los datos de las diferentes tecnologías para
validar y evaluar los diferentes algoritmos propuestos.
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Para el primer estudio inicial, se llevó a cabo una simulación que imitaba los datos
de la red LTE y UWB en escenarios de interior. Para ello, se creó un entorno
virtualizado en Python en el que se simulaba una red de LTE de exteriores y
un sistema de localización de UWB tal y como se describe en [I]. Para la red
LTE se simuló la atenuación de una señal en el espacio y para UWB se emuló la
precisión de rangos obtenidos gracias a las marcas temporales de los paquetes de
información con un modelo de propagación más preciso. Además, en este entorno
se incluyó el filtro de Kalman, que es muy utilizado a nivel global por los expertos
en localización por su sencillez y eficacia ya que permite predecir y corregir el
posicionamiento de los usuarios en sistemas de navegación.

Por otro lado, para el desarrollo de esta tesis se han utilizado datos de diferentes
redes reales obtenidos en distintos tipos de escenarios. Por una lado, se han
realizado campañas de medidas de la red LTE y de la red 5G de la Universidad
de Málaga en el marco del proyecto LOCUS [12] para escenarios de interior.
Además, se han recogido datos de redes WiFi y UWB en el marco de diferentes
proyectos. Además del LOCUS, se realizaron las medidas para los proyectos
TEDES-5G [13], PENTA [14] y Maori [15], tal y como se puede observar en las
diferentes publicaciones relacionadas con escenarios de construcción, emergencia
y educación, respectivamente.

Es importante destacar que la recogida de datos es crucial para poder trabajar con
datos reales. Es por ello que se desarrolló una aplicación móvil en Android Studio
para recoger la información de las diferentes tecnologías presentadas en esta tesis
como las redes móviles, UWB o WiFi FTM, entre otros. Nuestro principal interés
ha sido la información de ToF o RSSI en los conjuntos de datos para localizar a
los usuarios en los diferentes algoritmos propuestos. Las bibliotecas de Python y
herramientas como scikit-learn [109, 122, 123] o pandas [124, 125] han sido muy
útiles para el preprocesamiento de datos.

Otro requisito muy importante en los proyectos que han financiado esta tesis
era la importancia de un posicionamiento en tiempo real por lo que, además
de recoger los datos, se ha desarrollado un servidor capaz de recibir en tiempo
real la información asociada a diferentes usuarios y localizarlos en los escenarios
propuestos.

• Diseño del sistema. En esta etapa, se desarrollaron y emplearon sistemas y en-
foques para abordar los desafíos previamente identificados. En este proceso se
evaluaron diferentes técnicas de localización basadas en distancias, ángulos o po-



44 4.2. METODOLOGÍA DE INVESTIGACIÓN

tencias y diversos algoritmos como LS, WLS o el uso de ML para una ponderación
más eficiente de los puntos de referencia para seleccionar la solución más adecuada
en cada situación debido a los diferentes requisitos que nos podemos encontrar
como precisión, disponibilidad o coste computacional.

• Evaluación. Durante esta etapa, se han sometido a validación y evaluación los
sistemas propuestos, empleando diversos tipos de pruebas para tal fin.

– Simulaciones. En el primer estudio, se realizó una simulación para dar
validez a la técnica de fusión en primera instancia.

– Pruebas de concepto. Estas pruebas implican evaluar el rendimiento de los
algoritmos propuestos tras la recogida y post-procesado de los datos.

– Revisión y mejora del estado del arte. Los sistemas propuestos durante
este trabajo han sido el resultado de avanzar en la literatura con sistemas
novedosos que fusionasen diferentes tecnologías a la hora de estimar la posi-
ción del usuario de forma instantánea e independiente, es decir, en el paso
previo al uso de los filtros de navegación. De esta forma, se han mostrado así
sus ventajas de mejoras de precisión, disponibilidad y reducción de costes
frente al estado del arte.

• Difusión del conocimiento. Finalmente, los resultados más significativos logrados
en el marco de esta tesis se han difundido en revistas especializadas y se han
expuesto en congresos a nivel nacional e internacional.
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Abstract—Ultra-Wide Band (UWB) technology stands out as one
of the most promising technologies for locating the user in indoor
scenarios for the new 5G mobile generation. As a drawback, it
requires a dense infrastructure. For this study, a simulation of a
real environment with UWB and Long Term Evolution (LTE) base
stations for positioning users is presented, tracked by an Extended
Kalman Filter (EKF). The proposed method uses information
that is unusable with UWB alone, and combines it with LTE
location, improving the precision for the latter and enabling sparse
infrastructure deployments.

Index Terms—UWB, Position control, Location fusion, Indoor
positioning, Mobile network.

I. INTRODUCTION

The forthcoming 5G will require a precise indoor localisation
method in order to enrich end-user services [1]. As Augmented
Reality (AR) and Virtual Reality (VR) applications become
popular, a need for cheap and precise network based localisation
emerges. Global Navigation Satellite Systems (GNSS) have
settled as the reference localisation system for outdoor environ-
ments providing an accuracy down to the metre. Nevertheless,
the positioning error inside indoor areas increases in GNSS
due to the harsh reception conditions [2]. In some mobile
networks, such as Long Term Evolution (LTE), the network
may locate users by estimating the distance to each base station
(BS). Indoor positioning is characterised by high multipath,
attenuation and shadowing originated by phenomena such as
signal reflections on obstacles and walls, Non-Line-of-Sight
(NLoS) conditions, sudden temporal changes in presence of
people or changes in the environment [3]. In the near future,
UWB technology may become the standard for indoor location
as described by ETSI [4]. Nevertheless, UWB data has not been
included yet in the New Radio Positioning Protocol A (NRPPa).
NRPPa transmits positioning information from 3GPP and non-
3GPP technologies available in the User Equipment (UE) such
as GNSS to outperform the accuracy of mobile network location.
In certain limited areas where a precise location technology
(such as UWB) is deployed, GNSS or LTE positioning can
be complemented or replaced by the local technology. In these
cases, there are transition regions in the borders of the deploy-
ment where the information of a reduced number of reference

This work has been performed in the framework of the Horizon 2020 project
LOCUS (grant agreement n. 871249), receiving funds from the European Union.
This work has also been partially funded by Junta de Andalucia (project PY18-
4647:PENTA)

points is available but the local technology cannot perform
location. In this work, we propose a method that benefits from
isolated UWB reference points (also known as anchors) in
LTE scenarios for enhancing the precision of network-based
positioning. Moreover, we also study the extension of the area
in which the UWB anchors become useful.

Although there are many studies approaching location with
radio-based technologies, there is no reference about fusing
UWB and LTE for indoor positioning. In particular, both
technologies have been studied separately, as seen in [5] and
[6]. Indoor positioning is usually achieved with sources such
as Wi-Fi, Bluetooth Low Energy (BLE) and pseudo-satellites,
as described in [7]–[9]. In [8], different methodologies, such
as fingerprinting or trilateration, which are the most commonly
used location techniques, are applied. In some cases, location
obtained with a single technology is combined with Inertial
Measurement Units (IMU) in order to better track the movement
of the user [10].

UWB systems give a centimetre-level accuracy over the area
covered by the deployment [6]. The extremely wide bandwidth
in UWB helps to deal with the multipath and fading effects
on the signal, making it indispensable for indoor positioning.
Therefore, some flagship smartphones are starting to integrate
UWB chipsets, to provide an accurate positioning for the next
generation of mobile applications. Nevertheless, deploying a
mesh of UWB anchors has a very high cost, resulting in small,
limited deployments. Conversely, LTE provides the user location
with a large margin of error, but with a ubiquitous coverage [11].
A minimum of three ranging data items (reference coordinates
and distances to the transmitters) are required at a single point
in space to provide the location with trilateration. This limits
the range of location below that of the simple addition of the
coverage zones of the anchors, creating a zone in the border of
the UWB network where energy is wasted. In this work, we fuse
the ranging data of both LTE and UWB (low and high precise
ranges, respectively) in zones where isolated UWB anchors do
not provide location service but some ranging information is
still available as shown in Figure 1.

The contributions of this paper are listed as follows:
• Optimisation and extension of the coverage area of high

precision location by fusing data from isolated UWB
anchors with ranges obtained from cellular networks.

• Improvement of the cellular-based positioning accuracy in
the border of UWB deployments by leveraging the unused
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LTE base stations

UWB anchors

Low precision border

High precision border

Low precise range

High precise range

Fig. 1. Trilateration of a device fusing LTE (blue) + UWB (red).

data from edge anchors.
• A weighting scheme to prioritise ranging data depending

on the technology and its precision.
• A modification of the NRRPa with the aim of including

UWB into the standard to better benefit from the future
availability of UWB chips in most smartphones.

Moreover, this method can be used to compensate missing
LTE network elements that provide location with a sparse UWB
deployment in some situations, such as in catastrophes.

The rest of this paper is organised as follows: Section II
provides an explanation of the methodology. Section III shows
the simulations that evaluate the proposed method. Finally,
Section IV discusses the obtained results and the benefits of
fusing the data in order to improve the indoor positioning areas.

II. METHODOLOGY

In this section, trilateration and EKF are described. Then,
the fusion method for UWB and LTE is shown. Finally, a
modification of the NRRPa to make use of the proposed method
is introduced.

A. Trilateration and Iterative Weighted Least-Square

Trilateration is used for positioning a body with respect to a
reference coordinate framework. To perform trilateration, the
distance of the target to, at least, three reference points are
required, as illustrated in Figure 1. Naı̈ve trilateration in GNSS
utilises the Time of Arrival (ToA) of the signal to estimate the
distance to satellites whose positions are known beforehand;
however, this method requires a very high precision in measur-
ing time, forcing the need of atomic clocks. In [8] and [12], the
range to the LTE BSs is estimated by means of the Received
Signal Strength Indicator (RSSI) and propagation models that
relate the RSSI with the distance. The main advantages of RSSI-
based ranging are the simplicity and low cost for obtaining the
received power from the BSs. As a drawback, LTE suffers from
Inter-System Interference, fading and multipath, which modify
the RSSI and add some ranging error. In contrast, UWB applies
Two Way Ranging (TWR) protocol, which achieves centimetre-
level precision in the range. Nevertheless, the lower coverage of

a single UWB anchor implies that a much denser deployment
is required in order to have all points in space covered with
at least three signals. Each of the obtained ranges defines a
circumference around its point of reference. In the ideal case
where the distances are calculated without any error, the three
circumferences will cut at the exact point where the target is
located. In the more usual case where the ranges have some
error and the circumferences do not cut at a single point, the
system computes the Iterative Weighted Least-Square (IWLS)
method in order to find the optimal solution as described in the
next equations:

A = ‖p− bsi‖ ; ∀i
y = p− p̂

δp = (A>WA)−1A>Wy
p+ = p + δp

(1)

where A is the euclidean distance matrix from the computed
position (p) defined in 2D and the coordinates of the different
BSs (bsi). The innovation vector y is the difference between the
computed position and the estimated position (p̂) until the varia-
tion (δp) does not exceed an arbitrary threshold. The weighting
matrix (W ) is diag

(
σ−1UWB1

, σ−1UWB2
, σ−1LTE1

, . . . , σ−1LTEn

)
. A

reasonable choice for the weight matrix is W = Qyy , the
variance–covariance matrix of the measurements [13]. The goal
is to give more confidence to the more precise measurements.
Finally, p+ is the updated position for the next time interval.

B. Extended Kalman Filter

For tracking the location of a moving target, the noise (that is,
the positioning error) of the sensors (which may be devices such
as IMU, GNSS receivers or UWB tags), creates an uncertainty
in position increasing over time. Bayesian Filters can cancel
this cumulative error with a probabilistic estimation in dynamic
scenarios with ambiguous measurements. Extended Kalman
Filter (EKF) is the most used algorithm in navigation systems
[13]. EKF is a recursive method which allows to estimate the
new position of the user according to the new measurements
and the previous state (position and velocity) of the user [14].
This algorithm follows a Markov chain pattern, in which the
system has memory, but it only takes into account the previous
state x̂k−1. This filter works in two steps:

1) Prediction: Using the previous state x̂k−1 which includes
the position and the velocity of the user, the system computes
the predicted state x̂−k and updates the covariance matrix of the
prediction P as follows:

x̂−k =

{
x̂−k = F x̂k−1

P̂ = FPF> +Q
(2)

where F is the state transition function and Q is the process
covariance of the system.

2) Update: The update step consists in determining the
position of the user with the compromise between the predicted
state and the observation matrix z. At this point, the Kalman
Filter Gain (K) weights the measurements and the predicted
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state conforming to the quality of the observations. In case of
inputs with poor quality, their weight will be low; otherwise,
the input data will dominate over the prediction as shown in
the next equation.

y = z−H x̂
K = P̂H

HP̂H>+R

x̂k = x̂−k +Ky
P = (I −KH)P̂

(3)

where y is the residual vector between the prediction and the
measurements, H is the measurement function, I is the identity
matrix of R2x2 and R is the noise covariance matrix of the
measurements.

C. Proposed fusion method

The proposed fusion method blends LTE and UWB ranges
providing an over-determined system with more measurements
than a technology in isolation. In this case, the trilateration
algorithm uses ranges from different technologies as illustrated
in Figure 1 in which LTE ranging data is complemented
with data from UWB isolated anchors to improve the location
accuracy. Figure 2 describes the algorithm divided in three steps.
First, the ranging data is collected from the ranging devices (i.e.
the LTE modem or the UWB tag). Second, trilateration is done
using three UWB ranges if available. Otherwise, LTE ranges are
used to complete the three required ranges. In this step, fusion
is done between a precise technology with partial information
(UWB) and an imprecise technology with ubiquitous coverage
(LTE). Lastly, EKF updates the end-user position as described
in the previous section.

Low-precision ranging data

-Distance [m]

- Reference Position [m]
Kalman Filter 

- Prediction

- Update

↓

Final position 

- (x,y) [m]

Trilateration/Fusion

High-precision ranging data

-Distance [m]

- Reference Position [m]

Fig. 2. Diagram of the fusion algorithm for positioning, step by step.

The proposed fusion achieves two things: in scenarios within
an LTE network, a sparse UWB deployment can be used to
improve location precision without reaching the density and cost
required for a full UWB system; and a smooth transition with
high precision is achieved between indoor and outdoor scenarios
or between different location system areas as illustrated in Fig-
ure 3. The red zone is the area covered by UWB; throughout this
area, all points have visibility of at least 3 UWB anchors. The
yellow area is the zone where we apply the fusion algorithm. In
this area, LTE location is complemented with the information
from one or two anchors in the edge of the UWB deployment
in order to improve the location accuracy. Finally, the rest of
the scenario is covered only by LTE.

LTE base stations

UWB anchors

Area of ≥ 3 anchors

Area of fusión (1 or

2 anchors)

Fig. 3. Example of a LTE scenario with and UWB location area (red) and
fusion location area (yellow)

D. NRPPa for UWB

Nowadays, 3GPP does not define any specification towards
UWB. NRPPa establishes a mechanism by which the network
may acquire a more precise location information from the UE.
This precise location is obtained with GNSS receivers in the
UEs. In this paper, we propose using procedures and messages
similar to the existing NRPPa protocol for UWB such as those
described in TR. 38.455 [15]. To allow fusing LTE ranges (that
can be obtained by the mobile network) with UWB ranges (that
can only be obtained in the UE), the following messages should
be added as an extension to NRPPa:

� UE device unique identifier
� UWB anchor identifier
� UWB anchor location
� Timestamp
� Time of Flight (ToF)
Some optional fields could be used to transmit additional in-

formation that can be used to characterise the error of the UWB
ranges, such as the frequency channel, LoS/NLoS conditions,
etc.

III. EXPERIMENTAL SET-UP

This section presents the evaluation of the proposed fusion
of LTE and UWB location. Furthermore, the performance of
EKF with respect to a memoryless system is analysed. Then,
the performance of the proposed fusion method compared to
LTE-only location method inside the area within the range of
some UWB anchors.

A. Environment setup

According to the density of LTE stations described in [16],
four BSs have been deployed approximately 100 m from each
other. In addition, an UWB deployment within the LTE network
is emulated, with four UWB anchors placed tens of meters from
each other, as described in [17]. Figure 4 shows the map of the
simulated environment. LTE BSs are represented by the pink
triangles and UWB anchors by the green triangles. Table I lists
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the main parameters of the simulation in which Ptx is the trans-
mitted power from the BS, f is the frequency of the technology,
hb is the height of the BS and Prxmin is the sensitivity of the
system for each technology. LTE follows the Okumura-Hata
propagation model [18]. For simulation simplicity, this model is
used both outdoors and indoors, adjusting the error of location
to the typical LTE indoors location error. UWB, on the other
hand, follows the log-normal propagation model described in
[3].

TABLE I
PARAMETER CONFIGURATION OF THE BASE STATIONS

Source Ptx [dBm] f [MHz] hb [m] Prxmin [dBm]
LTE 47.4 1800 30 -84

UWB -68.28 6000 5 -132.98

B. Simulation and results

In the scenario described above, a Monte Carlo method is
used in order to set up a simulation that provides statistically
relevant results, generating a thousand random trajectories with
a hundred points for each trajectory. The simulated points follow
a straight line between two random points inside the scenario.
We also include an Additive White Gaussian Noise (AWGN) in
the LTE and UWB received signals.

1) Use of Extended Kalman Filter: the gain of using an EKF
is determined comparing it to a non-memory system, a system
that does not use the information from a previous time interval.
Table II displays the relevant statistical results of the experiment
i.e. the mean and the standard deviation of the error, and the 2σ
parameter that contains the 95% of the sorted error compared
with the ground truth in both cases: in a non-memory system
and an EKF system. In order to be efficient, the rest of the
simulations employ EKF due to the better performance of the
system.

TABLE II
COMPARISON OF THE HORIZONTAL ERROR BETWEEN NON-MEMORY

SYSTEM AND EKF SYSTEM.

System Mean Std. Deviation(σ) 2 σ
EKF 1.039 0.661 2.225

Non-Memory 1.489 1.036 3.529

2) Fusion location accuracy: Figure 4 shows the regions in
which each technology acts. The scenario is composed of three
different zones which follows the same distribution of Figure
3. The red dots are the points estimated only with UWB, while
the blue dots are estimated by LTE. The yellow dots indicates
the points where there are one or two UWB anchors visible
and their ranges are fused with LTE ranges to provide location.
In this area, the accuracy is expected to improve compared
to LTE as long as we have more precise ranging information
from UWB. Figure 5 shows the area where fusion (yellow) and
UWB (red) are used independently. Figure 5 also shows the
covariance error shapes (i.e. the confident contour). The error
circumferences represent an outline of the Gaussian distribution

Fig. 4. Position tracked in LTE (blue), fusion (yellow) and UWB (red) over a
Monte Carlo simulation.

and they contain the 99% of the points of each distribution.
The shapes are typically ellipsoids, however, the square-shaped
distribution of the UWB stations leads to this circular shape.
This distribution was considered as the best option in order
to better represent the improvement of the coverage area. The
inner circle (green) separates the UWB coverage area (red). The
outer circle (pink) wraps the points where LTE location has
been improved with fusion with the available UWB information
(yellow). The fusion radius is 50m compared with the UWB
radius of 25m by using information that normally has been
dropped, therefore, a noticeable increase in the area with high
accuracy is observed.

Fig. 5. Confidence circumferences of the position points in fusion (outer circle)
and UWB (inner circle)

Figure 6 represents the cumulative distribution function (cdf )
of the horizontal position error in LTE (blue), fusion (yellow)
and weighted fusion (red) with respect to the ground truth in the
yellow area or the transitional area between the only LTE to only
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UWB. It can be observed that fusing incomplete information
from UWB anchors with LTE ranges reduces the error with
respect to using only LTE ranges. The green line represents
90% sample line, and the error for this point is reduced by
60cm and 90cm for fusion and weighted fusion, respectively.

0 1 2 3 41.4 1.75 2.3
Horizontal Position Error [m]

0

0.2

0.4

0.6

0.8
0.9
1.0

cd
f

Fusion
LTE
Weighted Fusion

Fig. 6. Horizontal Position Error of LTE (blue), fusion (yellow) and weighted
fusion (red).

The error distribution clearly follows a log-normal distribu-
tion. Table III shows the parameters to characterise the error of
all the cases by their mean and standard deviation (σ) and the
2σ parameter which includes the 95% of the error. By using
the remaining information of UWB anchors that were not used
in the single-technology scenario, an overall enhancement of
the system is achieved. In addition, giving more confidence to
the UWB ranges by using a higher weight also improves the
performance.

TABLE III
COMPARISON OF BETWEEN LTE, FUSION AND WEIGHTED FUSION

HORIZONTAL ERROR.

Source Mean Std. Deviation(σ) 2 σ
LTE 1.015 0.637 2.196

Fusion 0.908 0.586 1.997
Weighted Fusion 0.763 0.553 1.997

IV. CONCLUSIONS

In this paper, the fusion of LTE and UWB data is proposed
for enhancing cellular-based location. A modification of NRPPa
is also proposed due to the role that UWB will take in the
upcoming future thanks to its inclusion in the latest flagship
smartphones. The use of this novel fusion in the trilateration
algorithm noticeably extends the precise coverage area beyond
what an UWB deployment can offer on its own. Furthermore,
this technique does not require any additional hardware apart
from UWB and LTE receivers. This allows a reduction of costs
in network deployments oriented at providing location. Firstly,
with this setup, a smaller number of UWB anchors is required
to provide an accurate and precise location in a planned area.
Secondly, in cases where an LTE network already provides
location information, but an increase in precision is required, a
sparse UWB network can be deployed such that at each point,
one or two anchors are visible to use fusion.
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Abstract: High-precision indoor localisation is becoming a necessity with novel location-based ser-
vices that are emerging around 5G. The deployment of high-precision indoor location technologies
is usually costly due to the high density of reference points. In this work, we propose the oppor-
tunistic fusion of several different technologies, such as ultra-wide band (UWB) and WiFi fine-time
measurement (FTM), in order to improve the performance of location. We also propose the use of
fusion with cellular networks, such as LTE, to complement these technologies where the number of
reference points is under-determined, increasing the availability of the location service. Maximum
likelihood estimation (MLE) is presented to weight the different reference points to eliminate outliers,
and several searching methods are presented and evaluated for the localisation algorithm. An
experimental setup is used to validate the presented system, using UWB and WiFi FTM due to their
incorporation in the latest flagship smartphones. It is shown that the use of multi-technology fusion
in trilateration algorithm remarkably optimises the precise coverage area. In addition, it reduces the
positioning error by over-determining the positioning problem. This technique reduces the costs of
any network deployment oriented to location services, since a reduced number of reference points
from each technology is required.

Keywords: indoor positioning; fusion technologies; UWB; WiFi fine time measurement; LTE;
maximum likelihood estimator

1. Introduction

Location-based services in the fifth generation (5G) mobile network require reliable,
continuous, and precise positioning information for their full functionality potential [1].
Global navigation satellite systems (GNSS) have settled as the reference localisation system
for outdoor navigation. GNSS offer a meter-level accuracy at open sky scenarios. However,
the precision is reduced drastically when the target enters a building or tunnel. Several
technologies (e.g., WiFi and Bluetooth) and techniques (e.g., fingerprinting and image
recognition) try to provide accurate and precise location information [2,3]. Nevertheless,
indoor scenarios are extremely challenging due to the harsh radio propagation conditions.
Indoor scenarios usually contain metallic objects that reflect and block the signals creating
multipath effects that can strongly deteriorate the navigation solution or create areas where
no navigation information is available. Moreover, typical indoor scenarios are dynamic
with constant changes due to the mobility of people within the scenario, such as in a
shopping mall or an office. High-precision positioning becomes crucial for some Internet
of Things (IoT) services, such as augmented reality (AR) or context-aware applications.

In recent years, some technologies have emerged for precise indoor localisation. There
are two main families of techniques: based on trilateration, and based on fingerprinting.
Trilateration consists in obtaining the position of the target based on the intersection of
the distance between the target and at least three reference points. Some technologies that
are being studied are ultra-wide band (UWB) [4], WiFi fine-time-measurement (FTM) [5]
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and cellular-based radio [1]. UWB has been widely adopted due to its robustness against
multipath and its centimetre-level accuracy [6]. It may become the standard for indoor
positioning in the next years as defined by ETSI [7]. Since UWB devices have a range of up
to few tens of metres, they need a fairly dense deployment to ensure the required coverage.
However, a dense deployment of UWB in the real world has a very high cost, making it
feasible only for limited scenarios. WiFi FTM relies on the wide availability of WiFi access
points (APs), and the higher range of WiFi signals to reduce the deployment costs, but it is
still a fairly new technology that has not a wide commercial adoption. Although 5G ranging
is still under research [8], it promises a very high availability thanks to the omnipresence
of 5G base stations. Long term evolution (LTE) has also been used for obtaining location,
although its precision is not as high as UWB or WiFi FTM [9].

WiFi fingerprinting [2,3] has also been widely studied. In fingerprinting, instead of
using reference points, the terrain is divided in a lattice, and for each division, the set
of visible WiFi APs is collected in an offline stage. For estimating location, a target will
then obtain a list with the visible APs, and will use it to find the point in the lattice
where it is most likely located. The map must be frequently updated to reflect changes in
the environment.

In this work, we propose a method for opportunistically aggregating ranges obtained
from different technologies. This fusion technique helps to reduce the cost of deployment
because the end-user benefits from any nearby ranging reference point (RP) for localisa-
tion [10]. In addition, this technique also helps dealing with coverage holes of certain
deployments, that is, areas where there are less than three visible reference points of one
technology. Since not all ranges have the same precision, we propose a weighting stage
that prioritises the reference points that offer a better location quality. To this end, this
work uses a maximum likelihood estimator (MLE) to characterise the ranges and sources in
order to define the weighting algorithm to balance the information of the over-determined
system which provides high accuracy indoor positioning.

To validate the proposed method, we use a real location deployment with ranging
information based on time measurement from UWB and WiFi and received signal strength
from a LTE network as a back-up. To the best of our knowledge, no system unifies all
these three technologies and brings them into a real scenario to show the performance of
real-time localisation. We also test several search methods for the MLE, to compare the
advantages in location precision and computational time of each one.

The contribution of this paper is listed as follows:

• Proposition of a fusion method in trilateration based on the work presented in [10],
with a dynamic weighting with MLE that improves the robustness of location accuracy;

• Validation of the proposed method with a real-world setup with several different scenarios;
• Comparison between different MLE search methods for finding the best for resolving

over-determined location problems.

The rest of this paper is organised as follows: Section 2 provides an overview of the
different location technologies explaining features of the technologies used in this work.
Section 3 explains the proposed method and the algorithm of multi-technology fusion and
the MLE as a weighting technique for outliers. Section 4 describes the experimental setup
with two scenarios and Section 5 presents the results obtained from three different cases
deployed in the two scenarios. Section 6 discusses the results presented in the previous
section. Finally, Section 7 presents the conclusions of this work.

The acronyms in this paper are listed in the Table 1 as follows:
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Table 1. Overview of acronyms.

Acronym Definition

5G Fifth generation

AP Access Points

AR Augmented Reality

BLE Bluetooth Low Energy

FCC Federal Communication Commission

FTM Fine-Time Measurement

GNSS Global Navigation Satellite Systems

GPS Global Satellite System

IoT Internet of Things

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

LoS Line of Sight

LTE Long Term Evolution

NLoS Non Line of Sight

MLE Maximum Likelihood Estimator

PANS Positioning And Networking Stack

RSSI Received Signal Strength Indicator

RTT Round-Trip Time

ToA Time of Arrival

UE User Equipment

UWB Ultra-Wide Band

WLS Weighted Least-Square

2. Overview of Location Technologies

The focus of the cellular-user location has changed over the generations from outdoors
to indoors [1]. Thus, GNSS has had to adapt to the new requirements. However, other
technologies and techniques have overcome satellite-ranging solutions for indoor position-
ing. Ranging-based or fingerprinting location have been studied [11,12] to provide a high
accuracy for indoors with technologies presented in Table 2, such as Bluetooth or WiFi.
Some of these technologies have been discarded for this work for several reasons. First of
all, the scope of this work is to study the real-time positioning with technologies that do
not need the data collection phase in fingerprinting, such as geomagnetism [12]. Secondly,
user location must be computed in the cloud for two main reasons: it will help future
applications, such as driver-less cars in which the cloud runs the commands to the cars and
must know their positions [13], and computing in the cloud also helps reducing energy
consumption in the end-device [14]. Thus, inertial navigation system (INS) is excluded for
this study because it is unfeasible to send the information of the accelerometer or gyroscope
in real time (update rate ≥ 100 Hz) with high energy efficiency. Thirdly, low-stability
technologies, such as Bluetooth, might not allow to update in real-time, for the RSSI varia-
tions [15]. Moreover, Bluetooth provides an insufficient coverage for wide scenarios [16].
Hence, we decided to discard Bluetooth for this indoor positioning study. Henceforth,
the technologies that are finally studied in depth for indoor positioning with high-precision
performance are UWB and WiFi FTM. LTE is also studied as a back-up technology due to
the wide-area coverage and deployed infrastructure. Table 2 presents an overview of the
technologies mentioned in this study.
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Table 2. Overview of indoor positioning technology.

Technology Access
Point

Positioning
Accuracy

Positioning
Method Advantages Disadvantages

Cellular network Cellular tower >30 m Trilateration

World-wide
coverage;
No extra

infrastructure needed

Low-precision
>100 m

UWB UWB anchor cm-m Trilateration

Robust against
multpath;

high-accuracy;
easy-deployment

High-cost

WiFi-FTM Router cm-m Trilateration
Low cost;

high-accuracy
Not yet

widely deployed

Bluetooth Beacon m
Trilateration;

fingerprinting
Low cost;

easy-deployment Low-stability

INS N/A m PDR Self-sufficient
Accumulative error;
Smartphone-based

calculation

Geomagnetism N/A m Fingerprinting
No infrastructure;

low-cost; ubiquitous

Need data
collection;

affected by temporal
electrical equipment;

Hereinafter, a brief description of cellular-based radio, UWB and WiFi that will be
used in this paper is completed.

2.1. Cellular-Based Radio

Cellular-based localisation has been used as a simple and coarse solution when there
is a lack of satellite visibility in GNSS, typically indoors and in scenarios, such as urban
canyons [17]. The arrival of 5G brings new specifications for high-precision positioning as
described in [9], which can be summarised in:

• Horizontal and vertical positioning error < 3 m for 80% of user equipments (UEs) in
indoor deployments;

• Horizontal and vertical positioning error <10 m and <3 m, respectively, for 80% of
UEs in outdoors deployments.

5G works on 700 MHz, 3.5 GHz and millimetre wave of 26 and 28 GHz. High
frequencies allow high-precision ranging in direct line of sight (LoS) with the target but
highly suffers from attenuation, multipath and reflections in non-line of sight (NLoS).
In contrast, lower frequencies are more robust to attenuation reaching longer distances,
however, multipath effects can deteriorate the precision of the ranges. In [1], in order to
eliminate the need for clock synchronisation, the use of different timing techniques such
round-trip time (RTT) are proposed for indoors.

Nevertheless, the existing and deployed LTE networks can be used as a back-up
for other location technologies [10]. Despite of the coarse ranging information that LTE
provides, LTE network is globally available in contrast with 5G that has not been yet fully
deployed. End-users may benefit from LTE in cases where no high-precision technologies
provide localisation. However, LTE utilises the received signal strength indicator (RSSI) for
ranging. RSSI highly suffers from multipath and fadings which leads to high variations
and an increase in the ranging error.

2.2. Ultra-Wide Band

UWB technology provides a high ranging accuracy based on the RTT protocol, even
in environments with harsh propagation characteristics [18]. This technology has multiple
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advantages, such as centimetre-level ranging precision, good obstacle-penetration capa-
bilities [4], and multipath mitigation in dense scenarios [2], making it indispensable for
indoor positioning. UWB is also a wireless communication technology that supports a high
throughput owing to the use of a very large spectrum. UWB uses very short time pulses of
few nanoseconds that take a wide bandwidth. The Federal Communication Commission
(FCC) authorised the unlicensed use of UWB in the range of 3.1 to 10.6 GHz [3]. UWB
signals are centered at 3.5 GHz with a bandwidth higher than 500 MHz. The latest market
trends show that UWB will soon become a de-facto standard for positioning and will
eventually be addressed by 3GPP standards [7]. Accordingly, some smartphones have
integrated UWB chipsets in the recent years [19]. As a drawback, to achieve the short pulse
width the UWB device has a high energy consumption.

2.3. WiFi Fine Time Measurement

IEEE 802.11mc includes a fine time measurement (FTM) for range estimation in timing
protocols using RTT [20,21]. This release will transform the indoor positioning industry
in the next years because WiFi infrastructure is widely deployed. The protocol estimates
precisely the distance to any WiFi access point (AP) which supports the protocol without
needing to be connected to them [22]. The information is calculated on the device for
privacy preserving, since sensitive location information is not shared among network
peers. In [23], the accuracy for positioning of WiFi FTM is computed with a precision of a
meter-level accuracy in real scenarios with dense deployments of WiFi APs.

3. Materials and Methods
3.1. Proposed Positioning Method

In trilateration, the position of the target is in the intersection between geometric forms,
such as circles or hyperbolas defined by the distance between the target and the RP [1–3].
Any ranging information can be used to obtain the final target position, such as time of
arrival (ToA), RSSI, or RTT time measurements. A minimum of three sets of reference
points and ranges to each one is required for location in 2D. The proposed algorithm
is explained in Algorithm 1. First, once the ranging information is received, the MLE
weights each source depending on whether the source is new or the system already has
information about it. Then, the trilateration algorithm based on the weighted least-square
(WLS) algorithm is computed [24]. Once the position is obtained, the algorithm computes
the error based on the distance provided by the source and the computed position. Finally,
this error is temporarily stored and the weighting factor of the source is updated for the
next iteration. In this section, both techniques that will be used in this paper are described:
multi-technology fusion and maximum likelihood estimation (MLE).

Algorithm 1: Positioning algorithm with MLE and fusing technologies
Input: Distance and position from reference points.
foreach Reference Point do

if Reference Point is new: then
Assign a low initial weight.

else
Weight the reference point according to the accuracy of the last

measurements.
end

end
Compute the position of the target by WLS algorithm.
Estimate the distance from the target position to each reference point.
Calculate the error between the input and the estimated distances.
Storage temporarily the error of each reference point.
Output: Position of the target.
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For a better understanding, we have also provided a flowchart of the proposed
positioning method that will help to understand how the whole system works in Figure 1.

 
Positioning Data:

- Distances
- Reference Point (RP)

 
Provide Final Position

No

For each RP:

Compute WLS algorithm

Estimates and store 
the error of each RP

Estimates and store 
the weight of the RP

Is it a new reference point?

Yes

Have we got 
the weight of this RP?

Have we got 5 error measurements?

Are there minimum 3 positioning data? 

Gives a low initial 
weight for that RP

Provide the stored
weight for that RP

Yes

Yes

Yes

No

No

No

Figure 1. Flowchart of the system.

3.2. Multi-Technology Fusion

In trilateration the ranging information usually comes from a single technology. How-
ever, in [10], a scheme for fusing ranges from different technologies is presented. The use
of multi-technology fusion in trilateration improves low-precision accuracy provided by
technologies (in this work, LTE) by using the ranges of precise technologies, such as UWB
or WiFi FTM.

In addition, to enhance the end-user location precision, multi-technology fusion
also provides a seamless navigation between areas served by different technologies (e.g.,
exteriors where GNSS can be used, and interiors with UWB deployments, using other
ranging technologies, such as LTE to cover for the missing ranges in the borders). Fusion
benefits from high-precision reference points in a sparse deployment which can help to
improve location in emergency cases, such as fires, earthquakes, etc. In these scenarios,
fusion can also compensate the missing AP structures with portable APs in order to provide
high-precision localisation. Although in this paper we have set the focus on WiFi FTM
and UWB for precise positioning, other technologies which provide high-precision ranging
data could also be used, such as GNSS or Bluetooth.
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3.3. Maximum Likelihood Estimator (MLE)

Ranging information is uncertain because measurements are never ideal. Least squares
(LS) estimation solves over-determined systems even though they are inconsistent since it
is not possible to find a solution. The idea is to find a solution which minimises the error of
the system. However, the classical iterative LS method for positioning lacks robustness;
even a single outlier can introduce a great error in the estimated target position. This
problem increases when the final accuracy should be reduced to the sub-meter accuracy.
In [10], WLS was used to compute the location with trilateration, but to avoid the problem
of outliers, the ranges were weighted according to their precision. A higher weight was
assigned to UWB (which is more precise) than LTE. However, these weights were assigned
statically; so, if a specific device introduced a high-precision ranging error (due to factors
such as an especially challenging location for propagation, or software and hardware
malfunctions), the localisation accuracy would be considerably affected.

Maximum likelihood estimator (MLE) is the most popular estimator for obtaining the
parameter θ̂, which specifies a probability function P(X = x|θ) or a probability density
function p(X = x|θ) of a discrete or a continuous variable based on the observations
x1, x2; . . . , xn which are independently sampled from the distribution [25]. In this work,
MLE weights the ranges provided by different reference points in real-time depending on
the variation of the error attached to the ranges. The system stores the error associated to
each RP iteratively with a temporal window and weights the sources by their standard devi-
ation. Supposing that X = {X1, X2, . . . , Xn} with distribution Fθ being θ = {θ1, θ2, . . . , θn}
that follows the density function fθ(x) [26]. Hence, the likelihood function of the observa-
tion is given by:

L(θ; X) =
n

∏
i=1

fθ(Xi) (1)

The MLE estimates the best candidate that optimally maximises L as seen below:

θ̂ = argmax(log(L(θ; X))) (2)

Hence, assuming that observations follow a Gaussian distribution, the estimator
calculates the parameters of mean and standard deviation that best suits Equation (2).
In this work, MLE dynamically weights the different reference points at the WLS algorithm.
Once the target’s position is estimated, the distances (d̂est = {dest1, dest2, . . . , destn}) from
the estimated position to each RP positions are calculated. Then, the estimated error of
each RP (êest = {eest1, eest2, . . . , eestn}) between the estimated distances (d̂est) and the input
distances (initially for the LS algorithm) are obtained. Finally, MLE provides the weight
values of each RP based on the error (êest) from the last N time epochs. The value of N
depends on the periodicity that the measurements are captured. We store the N elements
that were captured in the last 5 s. Figure 2 represents the weighted values of different
reference points during an experiment. In this case, it can be observed that a WiFi AP is
overweighted for some epochs. Then, owing to a blocking of line of sight between the
target and the WiFi AP, the weight of the WiFi AP is reduced drastically due to the precision
of the range being reduced to the level of lower precision technologies such as LTE base
stations (BSs).

Thus, the system benefits from the most stable and precise ranges. When the MLE
receives a new input source (i.e., a new RP and its distance), the estimator assigns a low
weight during the first N epochs in order to check the stability of the new source. In case a
RP data are not captured, the MLE erases the stored data of that RP. Once all the information
is weighted, WLS algorithm utilises the weights to provide the best target position. To find
the solution, several searching techniques can be used for the MLE:

• Nelder–Mead: is the most widely used algorithm in direct search method for solv-
ing the unconstrained optimisation problem. The Nelder–Mead method iteratively
generates a sequence of tetrahedrons to approach the optimal point which can reflect,
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expand, contract, and shrink. The algorithm is designed for small search spaces
because it quickly stalls [27];

• Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS): is designed for large
non-linear optimisation problems. The algorithm handles bounds on the variables and
solves unconstrained problems. However, the convergence is slow and non-optimal
for real time cases [28];

• Truncated Newton (TNC): utilises rougher estimations of the optimal search direction
for efficiency. As a drawback, the algorithm appears to rapidly stall [29];

• Constrained optimisation by linear approximation (COBYLA): is a direct search
method which only incorporates linear models about the objective and the constrains
with quick searching time [30];

• Sequential least squares programming (SLSQP): is an iterative method in which the
objective and constraints functions demand to be triple continuously differentiable.
The method reduces the non-linear optimisation problems by sequential iterations to
trim the convergence time [31].

In this paper, the SciPy [32] package implementation of these algorithms was used.

Epoch

W
ei

g
h

t

LTE BS 1
LTE BS 2
LTE BS 3
UWB
WiFi AP

Figure 2. Functionality of the MLE during a real experiment.

4. Experimental Setup

In this section, an experimental setup for validating the solution is described. To val-
idate the benefits of the proposed solution with real data, an UWB and a WiFi FTM
deployment are used as high-precision ranging technologies and an indoors LTE network
as a backup element with low-location accuracy and high availability. LTE is used as a
placeholder of 5G due to the lack of an experimental infrastructure, but the conclusions
of the experiment are expected to be similar with femtocells in a height of 3.5 m. The LTE
network belongs to the University of Malaga which has configured the network to reduce
the interferences with commercial networks. On the other hand, according to the multi-
path effects, the scenario is a laboratory which presents several metallic elements, such as
computers, shelves, etc. Therefore, we expect that the measurements are heavily affected
by multipath. The UWB deployment is based on Decawave DWM1000 devices (DecaWave,
Dublin, Ireland) and they were placed on top of shelves in order to cover the whole scenario
with good visibility (2 m height). Meanwhile, the WiFi FTM APs are Google WiFi mesh
routers (Google, Montain View, CA, USA) that were placed in typical places for providing
WiFi connectivity throughout the laboratories (1 m height). Both DWM1001 and Google
WiFi routers are set to their default configuration parameters [33,34]. The UWB devices
transmit with a power of −14.3 dBm and they are centered in 6 GHz [34]. The Google
WiFi routers are configured to work at 2.4 GHz and, to the best of our knowledge, the WiFi
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RTT FTM function could not operate at 5 GHz. The transmission power of the router is
by default 28.17 dBm [33]. The LTE station parameters are configured with a transmission
power of −6.8 dBm and downlink and uplink frequencies of 2630 MHz and 2510 MHz,
respectively. The location target device is a Google Pixel 3 which runs Android 9.0 and
supports WiFi FTM RTT. An application has been programmed to capture all the ranging
data from the network reference points: LTE base stations, UWB anchors and WiFi APs.
The ranges with the LTE stations are estimated using the measured RSSI which is modelled
by the indoor office propagation model [35]. The WiFi FTM ranges are obtained from an
API created for this work. For the UWB measurements, a DWM1000 device is attached
to the smartphone and connected via Bluetooth low energy (BLE) to read the UWB data.
A limitation on the performance of the UWB devices is that the UWB tag can only receive
the information of four anchors simultaneously due to the software provided with the
DWM1000 family products [4]. The implementation of the positioning and networking
stack (PANS) firmware, the two-way ranging (TWR) communication protocol and the data
frame limit the number of anchors that the tag can listen at the same time. Hence, despite
a high-density set-up, the system is not highly over-determined. The captured data are
sent to a Flask server with a MySQL database which is configured in a laptop(Lenovo,
Beijing, China) running Windows 10. The sampling rate is 1 Hz. The measurements are
timestamped with the global satellite system (GPS) clock as a time reference. The mea-
surements are captured in a reduced time interval, assuming simultaneous samples which
would introduce some error due to synchronisation. However, a regular user moves slowly
in indoor scenarios which can lead to a maximum error of a few centimetres of ranging
information. Additionally, we have set the height of the phone to 1.1 m of height simulating
a person is carrying the phone on his pocket. Then, we send the information to the Flask
server to process the localisation data via HTTP with no retransmission allowed in order to
maintain the experiments as real-time.

These experiments were performed in three laboratories and hallways with a very
limited vision of the sky. Figure 3 illustrates the three experimental cases that have been
measured in the two different scenarios. These cases were selected in order to demonstrate
the advantages of fusing technologies and the performance of the MLE and its different
searching methods for localisation. Two experimental cases were carried out as shown in
the high-density deployed scenario illustrated in Figure 3a. In Case 1, seven regular UWB
anchors (in green) and three Google WiFi devices are used to show the performance of
fusion with high-accuracy ranges. The numbers of UWB and WiFi devices were chosen in
order to fully cover the scenario with at least three anchors or AP ranging data in the whole
area. In Case 2, two UWB anchors in bad locations (in red wine colour) were added to the
Case 1. In this scenario, UWB and WiFi will complement their information and improve
the geometry of the problem by having the reference points more evenly distributed. Thus,
with multi-technology fusion in trilateration the problem becomes over-determined for
each point, and it also has more reference points distributed over a wider area (which
means that the coverage of the overall system increases). As opposed to the scenario shown
in Figure 3a, Figure 3b shows a realistic scenario with one regular UWB device, one WiFi
AP and three LTE base stations distributed on the laboratories. With this deployment,
the high-precision information availability is reduced to a small area. LTE is used in order
to augment the availability of the positioning service. Nonetheless, with this deployment,
a high precision can only be achieved when there are three high-precision reference points
in range. When LTE is used, a low precision location is provided, which is still better than
a full outage in location provision.
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Lab 1Lab 2

Lab 3

Lab 1Lab 2

Lab 3

UWB
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Google WiFi LTE PicoCell

UWB in bad locations Case 1
Case 2
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Column
Door

9.46 m9.46 m 14.77 m

13.7 m

3.2 m

Figure 3. High density (a) and low density (b) scenario set-up distribution.

5. Results

In this section, the results obtained from each case are described separately in order
to demonstrate the performance of multi-technology fusion. Moreover, the different
searching methods of MLE are executed in order to observe some location characteristics
for each Case.

5.1. Results from Multi-Technology Fusion
5.1.1. Case 1: High-Density Deployment with Good UWB Conditions

In this first experiment, the set-up represents a scenario with a high-density of UWB
reference points, such that at any point the visibility of at least four anchors is guaranteed.
Moreover, all the anchors are in a location with good propagation conditions, favouring
a low ranging error. Figure 3a represents the scenario, with the UWB anchors and the
captured location data for one trajectory (yellow and orange dots). Figure 4 shows in 2D
the performance of system with the estimated locations (blue dots) against the ground truth
points (yellow dots). The UWB (green diamonds) and WiFi (pink triangles) illustrate where
the devices are placed. Figure 5 shows the location accuracy achieved with UWB, WiFi
FTM and the fusion of both in this case compared with the ground truth. In Figure 5, fusion
median (yellow line), standard deviation (rectangle height), and outliers (circles) improves
significantly from UWB and WiFi isolated cases. UWB localisation is better than WiFi in
this case. Despite having UWB anchors in good conditions, the positioning error has an
average near one meter. This meter-level accuracy is due to multipath effects that affect
both UWB and WiFi FTM (which has a lower accuracy). When using fusion, the accuracy
improves, with a lower average and much lower variance.
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Figure 4. Localisation performance of Case 1 in 2D.

5.1.2. Case 2: High-Density Deployment with 2 UWB in Bad Locations

As in the previous case, the set-up ensures the positioning service provided by UWB
with the ranging information of four anchor most of the time. However, in this case, two
of the anchors are installed in locations where a partial blocking of the anchors leads to
bad propagation conditions due to NLoS. This situation can be common in the real world,
where quick deployments are completed for situations such as emergencies or temporary
events. The bad deployment causes these anchors to report ranges with a higher error.
The data captured for this case are illustrated in Figure 3a as yellow dots. In this case,
the error of the only-UWB location service is much larger than in the previous case as
shown in Figure 5. Again, fusion median and standard deviation improve against isolated
technology localisation.

Figure 5. Horizontal error distribution of UWB + WiFi FTM for Cases 1 and 2.

A cumulative density function (CDF) of the error is given to illustrate and compare the
performance of Cases 1 and 2 as shown in Figure 6. The pink horizontal line represents 90%
sample line, and the error for using fusion in Case 1 drastically improves the horizontal
error. However, the outliers introduced by UWB in Case 2 have worsened the fusion
performance and WiFi, in this case, locates better the user in isolation.
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UWB Case 1
WiFi FTM Case 1
Fusion Case 1
UWB Case 2
WiFi FTM Case 2
Fusion Case 2

[m]

Figure 6. CDF of the horizontal error for Case 1 and 2.

5.1.3. Case 3: Low-Density Deployment of High-Precision Technologies

In this third case, the scenario is set up as a more realistic situation with less dense
high-precision devices than in the other Cases. In this case, the low-density of devices in
the scenario makes it impossible to locate a target by using the high-precision information
from UWB and WiFi devices, since the visibility of at least four reference points is not
guaranteed. Therefore, in this case, the missing ranges are complemented with LTE ranges,
which are less accurate. Figure 3b represents, in light blue dots, the positions where the
location service is provided by using the LTE data. In Figure 7, there is a comparison of the
location error between the only LTE and multi-technology fusion between LTE with UWB
anchors and WiFi AP ranging information.

Figure 7. Horizontal error distribution of LTE and fusion for Case 3.

In addition, the CDF of Case 3 has been also included when using fusion with 1 UWB
anchor, 1 WiFi AP or LTE plus both technologies as shown in Figure 8. In this Case, precise
ranging information greatly enhances the localisation accuracy of the multi-technology
system.
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LTE Case 3
LTE + 1 UWB Case 3
LTE + 1 WiFi  Case 3
LTE + 1 UWB + 
1 WiFi  Case 3

Figure 8. CDF of the horizontal error for Case 3.

Comparing Figure 9 (imported from [10]) with Figure 8, the fusion algorithm stands
out in both works showing the benefits of using high-precision data in areas only covered
by low-precision ranging technology such as LTE. In Case 3, just as in the simulation of [10],
LTE provides a worse precision performance when it is used in isolation. There is a contrast
between the results obtained in this work and in [10] because in the simulation the case of
the study was ideal in which some real-world conditions such as reflections, clutters, and
interferences, were omitted.

Figure 9. Horizontal Position Error of LTE (blue), fusion (yellow) and weighted fusion (red).

5.2. Comparison of the MLE Searching Methods for Positioning

Searching methods may provide different solutions to weight the sources. Nelder–
Mead, COBYLA, and SLSQP are linear methods which may perform better for estimating
the standard deviation of the sources. In addition, L-BFGS-B is designed for large problems
and TNC provides a rougher estimate to achieve a faster converge. Thus, L-BFGS-B
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and TNC may perform a priori worse than the rest. In this Section, a comparison of
the performance of the different searching methods for the MLE are shown in Table 3 in
the three different cases. All the results are obtained by using multi-technology fusion
in trilateration. In addition, the different searching methods are compared with a non-
weighted LS solution to show the performance of the MLE in positioning problems. Table 3
shows the mean (µ), standard deviation (σ), the 80% of the cumulative error (CDF) in
meters and the time elapsed for each iteration in milliseconds.

Table 3. Comparison of the search methods in both scenario.

Nelder-Mead L-BFGS-B TNC COBYLA SLSQP No Weighting

µ [m] 1.14 1.46 1.43 1.14 1.14 1.07

Case σ [m] 0.77 1.2 0.99 0.77 0.77 0.67

1 80% cdf error [m] 1.63 1.84 1.93 1.63 1.63 1.45

Time elapsed [s] 0.103 0.065 0.169 0.200 0.067 0.070

µ [m] 0.98 1.52 1.52 0.96 0.95 1.11

Case σ [m] 0.67 1.74 1.74 0.67 0.67 0.84

2 80% cdf error [m] 1.3 1.83 1.83 1.25 1.23 1.46

Time elapsed [s] 0.125 0.079 0.176 0.225 0.082 0.078

µ [m] 18.7 19.08 18.36 18.7 18.7 18.14

Case σ [m] 9.65 10.75 10.14 9.66 9.66 10.71

3 80% cdf error [m] 27.84 27.36 26.88 27.84 27.84 25.71

Time elapsed [s] 0.109 0.059 0.194 0.254 0.052 0.050

6. Discussion

In this section, the results are discussed showing the advantages of using multi-
technology fusion. Moreover, the results obtained for the different searching methods are
reviewed providing a guideline on which is the most convenient.

6.1. Performance of Multi-Technology Fusion

As seen in the previous section on Figures 5 and 7, the error obtained by multi-
technology fusion improves substantially with respect to single-technology positioning
performance. With fusion, more measurements over-determine the WLS algorithm and
also the geometry of the reference points enhances from a denser deployment. The over-
determination of the localisation problem might not enhance the system performance with
the inclusion of MLE if a RP appear intermittently, in which case MLE drastically reduces
the impact of this intermittent RP.

On the other hand, the combination of isolated high-precision ranging technology
with low-precision technology such as LTE shows a considerable improvement in all the
possible aspects, such as mean, standard deviation, or the magnitude of the outliers, as
seen in Figure 7. Despite LTE being a coarse precision ranging technology, it fills the lack
of ranging information to solve the WLS algorithm for location augmenting the coverage
area where location is provided. Therefore, taking advantage of the fact that several
technologies are already deployed in the measurement scenario (and also in many real-
world situations), the multi-technology fusion technique can be used to exploit different
deployments, improving accuracy, coverage, and reducing the cost of new deployments.

6.2. MLE Search Methods

Regarding the MLE algorithm, it does not improve the target location performance
overall when all the devices are in good visibility and propagation conditions (such as
Case 1), instead, it slightly worsens the positioning error, as seen in Table 2. This is because
MLE assigns a low initial score to the new sources. Nevertheless, the benefits of MLE
appear in more realistic scenarios where input data introduces outliers (Cases 2 and 3).
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In Case 2, the use of MLE, with the methods of Nelder–Mead, COBYLA or SLSPQ, improve
the location system performance in all the statistical metrics proposed in the Table 2 and
SLSQP has a very similar time resolution without using MLE. In Case 3, it is noticeable
that the MLE reduces the standard deviation error, although it increases the mean error.
This is expected due to MLE reducing the impact of data with higher variances. Thus,
despite reducing the impact of the standard deviation, the offsets introduced by multipath
predominate on the location estimation. Again, the SLSQP search method is very similar to
the non-weighted method. Hence, L-BSGS-B and TNC both show not to be suitable for
positioning. In contrast, SLSQP search method proves better than the rest of the methods
for improving the location performance against outliers or bad propagation conditions that
are very typical for indoors scenarios.

The positive results obtained with MLE can be further improved using techniques,
such as Kalman filters [24], or complementing the weight calculations with additional
contextual information, such as the knowledge of LOS/NLOS conditions (obtained, for in-
stance, with machine learning) [36].

7. Conclusions

In this work, the main objective is to present multi-technology fusion with MLE as
a weighting algorithm in a real scenario. Thanks to the fusion technique, the presence of
multiple technologies can be used to improve location in diverse ways: with a higher preci-
sion and with a higher availability. When the number of high-precision reference points is
high, fusion provides an over-determination that allows a higher precision. In cases where
the number of high-precision reference points is low (for instance, in the border of deploy-
ments, or in sparse deployments), multi-technology fusion allows using low-precision and
highly available technologies, such as LTE, to complement the reference points and do
trilateration to achieve a high availability on the localisation service.

Moreover, the proposed technique does not need any additional hardware apart from
the receivers for each technology that will be present in most mobile devices in the near
future. Thus, fusion allows to reduce costs in positioning infrastructure deployments due
to a lower density requirement of high-precision devices.

To validate the weighting technique with MLE, tests with real deployments were
completed in three different Cases. MLE is presented in this paper as a technique that
reduced the impact of outliers for precise positioning. Only in ideal cases with very good
condition deployments, the error slightly increases. SLSQP stands out as the best search
method for MLE in positioning problems.
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Abstract: A high-precision location is becoming a necessity in the future Industry 4.0 applications
that will come up in the near future. However, the construction sector remains particularly obsolete
in the adoption of Industry 4.0 applications. In this work, we study the accuracy and penetration
capacity of two technologies that are expected to deal with future high-precision location services,
such as ultra-wide band (UWB) and WiFi fine time measurement (FTM). For this, a measurement
campaign has been performed in a construction environment, where UWB and WiFi-FTM setups
have been deployed. The performance of UWB and WiFi-FTM have been compared with a prior
set of indoors measurements. UWB seems to provide better ranging estimation in LOS conditions
but it seems cancelled by reinforcement concrete for propagation and WiFi is able to take advantage
of holes in the structure to provide location services. Moreover, the impact of fusion of location
technologies has been assessed to measure the potential improvements in the construction scenario.
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1. Introduction

In recent decades, a new industrial revolution has emerged thanks to the introduction
of Information and Communication Technologies (ICTs) in industrial processes [1], giving
place to the Industry 4.0 paradigm. However, the construction sector remains particularly
obsolete in technology adoption compared to other sectors, such as manufacturing [2,3].
The main activity of the construction sector takes place on the construction site, which
is a highly changing environment, the vast majority of which is outdoors, and usually
involves different actors, such as different companies and a large number of workers
during the different stages of the project. Moreover, the use of heavy machinery, such as
cranes or trucks, and harmful or heavy materials also come into play, which make these
scenarios dangerous and whose monitoring and safety tasks are often difficult to fulfill. In
this context, new ICTs are emerging that allow location and monitoring of the different
resources, as well as the automation of tasks or the remote control of some elements, help
to achieve a more efficient and safer construction environment [4].

In Industry 4.0, advances in the fields of robotics, AI, and Machine Learning (ML)
come together to conform production to new customer demands, such as an increased
customization, optimal machinery efficiency, and reduced costs [5]. Thus, the whole
industry is advancing towards more flexible and adaptable scenarios through wireless
environments. Wireless networks allow flexibility, scalability, and mobility that can be
translated into real-world applications in the construction sector, such as remote driving [6],
autonomous cranes [7], or real-time workers location and health monitoring [4].
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Technological progress in recent years has focused its efforts, among other objectives,
on the location of users. The Global Navigation Satellite System (GNSS) has established
itself as the reference location system for outdoor navigation [8]. However, in more hostile
scenarios for signal reception, such as indoor scenarios or scenarios surrounded by metallic
elements, such as construction sites, it has not been successful. These types of scenarios
often contain metallic objects that reflect and block signals, create multipath effects that
deteriorate target location accuracy, or can create areas with coverage holes. In addition,
typical construction scenarios are dynamic with constant changes due to the different phases
the project goes through. Therefore, a location that meets the requirements of reliability,
continuity, and accuracy for location-dependent applications, such as Augmented Reality,
or Autonomous Robots, is a major challenge [9].

This paper evaluates and compares the performance of ultra-wide band (UWB), WiFi
fine time measurement (FTM) and fusion of technologies in a construction scenario with an
indoor scenario from a previous work [10]. This evaluation is backed by measurements
taken in a real construction site, where UWB and WiFi-FTM setups were deployed. The
measurement campaign included samples from several different floors in an incomplete
building. The measurements are used to assess the precision of each technology individ-
ually. In addition, an algorithm [11] to opportunistically fuse the ranges obtained from
different location technologies is studied. This fusion technique helps to reduce the de-
ployment cost by reusing elements from different technologies as reference points, which
may be deployed for other purposes in the construction site [10]. In locations with a high
density of reference points (RPs), the system to be solved is overdetermined, i.e., it has
extra information to improve its accuracy. Since all the RPs provide different accuracies, we
include a weighting step that prioritises the RP that provides a better ranging accuracy [11].
In addition, the fusion technique also deals with coverage holes of certain deployments, for
example, in areas where there are less than three visible RPs of a technology, fusion takes
advantage of the information of other technologies to be able to offer the location service.
To the best of our knowledge, there are no papers studying the precision of location systems
in construction sites and that compared them with the precision of an indoor scenario. As
novel ICTs emerge in the construction industry, these studies will become a necessity to
properly select the location technologies for such applications.

The rest of this paper is organized as follows: Section 2 gives an overview of the
different location technologies explaining the characteristics of the technologies used in
this work. Section 3 explains the proposed method and the trilateration fusion algorithm.
Section 4 describes the experimental setup of the scenario. In Section 5, the results obtained
in the deployed scenario are presented and discussed. Finally, Section 6 presents the
conclusions of this work.

2. Overview of Location Technologies

This section provides an overview of the two location technologies that are most
commonly used indoors, and may therefore be used in construction scenarios.

2.1. Ultra-Wide Band (UWB)

UWB provides high distance measurement accuracy based on the Round Trip Time
(RTT) protocol, even in environments with difficult propagation characteristics [12]. This
technology has multiple advantages, such as centimeter-level accuracy, good obstacle
penetration capability [13] and multipath mitigation in dense scenarios [14], making it
indispensable for positioning in complex scenarios. UWB is also used as a wireless commu-
nication technology that supports high throughput due to the use of a very wide spectrum.
UWB uses very short time pulses of a few nanoseconds that occupy a wide bandwidth.
UWB signals are centered on 6.5 GHz with a bandwidth greater than 500 MHz. The latest
market trends show that UWB may soon become a de-facto standard (albeit this prediction
is recently being challenged by IEEE 802.11 mc). Therefore, some smartphones have already
integrated UWB chips in recent years. The main drawback is that, in order to achieve a
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short pulse width, the UWB device has a high power consumption for a single packet
transmission [15,16]. Thus, using the RTT protocol, which needs the exchange of multiple
packets, will increment the energy consumption.

2.2. WiFi Fine Time Measurement

The IEEE 802.11mc standard includes precise fine time measurement (FTM) for dis-
tance estimation to the router by time stamping using the RTT protocol [17,18]. This version
will transform the indoor positioning industry in the coming years as WiFi infrastruc-
ture and connectivity is widely adopted. The protocol accurately estimates the distance
of any user supporting the WiFi FTM protocol without the need to be connected to the
router [19]. The information is calculated on the device to preserve privacy, as sensitive
location information is not shared between network nodes. In [18,20], the accuracy for WiFi
FTM positioning is estimated to be around one meter in real-world scenarios with dense
deployments of WiFi routers or access points (APs).

3. Location Computation

Although fingerprinting claims to provide high accuracy with low infrastructure
deployment, it has some drawbacks that make it unfeasible for the construction case. First,
it requires complex training that makes it impractical to cover the entire infrastructure.
Secondly, the periodicity of this training becomes very frequent due to constant changes in
the environment. Thus, the trilateration method seeks to find the final position of the user
through the intersection between geometric shapes, such as circles or hyperbolas defined
by the distance between the target and the different RPs [14,21,22].

Although the received power may not follow a specific propagation model, if the
environment does not change drastically, it tends to remain static over time.

Since the distances contain errors in the measurements due to different factors, such as
reflections or blockages, these distances do not intersect at a point but generate an area of
uncertainty which is where the solution to the problem lies. Therefore, the Weighted Least
Square (WLS) iterative method finds the optimal solution to this problem as follows:

A =




xn−bsx0
ρ0

xn−bsx1
ρ1

· · · xn−bsxn
ρn

yn−bsy0
ρ0

yn−bsy1
ρ1

· · · yn−bsyn
ρn




y = pn − p

∆p = (A>WA)−1 A>Wy

p = pn + ∆p

(1)

where A is the Euclidean distance matrix of the computed position (pn) which is defined as
p(x, y) in the n iteration, ρi is the pseudodistance from the target to the i reference point
and bsi(x, y) is the coordinate of the reference point in the second dimension. W is the
weighted matrix and (bsi) are the coordinates of the different RPs. The innovation vector y
computes the difference between the estimated and the initial position p which is updated
until the variation ∆p does not exceed an arbitrary threshold.

In trilateration, it is usually assumed that the distance measurement information comes
from a single technology. However, in [11] a scheme for merging ranges from different
technologies is presented. Moreover, in [10] the UWB and WiFi FTM technologies are
presented in a real indoors scenario where the result of locating users using these two
technologies separately and in fusion is shown. In the present work, the same algorithm is
presented to compare the performance of the different technologies in different scenarios.
The use of fusion in trilateration improves the accuracy of the final estimated location. In



Sensors 2022, 22, 5373 4 of 12

addition, fusion in trilateration also provides seamless navigation between areas served
by different technologies (e.g., outdoors where GNSS can be used, and indoors with WiFi
deployments, using other distance measurement technologies to cover missing ranges
at the borders). Fusion leverage signals from isolated high-accuracy landmarks or that
are part of incomplete deployments, such as in situations where a dense deployment is
not possible, such as in stages of a construction where the addition of walls has caused
blockages, the removal of scaffolding has reduced the mounting points for RPs or even in
occasions where part of the infrastructure has been destroyed (e.g., fires, earthquakes, etc.).
In these scenarios, fusion can compensate for missing RPs with portable APs to provide
high-precision location.

The classical Least-Square algorithm is highly influenced by outliers. However, the
Maximum Likelihood Estimator (MLE) estimator evaluates signal accuracies to enhance
the location service. MLE obtains the parameter θ̂ which determines a probability density
function p(X = x|θ) of a continuous variable based on x1, x2; . . . , xn which are independent
observations of the distribution [23]. In this work, MLE weights the ranging information
obtained by different RPs depending on the error of the ranges compared with the final
solution to insert this information in the WLS with the W matrix. The system stores the
error of each RP iteratively with a temporal window and weights the sources according to
their standard deviation. Supposing that X = {X1, X2, . . . , Xn} with distribution Fθ being
θ = {θ1, θ2, . . . , θn} that follows the density function fθ(x) [24]. So, the likelihood function
of the observation is given by:

L(θ; X) =
n

∏
i=1

fθ(Xi) (2)

The MLE estimates the best candidate that optimally maximizes L as seen below:

θ̂ = argmax(log(L(θ; X))) (3)

Assuming that observations follow a Gaussian distribution [18,25,26], the estimator
calculates the parameters of mean and standard deviation that best suits Equation (3). Thus,
the given observation vector to the MLE follows a normal distribution, as indicated in [8],
which provides the optimal value. In this work, MLE obtains the weights of the different
RPs based on the error from the last N time epochs which may improve over-determined
location systems.

4. Experimental Environment

In this section, an experimental setup for evaluating UWB, WiFi-FTM, and fusion
in a real construction scenario is described. To show the performance of the different
technologies with real data, a setup of UWB anchors and a WiFi FTM APs has been
deployed. In this work, two experiments have been performed to evaluate the ranging and
location accuracy in the same floor of UWB, WiFi and fusion, and to evaluate the penetration
capacity and accuracy of UWB and WiFi in different floors (one above and below from
where the deployment is set-up). The first experiment takes place in the basement floor
−1 during the construction phase of a building site, as can be seen in Figure 1. In this
floor, the view of the sky is completely cancelled, making unfeasible the use of GNSS.
The construction site was at a stage where the structure of the floors was built although
the walls had not yet been built as shown in Figure 1a. Figure 1b shows the steel bars
inside the reinforcement concrete that act as Faraday cage for the signal propagation. This
structure is present in the walls, floors, ceiling, and columns. Thus, the second experiment
evaluates the penetration capabilities of UWB and WiFi. Figure 1c shows how the anchors
are attached to the walls for the measurement campaign. Duct tape was used in order to
avoid interfering with the construction works, and taking into account that it does not
affect the propagation of wireless signals. This deployment strategy was also drawn in
conjunction with the construction company, which provided guidance on typical practices
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and material limitations of the environment. Specifically, this approach was recommended
due to its low cost, low intrusiveness, and high flexibility.

(a) (b) (c)
Figure 1. Pictures of the scenario: general view (a), structure of the floor and ceiling (b) and setup of
an UWB anchor (c).

In the first experiment, the distribution of the UWB anchors and WiFi APs are repre-
sented in Figure 2 as blue and red triangles and indicated as UWB or WiFi X, respectively.
The yellow dots represent the ground truth of the path there and back where the measure-
ments are taken. In this experiment, all the measurements were taken in LOS conditions
and for UWB4 and UWB6 in partially NLOS conditions. Two path there and back mea-
surement recollections were performed to have a sufficient dataset, over 150 samples that
were collected statically during each 30s measurement. UWB anchors are set at different
heights (indicated in Figure 2) and the WiFi APs are placed on the floor to avoid falls. In
the second experiment, the green boxes (1, 2, and 3) show the positions used to measure the
penetration capabilities of UWB and WiFi one floor above and below of each point. In this
experiment, we evaluate the penetration capabilities, i.e., the number of packets that can
reach the UE, and the ranging accuracy of how it degrades from LOS to a NLOS scenario.
In the positions marked by the green boxes, the UWB and WiFi devices are placed together
on the floor (height = 0m). The measurement campaign at each point was of 5 min with an
update date of 3 Hz.

21

3

h=1.5m

h=1.6m

h=2m

h=1.5m
h=0.6m

h=1.6m h=1.7m

WiFi 2
UWB 4

WiFi 1
UWB 1 UWB 2UWB 5

UWB 7

WiFi 3
UWB 3

UWB 6

Figure 2. Scenario with UWB and WiFi technologies.

A Google Pixel 3 acts as the location target. This smartphone runs Android 9.0 and
supports WiFi FTM RTT. An application has been programmed to collect all distance
measurement data from the RPs seen by the terminal: anchors for UWB and APs for WiFi.
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However, Google Pixel 3 does not support UWB technology yet. Thus, an UWB device
is attached to the smartphone (acting as a tag, i.e., location target) and connected via
Bluetooth Low Energy (BLE) to the smartphone which reads the UWB data. The developed
application relays the captured data via WiFi to a server where it is stored and processed.
The database is a Flask server with a MySQL database that is configured on a Windows
10 laptop. Samples have been collected in an offline phase to check the accuracy of the
positioning results with a sampling rate of 0.3 Hz.

The UWB devices—anchors (reference points) and tag (location target)—are based
on Decawave DWM1001 devices which compute the range estimation via RTT proto-
col [27]. The UWB devices transmit with a power of −14.3 dBm and they are centered in
6.5 GHz [27]. One limitation in the performance of these UWB devices is that the tag can
only receive information from four anchors simultaneously due to the default firmware
that DWM1001 devices have installed [13]. Thus, despite of the high density of UWB
anchors, the positioning algorithm with UWB only will use up to four anchors that does
not exploit the full environment information. The WiFi APs are Google WiFi routers which
are configured to work at 5GHz to support the WiFi FTM RTT protocol [28]. Additionally,
different bandwidth gives different precision as indicated in [29]. For ranging estimations
at 90% CDF error, it is expected to have the following tolerances: 80 MHz (2 m), 40 MHz
(4 m), and 20 MHz (8 m).

5. Results

This section describes the results obtained in each experiment to demonstrate the
performance of the different technologies for positioning accuracy and penetration capacity.

5.1. Accuracy of UWB and WiFi in the Same Floor

Figure 3 shows the cumulative density function of the horizontal error (x–y axes) as
a result of trilateration obtained with UWB, WiFi, and fusion using trilateration. It also
compares the performance with the indoor scenario (Case 1) presented in [10].

Figure 3. CDF Horizontal error distribution of UWB, WiFi FTM, and fusion in the construction site
and in a indoor scenario.
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Table 1 displays the relevant statistical parameters of the first location experiment, i.e.,
the mean, standard deviation of the error, and the 2σ parameter (95% of the sorted error)
compared with the ground truth in UWB, WiFi, and fusion in both scenarios, construction
site and laboratory, as a result of the trilateration with MLE algorithm.

Table 1. Comparison of the horizontal error between UWB, WiFi FTM, and fusion in the construction
site and indoor.

Mean [m] Standard Deviation [m] 90% of Error [m]

UWB Construction 3.69 4.70 13.51
UWB Indoor 1.82 1.54 5.22

WiFi Construction 3.02 4.45 14.14
WiFi Indoor 3.53 3.55 11.11

Fusion Construction 2.40 3.05 9.41
Fusion Indoor 0.86 0.58 1.65

In addition, Figures 4 and 5 represent the ECDF of the ranging accuracy of the different
UWB and WiFi devices to the target during the measurement campaign in LOS and partially
in NLOS (mainly for UWB4 and UWB6) conditions.

Figure 4. UWB ranging estimation error in LOS conditions.
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Figure 5. WiFi ranging estimation error in LOS conditions.

As can be observed, UWB seems to perform better than WiFi for ranging accuracy and,
therefore, in location estimation. In general terms, the geometry of the deployment and
features of the environment (e.g., construction site with LOS/NLOS, reinforced concrete
walls and floors, etc.) are key factors that may change the performance of a location system.
Indoor scenario ranging outperforms compared to the construction site, and the fusion
algorithm enhances both UWB and WiFi performance in both scenarios. Despite having all
UWB anchors and WiFi APs located in areas with good propagation conditions, the 90%
percentile of the positioning error is above a meter in all construction cases due to multipath
effects, geometry distribution, which leads to dilute the final precision, that affects both
UWB and WiFi FTM although, for WiFi, it can be seen that the effects are slightly smaller.
Despite having worse ranging performance in WiFi, the final solution is similar to the
UWB final results. As it can be seen, more ranging information in fusion improves the
geometry of the system and overdetermines the LS algorithm, which results in a better
performance. In this case, the fusion algorithm benefits from the data of estimated ranges
to RPs obtained from multiple technologies (normally 7 ranging data), when UWB only
captures normally 4 ranging data and WiFi a maximum of 3 ranging data. The full potential
of fusion is realized in cases where the scenario is such that RPs of a single technology do
not offer full coverage. In other words, in scenarios where points where less than 3 RPs of a
single technology are visible. In these cases, fusion may complement the missing RPs with
a different technology. Nevertheless, in the setup of this experiment, our objective was not
to demonstrate this opportunistic nature of fusion.

5.2. Penetration Capacity and Accuracy of UWB and WiFi in Another Floor

In this second experiment, we measured the location provided by the RPs one floor
above and below the scenario. The first observation was that no signal was received from
UWB. In other words, to have location in a floor, the UWB anchors must be installed in
the same floor. Figure 6 shows the percentage of the packet loss of the RTT packets at the
different points (1, 2, and 3) on the lower (Floor −2) and upper (Floor 0) floors of WiFi.
These loss rates reflect a reliability that could be sufficient for non-critical applications; for
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instance, worker tracking or tool location which normally require update rates of a few
Hz [30]. Half of the measurement points (Below 1 at Floor −2, Above and Below 3 at Floors
0 and −2, respectively) show a much higher loss rate due to the reinforcement concrete
which block the signal. In one of the measurement points (Above 3 at Floor 0), no packets
were recorded at all. In contrast, in the other half of the measurements (Above 1 at Floor
0, Above and Below 2 at Floors 0 and −2, respectively), the RPs can communicate with
the smartphone due to some holes present in the structure of the building among different
floors that are shown in Figure 7a–c.
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Figure 6. Percentage of WiFi coverage on the floor above and below the measurements taken.

(a) (b) (c)
Figure 7. Images of the connection between floors.

Figure 8 shows the ranging error (i.e., the error in the distance measured to the WiFi-
FTM RP) for each of the measured points. It can be seen that the Above 2 at Floor 0 and
Below 3 at Floor −2 are the most precise points, despite having high packet losses. In the
points with lower packet losses, precision is slightly lower and there is a higher tendency
for outliers. This is due to the impact of the holes in the building structure; while they
help propagation, they also introduce a higher error due to multipath. The error maintains
below 5 m of ranging error, despite the fact that in some cases the packet rate loss exceed
the 80% of the transmitted packets. This means that in cases where only signal penetration
is available for positioning, the ranging error maintains stability in general.
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Figure 8. WiFi error on the floor above and below measurement.

As it can be observed, the error estimation reasonably increments compared with
performance of the WiFi ranging information in LOS conditions from the first experiment
in Figure 5.

6. Conclusions

This paper presents the results of a measurement campaign of UWB and WiFi FTM in
a construction scenario for location purposes. The goal of the experiments is to compare
the accuracy, coverage, and penetration capability of UWB and WiFi technologies and
the fusion of technologies in this type of dynamic scenarios. UWB has demonstrated to
provide better ranging accuracy, however, WiFi has demonstrated robustness against blocks
in the scenarios with better propagation performance and penetration capabilities. The
measurements show the elements of the construction site affect in UWB and WiFi ranging
estimation compared with an indoor scenario. Moreover, it can be observed that fusion can
improve the accuracy of location in all scenarios.

Penetration measurements show that reinforcement concrete completely cancels UWB
propagation and WiFi is able to benefit from holes in the structure to achieve location. How-
ever, in cases where no holes are present, WiFi performs with difficulties for positioning,
but still manages to report ranges.

Author Contributions: Conceptualization, C.S.Á.-M., H.Q.L.-C., and E.J.K.; methodology, C.S.Á.-M.
and H.Q.L.-C.; software, C.S.Á.-M.; validation, C.S.Á.-M., H.Q.L.-C., and J.L.M.; formal analysis,
C.S.Á.-M., H.Q.L.-C., J.L.M., and E.J.K.; investigation, C.S.Á.-M., H.Q.L.-C., and E.J.K.; resources, S.C.-
D. and J.A.; writing—original draft preparation, C.S.Á.-M.; writing—review and editing, C.S.Á.-M.,
E.J.K., and R.B.; visualization, C.S.Á.-M.; supervision, R.B.; funding acquisition, R.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been performed in the framework of the Horizon 2020 project LOCUS (grant
agreement number 871249), receiving funds from the European Union.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2022, 22, 5373 11 of 12

Abbreviations
The following abbreviations are used in this manuscript:

AP Access Points
BLE Bluetooth Low Energy
FTM Fine-Time Measurement
GNSS Global Navigation Satellite Systems
ICT Information and Communication Technologies
ML Machine Learning
MLE Maximum Likelihood Estimator
RP Reference Point
RTT Round-Trip Time
UWB Ultra-Wide Band
WLS Weighted Least-Square
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ABSTRACT Precise positioning will play a key role in future 5G/6G services. The upcoming location-
based services drive the necessity of high-precision positioning to indoors. In fingerprinting, which is the
most commonly used location algorithm indoors, comprehensive radio maps are essential for a precise
localization service and highly influence on the result of the final position of the user. A Machine Learning
(ML) algorithm that supports missing information from the map may improve the robustness and reliability
of the localization service. In this work, we compare the performance of the classical fingerprinting
technique and different Decision Tree Regressor (DTR) -based algorithms that are Decision Tree Adaboost
(DTA), Linear Tree Adaboost (LTA) and Random Forest (RF). The experiments were carried out with
real 5G and WiFi data in an indoor scenario to test the performance of the techniques. Additionally, we
demonstrate the benefits of fusion of technologies when positioning with radio maps. Finally, an evaluation
of the robustness from the different methods was carried out when missing information in the training phase.

INDEX TERMS Fingerprinting, Adaboost, Random Forest, 5G, WiFi, Fusion, Indoor localization.

I. INTRODUCTION

AS an increasing number of customer services rely on
location to satisfy the needs of both users and network

operators, Localization-as-a-Service (LaaS) is becoming in-
creasingly vital for 5G and 6G networks [1]. LaaS is critical
in enabling new location-based services such as autonomous
robots and vehicles [2], smart education [3] or e-Health [4].
The 3GPP has set a target of achieving high localization
accuracy for 5G networks, aiming for submeter accuracy in
certain cases such as autonomous driving, where location
accuracy below 10 cm is envisioned [5], and an accuracy of
below 3 meters in most cases (both indoors and outdoors) [6].
Combining context-aware data from the Internet of Things
(IoT) collected through WiFi networks with 5G information
can enhance the accuracy, reliability, and scalability of local-
ization services [7], [8].

Accurate location estimation has become increasingly im-
portant in recent years, and the use of Global Navigation
Satellite Systems (GNSS) is a common approach for achiev-
ing high accuracy in outdoor environments. However, issues

like signal blocking, attenuation, and multipath effects make
GNSS ineffective indoors, where many applications are be-
ing developed. To address this, supplementary technologies
like 5G, WiFi, or Ultra Wide Band (UWB) are often used
to determine location [9], [10]. In situations where energy
constraints on user devices require network-based location
to conserve battery and optimize computational efficiency,
the network estimates the User Equipment (UE) location
based on data collected in the network infrastructure in a
non-cooperative manner [11]. Some applications, such as
beam management or automatic configuration of network
parameters, may also require terminals to transmit their lo-
cation using specific protocols [12], which can be complex
and energy-intensive. An alternative solution to determining
location is through network-based location [13]. This method
involves the network utilizing data collected from the net-
work infrastructure in a non-cooperative manner to estimate
the location of a terminal.

Cellular networks like Long Term Evolution (LTE) are
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commonly used to locate users when GNSS is unavailable
[14]. The most common approaches are location by prox-
imity, ranging-based methods, Angle of Arrival (AoA) and
fingerprinting. Location by proximity is the easiest method
to determine the location of the UE because it assumes the
location of the gNodeB (gNB) is the location of the UE and is
used when high accuracy is not required [15]. Ranging-based
methods, such as trilateration, involves using ranges obtained
through methods such as Received Signal Strength Indicator
(RSSI) or Time of Flight (ToF) [9] and can be very accurate
if ranges are precise. The determination of the location in-
volves estimating the interception of 4 spheres (or 3 in 2D
location). Nevertheless, range estimations are not normally
accurate, occasionally resulting in the non-convergence of
circles or hyperbolas utilized in the trilateration process.
To solve the uncertainty, techniques such as Least Squares
(LS) or Weighted Least Squares (WLS) are used [16]. AoA
measures the angle at which the signal reaches the UE from
the gNB. Multiple Input Multiple Output (MIMO) systems
are capable of transmitting with beamforming that can be
used to implement the AoA approach [17]. Indoor envi-
ronments pose reliability challenges for both range-based
models and AoA due to the susceptibility of the models to
signal blocking and reflections. While the received power
might not follow a predetermined propagation model, in
cases where the environmental conditions remain relatively
stable, it is observed to remain constant over time. For
instance, if we consider a location in close proximity to a
WiFi AP and the measured power is unusually diminished
due to an obstacle such as a wall, this power level will
remain unaltered over time as long as the obstruction remains
stationary. As a result, each point in space is associated with
a set of paired values comprising reference point identifiers
and unvarying received power levels. This principle underlies
the concept of fingerprinting, these paired values conform a
distinctive signature, commonly referred to as a fingerprint,
which serves to uniquely identify each point in space [18].

Fingerprinting exhibits several primary drawbacks. It no-
tably demonstrates high sensitivity to disparities between
training and testing conditions arising from dynamic propa-
gation attributes such as temperature, humidity, and obstacles
[19]–[21]. Additionally, it mandates an extensive preliminary
map construction phase, which necessitates thoroughness
[22]. This is imperative because unrecorded data points re-
main unusable for positioning during the operational phase.
Lastly, the integrity of the radio map is compromised due to
device heterogeneity stemming from variations in orientation
and chip sensitivity [23].

Fingerprinting has some disadvantages, which include the
requirement for a long map-building phase in advance. This
process must also be comprehensive because unmeasured
points cannot be used for location in the exploitation phase.
Other studies have explored the reconstruction of maps
containing missing data. In [24], they addressed this issue
by leveraging the linear nature of signal propagation. Their
objective was to recover missing data by considering the

context of the existing map, allowing for the application of
techniques like fingerprinting. It is important to note that
this approach is constrained by the granularity of the radio
map division, which directly impacts the final accuracy of the
system. When the division is finer, precision increases, but it
also necessitates a larger number of minimum required data
points. Another avenue explored is the utilization of Deep
Learning techniques for the recovery of missing data points
from maps. However, it is observed that this approach has
limitations and can only recover up to 50% of the missing
data [25].

Supplementary techniques such as combining ranging with
AoA can enhance the final location estimation of a UE,
resulting in a higher degree of accuracy [9], [26]. The fusion
of multiple technologies helps to increase the density of
reference points in the scenario, providing more information
for the final estimation stage. This reduces the cost of infras-
tructure or expands the coverage area [27].

The contributions of this paper are listed as follows:

• Implementation of fingerprinting and model-based algo-
rithms utilizing real 5G and WiFi data.

• Evaluation of the performance of positioning systems
when fusing different technologies employing map- and
model-based methodologies.

• Examination of the the behavior of the algorithms when
varying different percentages of missing data in the
training phase.

• Proposition of model-based techniques for a percentage
of missing data points over 50% while minimizing the
degradation on the localization performance.

The rest of the paper is organized as follows. Section II
explains both the fingerprinting algorithm and various DTR-
based techniques. Section III provides an overview of bene-
fits of fusion of technologies. In Section IV, the experimental
setup and the scenario are described. Section V analyzes
the results of the outcomes that were obtained from the
data collection campaign and the implementation of various
location methods with different experiments. Finally, Section
VI presents the conclusions of this work.

The acronyms in this paper are listed in the Table 1 as
follows:

II. LOCATION TECHNIQUES
In indoor environments, techniques like trilateration can be
challenging due to the possibility of signal blocking and
reflections, which can result in significant errors. ToF based
ranging estimation can reduce these errors, but it can be
expensive due to the hardware requirements [9]. In indoor
environments, however, there are typically multiple radio
signals that can be measured and reported without hardware
modifications. In cellular networks, UEs are required to mea-
sure all visible base stations and report this information to the
serving base station to determine the best cell [28]. In stable
indoor environments, the received power tends to remain
constant, making radio map techniques particularly useful.
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TABLE 1: Overview of acronyms

Acronym Definition
Adaboost Adapting Boosting

AoA Angle of Arrival
AP Access Point

CDF Cumulative Distribution Function
DTA Decision Tree Adaboost
DTR Decision Tree Regressor
IoT Internet of Things
gNB gNodeB

GNSS Global Navigation Satellite Systems
LaaS Localization-as-a-Service
LTA Linear Tree Adaboost
LTE Long Term Evolution

MIMO Multiple Input Multiple Output
ML Machine Learning
RF Random Forest

RMSE Root Mean Square Error
RSSI Received Signal Strength Indicator
ToF Time of Flight
UE User Equipment

UWB Ultra Wide Band
WL Weak Learner

This section will provide an overview of various techniques
suitable for these types of scenarios.

A. FINGERPRINTING
Classical fingerprinting is a localization technique that in-
volves generating a unique fingerprint of wireless signal
strength and other characteristics of a particular location.
This fingerprint can be later used to identify the location of
a device. The process of creating a fingerprint involves mea-
suring wireless signal characteristics at various points within
an area, such as a building or campus. In static environments
where changes are minimal, the received power at a specific
point in space remains relatively constant over time. As a
result, each point yiyiyi can be represented in a database of T
entries using a vector that contains the RSSI measurements of
the N nearest APs with known positions in WiFi and gNBs in
5G networks, RRR = (RSSI1, RSSI2, ..., RSSIN ), as shown
in Figure 1. Consequently, each point has a distinctive RSSI
vector that constitutes its fingerprint allowing for accurate
location tracking.

Fingerprinting involves two distinct phases, as illustrated
in Figure 1. The first phase, known as the offline or training
phase, involves creating a radio map by assigning a unique
fingerprint to each point on a regular grid. In the second
phase, called the online or exploitation phase, the terminal
measures the surrounding gNBs and generates a new vector
(rssi1, rssi2, ..., rssiN ). This vector is then compared to the
different points on the map to find the most similar finger-
print. To determine the most probable position ŷ̂ŷy on the grid,
the algorithm seeks the point that minimizes the Euclidean
distance between the new vector of RSSI and the fingerprint
database, as described in the positioning algorithm equation
shown in Figure 1.

The level of accuracy in the fingerprinting method depends
on several factors such as the size of the grid used during the

RP(1)

Fingerprint database
Offline Phase

Online Phase

Online Measurement Positioning algorithm Estimated 
Position

y1 R1

R2

R3

RT

At every
RPs

RP(2)

RP(3)

... ...

RP(N)

y2

y3

yT

ŷ(?,?) rssi1,rssi2,...,rssiN

FIGURE 1: Fingerprinting method

training phase, the variance of the measured power for each
component, and the accuracy of the UE’s measurements.
There is a tradeoff between complexity and accuracy; this
is crucial because using a smaller grid results in a shorter
training phase but with lower accuracy, while a finer grid
requires a longer training phase but with higher accuracy.

WiFi and cellular networks are commonly associated with
fingerprinting due to the high density of stations in office
and residential areas [18], [29]. Fingerprinting can provide
high accuracy with a reduced infrastructure investment, but
it requires the creation of a radio map with a complex
training phase. To maintain location precision, the maps need
to be updated when there are changes in the environment.
Furthermore, the maps must be comprehensive, meaning that
all points on the grid must be systematically measured in
order to properly locate users at any point.

B. DTR-BASED LOCATION
Fingerprinting has a major drawback in that it requires
complete information about the environment, without any
missing data. To address this issue, a commonly used ap-
proach is to employ ML algorithms to create an environment
model [30]–[32], which can then be utilized for estimating
the position during the exploitation phase. ML algorithms
generate a comprehensive model of the scenario through
the information provided in the training phase with cer-
tain reference points. Consequently, even without conducting
measurements across the entirety of the scenario during the
training phase, the ML model enables a localization service
encompassing the entire designated area [33], [34]. In the
context of a grid scenario with missing data, this study
utilized DTRs, which are recognized for their simplicity and
computational efficiency [35], to estimate the position.

By creating a set of hierarchical comparison rules that are
applied sequentially, DTRs model the behavior of the local-
ization system. The resulting path over a tree is determined
by the outcome of each rule (branch), leading to a final node
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(leaf) that decides the output of the regressor as illustrated in
Figure 2.

Decision 1

Decision 2 Decision 3

Output 1 Output 2 Output 3 Output 4

Y

N

N

NYY

FIGURE 2: DTR functionality

The DTR learning process comprises two phases: training
and testing. In the training phase, the 80% of the available
samples are randomly selected to form the training dataset
Dtrain, while the remaining 20% of the dataset Dtest is used
for testing. The objective of the training phase is to create a
tree that minimizes the regression error on the training set.

In this work, we study different DTR-based algoritms that
were chosen due to its high accuracy and low complexity:
Random Forest (RF) and two Adaboost-based training al-
gorithms that are Decision Tree Adaboost (DTA) and Lin-
ear Tree Adaboost (LTA). DTA, in its final prediction of
positions, combines outputs from different WLs by using a
decision rule and taking their average [36]. On the other hand,
LTA creates an interpolation function by taking into account
the different outputs of a set of decision rules [37], [38].

1) Random Forests
RFs are a ML technique that employs a collection of indi-
vidual models (known as base models) to generate a final
prediction. This ensemble method is versatile and can be
applied to various ML tasks such as classification, regression,
or localization. RFs are especially useful for localization
tasks because they can effectively aggregate the predictions
of multiple decision trees to determine the location of a
device [39], [40].

RFs employ the bootstrapping method to generate decision
trees, which involves a random subset of the training data that
is selected to create a single decision tree. This process is
repeated several times, leading to a vast number of decision
trees trained on various subsets of the data. To generate the
final prediction of the localization process, the predictions of
all the decision trees in the forest are averaged as depicted in
Figure 3.

The implementation of RFs is relatively straightforward,
as they utilize decision trees, which makes them compu-
tationally efficient. Additionally, RFs are resistant to data
noise since average of all the location outputs mitigates the
impact of any individual decision tree that might produce an
inaccurate estimation.

Algorithm 1 explains with pseudocode the structure
and formulation of the RF algorithm [41]. Given T
samples and N features (in this case, APs) labeled
([RRR(1), y1y1y1], ..., [RRR(T ), yTyTyT ]) where the input vector is a tuple
compound by a RSSI vector formed by RSSIn(t) from the
nth AP and tth sample and the localization output ytytyt that is

...
Tree 1

RSSI vector

Tree 2 Tree S

ŷ1 ŷ2 ŷS

FIGURE 3: RF schema

the final position of the user in a 2D plane. For training the
RF, we generate S trees as an arbitrary number of the size of
the forest. On each iteration i = 1, ..., S, we select a random
subset of features (SfeaturesSfeaturesSfeatures) and samples (SsamplesSsamplesSsamples). Then,
a tree is generated using SsamplesSsamplesSsamples with the chosen features
SfeaturesSfeaturesSfeatures.

During the testing phase of the RF algorithm, the input
vector is [rssi1, rssi2, ..., rssiN ] which contains the mea-
surements of different APs. Each tree produces an estimated
location ŷîyîyi and the output of the RF algorithm is ȳ̄ȳy as the
average of all estimated locations. In the testing phase, we
know the real location where the measurements are collected.
Thus, the quality of the estimation by the RF can be analysed.
The proposed approach has a significant advantage in that
it is computationally efficient that can be used for real-time
applications.

Algorithm 1: RF algorithm
■ To model the forest (training):
• Input: ([RRR(1), y1y1y1], ..., [RRR(T ), yTyTyT ])

foreach i=1,...,S do
-- Select a random subset of features (SfeaturesSfeaturesSfeatures)

from the input data
-- Extract a random subset of the

samples (SsamplesSsamplesSsamples)
-- Build a tree using data of SsamplesSsamplesSsamples with

the selected features Sfeatures

end foreach
■ To predict the final location:
• Input the new vector of measurement [rssi1, ..., rssiN ]

foreach i=1,...,S do
-- Estimates the location ŷîyîyi with the new input

vector on the i-th tree
end foreach

• Output the final position ȳ̄ȳy = 1
S

∑S
i=1 ŷîyîyi

2) Adapting Boosting (Adaboost)
Adaboost leverages the predictions of multiple individual
models, known as Weak Learners (WLs), to arrive at a final
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prediction [42]. The WLs are generated through a process
called boosting, which involves iteratively training the model
on new subsets of the data, with each round emphasizing the
data points that were incorrectly classified in the previous
iteration. Figure 4 illustrates the method of combining the
predictions of all the WLs in the ensemble to make the
final prediction. Two Adaboost-based training algorithms are
studied in this work: DTA and LTA. In the DTA method, the
positions from various WLs associated with a decision rule
are averaged in the final prediction [43], while in the LTA
method, an interpolation function is developed between the
different outputs within a set of decision rules [37], [38].

x xxxxxxx xxx*
* * ** *

*
* *

**
*

** *
**

x xxxxxxx xxx*
* * ** *

*
* *

**
*

** *
**

x xxxxxxx xxx*
* * ** *

*
* *

**
*

** *
**

x xxxxxxx xxx*
* * ** *

*
* *

**
*

** *
**

Trainer

Adaboost classifier

Final Weighted
Combination...

Weak Learner 1

Weak Learner 2
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FIGURE 4: Adaboost process

Adaboost is capable of adapting and learning from changes
in data over time, making it crucial in dynamic environ-
ments where wireless characteristics are prone to variation.
Although it achieves high accuracy, especially in LTA, a sig-
nificant disadvantage of Adaboost is its reliance on extensive
computational processing for the final estimation.

The structure and formulation of the Adaboost regressor
training, as described in [42], is explained through the pseu-
docode in Algorithm 2. As in RF algorithm, given T samples
and N APs labeled ([RRR(1), y1y1y1], ..., [RRR(T ), yTyTyT ]) where the
input vector is a tuple compound by a RSSI vector formed
by RSSIn(t) from the nth AP and tth sample and the output
ytytyt is the final position of the user in a 2D plane. For the
Adaboost, there is a number S that determines the number
of WLs (in RF determines the number of trees). On each
iteration i = 1, ..., S, the regression generates a WL function
gi with an associated weight wi that adjust the regressor to
minimise error. Initially, wi is set equal to 1/S. The weighted
error ei defines the error of the regression at the i iteration and
sets λi. The parameter λi defines two characteristics of the
regressor. First, λi defines the step size of the adapting boost-
ing. Second, λi sets the new weight wi+1 in the WL. Then,
the set of weights wi are normalized for the next iteration.
The final regression model F (x) computes the combination
of the weighted WLs that is the weighted average in DTA and
the weighted linear regression in LTA.

The estimator uses F (x) for the testing or exploitation
phase. In these phases, the input of the regressor is a vector
[rssi1, rssi2, ..., rssiN ] with the measurements of the APs

extracted from the UE. The output of the algorithm is the
estimated location ȳ̄ȳy of the UE.

Algorithm 2: Adaboost algorithm
• Input: ([RRR(1), y1y1y1], ..., [RRR(T ), yTyTyT ])
• Initialize weights wi =

1
S for every i

• Start with the null classifier f0 (x⃗) = g0 (x⃗) = 0 [RRR (1),
foreach i=1,...,S do

-- Fit some weak learner gi

-- Calculate ei =

∑S
j=1(ej∗wj)
∑S

j=1
wj

-- Set λi = 1
2 ln

(
1−εi
εi

)

-- Update weights: wi+1 = wie
−λiyigi

-- Normalize wi to sum to one
-- The new model is fi = fi−1 + λigi

end foreach
• Output the final model ȳ̄ȳy = F (x) =

∑S
i=1 λigi

III. FUSION OF WI-FI/5G TECHNOLOGIES
As the demand for connectivity increases, the number of
radio technologies available at a specific point in space has
increased over time. This is especially true for indoors envi-
ronments, where the demand for broadband is higher. Thus,
it is common that technologies such as WiFi and cellular
networks are present in most indoor scenarios.

The fusion of 5G and WiFi can also enhance the user
experience by providing seamless connectivity [44]. This is
particularly important in indoor environments where users
frequently move between different rooms and areas, each
with varying signal strengths and qualities. With the inte-
gration of 5G and WiFi, the system can dynamically switch
between the two technologies depending on the location and
signal strength, ensuring a consistent and reliable connection.

Moreover, the fusion of these two technologies can also
improve network efficiency and reduce costs [45]. With
the increasing demand for high-speed connectivity, network
operators are under pressure to provide faster and more
reliable services. By utilizing both 5G and WiFi technologies,
operators can optimize the use of available resources, thereby
reducing network congestion and improving overall network
performance. This can result in lower costs for both the
network operator and the end-user [46].

In terms of localization, 5G and WiFi are two technologies
that can be utilized to increase the coverage area, enhance the
accuracy of the final location estimate through fusion in tri-
lateration [27], or create denser areas for radio map creation.
Furthermore, since both services are managed independently,
they can act as backup options for each other in case one fails.
Additionally, both technologies can offer unique services,
such as wide spectrum service in case of 5G [47] or precise
timestamp in trilateration for WiFi [48].

In this work, the fusion of 5G and WiFi, for the different
localization algorithms, enables the system to expand the
number of APs available for the radio map creation. Having a
higher number of APs in the radio map allows the method to
compare the context of the UE more thoroughly for the final
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location estimation. Moreover, a denser radio map reduce the
impact of losing a single gNB or APs.

IV. EXPERIMENTAL SETUP
This section presents the configuration for obtaining real
5G data and WiFi from the University of Malaga. The 5G
network belongs to the University of Malaga, and contains
three indoors base stations which have been configured to
reduce the interferences with commercial networks. The base
stations are located at two different heights (2.5m and 3.5m)
and a map of the scenario is shown in Figure 5. The three
WiFi APs are Google WiFi mesh routers placed on shelves
at a height of 2 meters. Measurements were taken at ground
truth points represented by orange dots and green dots.
The scenario includes three laboratories and one hall with
metallic elements that can cause signal blocking, attenuation,
and multipath effects. The 5G gNBs are placed in the ceiling
to provide good visibility and transmit at a power of 20 dBm
at a frequency of 3774.990 MHz. Measurements were taken
systematically over a grid of points marked on the floor as
illustrated in Figure 5. Samples were taken 0.8 meters apart
to cover the entire accessible area of the scenario.

9.46 m9.46 m 14.77 m

13.7 m

8.6 m

13.7 m

3.2 m

5G PicoCell WiFi Ground Truth
Testing

h=2.5m

h=2.5mh=3.5m

Lab 1Lab 2

Lab 3

FIGURE 5: Map of the scenario

The location target UE is a Motorola Edge 20 which runs
Android 11. An application has been programmed to capture
the RSSI of the serving and neighbor cells. The captured data
is sent to a server over 5G, where the measurement samples
are saved in a MySQL database to be further processed. The
programmed application also allows to indicate the ground
truth and send it along the taken measurements.

V. RESULTS
In this section, we present the localization results obtained
from three different experiments. All experiments used a
dataset of over 500 samples. The data was randomly split
into a training set and a testing set (represented in Figure
5 as orange and green dots, respectively) with 20% of the
measuring points allocated for testing. This process was
repeated a thousand times, on each iteration the training and
testing points are randomly chosen, using the Monte Carlo
method, in which Figure 5 represents one example of this
process, to produce accurate statistical results.

A. EVALUATION OF DIFFERENT METHODS
This experiment evaluated the performance of four local-
ization techniques - fingerprinting, DTA, LTA, and RF. The
DTA and LTA methods were trained with 50 WLs as sug-
gested in [49], and the number of trees in RF was set at
50 for fair comparison with Adaboost. In this experiment,
the performance of the different methods is being evaluated
solely using 5G technology. For fingerprinting, the training
data was used to construct a radio map and for the rest of
the methods, the training data was utilized to construct the
trees or the WLs. The testing data was used to measure
the precision of the different localization methods, with the
results represented by the Cumulative Distribution Function
(CDF) of the horizontal error in Figure 6. The 95th percentile
(horizontal pink line) has been selected as the basis for
location accuracy standard [50].

FIGURE 6: Cumulative Distribution Function of the error of
different methods with 5G data

Fingerprinting (red) estimates the position of the UE on
the radio map by identifying the closest point. The radio map
is divided into a lattice, and fingerprinting determines the
location of the UE within this lattice. DTA (blue) calculates
the average the output of the different WLs. In case of aver-
aging a regular radio map, the final result is always a lattice
of the radio map. Notably, all measurements are acquired
at the center of these lattices. Thus, both fingerprinting and
DTA provide a lattice-based location that is translated into
discrete error and a staggered step of the CDF. In contrast, RF
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(yellow) averages the linear estimation that produces a linear
output while LTA (green) generates a more precise estimation
by interpolating the different outputs of the WLs. Contrary to
fingerprinting and DTA, RF and LTA have a continuous CDF
since the final location is estimated across the entire space.

Figure 6 clearly shows that ML methods significantly
reduce errors compared to the fingerprinting technique. The
accuracy of fingerprinting heavily relies on the radio map
as it compares directly with the received signals from the
UE. RF and LTA enhances the final location estimation
compared to DTA because the final position is derived from
a linear function. While LTA provides higher precision in
positioning, it is not feasible for real-time applications due
to its highly time-consuming nature. RF offers a trade-off
between accuracy and computational efficiency, making it
suitable for real-time applications.

B. EVALUATION OF FUSING TECHNOLOGIES
In this experiment, the behavior of the different algorithms
are evaluated with different cases: with 5G and WiFi in
isolation and the fusion of both. The goal was to determine if
fusion enhances the precision of the localization system when
different technologies appear in fingerprinting and DTR-
based methods.

Although 5G promises high-precision positioning through
the multi-RTT protocol, to the best of the authors’ knowl-
edge, this protocol has not been implemented in any com-
mercial device yet. On the other hand, WiFi has already
created the 802.11mc protocol, which offers accurate ranging
estimation through the RTT protocol and can achieve meter-
level accuracy [9], [48]. This protocol is widely implemented
in plenty of smartphones, but only a limited number of APs
have adopted it [51]. Until RTT protocol gets integrated
into 5G, using ML techniques and fingerprinting along with
RSSI measurements can be highly beneficial. Additionally,
capturing RSSI measurements does not increment the energy
consumption of the terminal or demand special hardware [9].

Figure 7 represent the different cases of fingerprinting,
DTA, LTA and RF with only 5G NR (solid line), only WiFi
(dashed line) and fusion of 5G and WiFi (dotted line). As it
can be observed, fusion improves the performance of the sys-
tem in all cases. Combining different technologies increases
the number of APs in the scenario, which improves the
final estimation due to the availability of more information
of the environment. So, the more complete radio map, the
better localization resolution will be. Among the techniques,
fingerprinting yields the greatest improvement as it is the
most radio map dependent. Despite of LTA having a slightly

better overall performance, RF still provides a high level of
accuracy that is comparable to LTA and it allows real-time
location-based services.

FIGURE 7: Cumulative Distribution Function of the error of
5G, WiFi and fusion for different methods

Table 2 presents the performance of the different algo-
rithms for 5G, WiFi and fusion data, characterized by metrics
including the mean (µ), median (Mdn), Root Mean Square
Error (RMSE), standard deviation (σ) and the 95% percentile
of cumulative density error. All measurements are presented
in meters for reference.

C. ROBUSTNESS OF THE METHODS WITH DIFFERENT
PERCENTAGE OF MISSING DATA
In this experiment, the robustness of the different methods are
evaluated with varying degrees of missing data. In this case,
the fusion of 5G and WiFi is used as the input data because it
has demonstrated to always improve the performance of the
localization results. The goal was to determine the robustness
of the techniques by examining how well it performed as
the percentage of missing data in the radio map increased.
This experiment consists on reducing the number of training
points. To do this, the percentage of testing points was kept
constant at 20% while the percentage of discarded data varied
from 0% to 60% as shown in Figure 8.

The results of the experiment were represented by the
CDFs of the horizontal error when different percentages
of discarded data (0%, 20%, 40% and 60%) are used to
evaluate the performance of the system. As it can be observed

TABLE 2: Performance comparison of different methods with 5G, WiFi and Fusion

5G WiFi Fusion
µ Mdn RMSE σ 95% µ Mdn RMSE σ 95% µ Mdn RMSE σ 95%

Fingerprinting 5.21 4.77 4.45 3.52 12.23 6.15 4.8 5.56 4.90 15.36 4.06 3.29 3.52 2.88 9.63
DTA 4.6 4.07 7.17 2.97 10.18 5.71 4.66 7.38 4.47 14.46 3.61 3.29 6.90 2.40 8.0
LTA 4.39 4.25 3.45 2.12 7.93 5.77 5.06 4.92 3.87 12.67 3.63 3.40 2.96 2.06 7.46
RF 4.33 3.98 3.69 2.46 8.9 5.42 4.49 4.85 4.95 12.91 3.70 3.36 3.24 2.19 7.78
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FIGURE 8: Experiments with different percentage of
discarded data

in Figure 9, except of the case of DTA with 60% of dis-
carded data, the rest of the cases of DTR-based algorithms
outperform fingerprinting without discarded data in terms
of user localization accuracy. Therefore, using DTR-based
algorithms, allows to achieve higher levels of accuracy even
with maps that contain fewer data points.

Table 3 provides a brief summary of the different methods.

VI. CONCLUSIONS
Indoor positioning has become an increasingly important
technology in recent years as it enables a wide range of
applications, such as indoor navigation, asset tracking, and

FIGURE 9: Cumulative density distribution of the error of
different techniques with different percentage of discarded

data

location-based services. However, the traditional method of
using radio maps for indoor positioning has several signifi-
cant drawbacks. One of the most significant issues with radio
map techniques is the complex training process required.
The process of creating a radio map involves collecting
and analyzing a large amount of data from a given indoor
environment. This data is used to build a map of the ra-
dio signal strength for each location in the area. However,
this process can be time-consuming and expensive, which
limits its applicability in scenarios where a large area must
be covered. Moreover, another major issue with radio map
techniques is that the fingerprints of the indoor environment
can change over time due to changes in the scenario. These
changes can affect the accuracy of the radio map, which
requires frequent updates to maintain the effectiveness of the
technique. This retraining can be very costly, both in terms of
time and resources.

In this work, we have performed and compared finger-
printing, DTA, LTA and RF techniques with real 5G and
WiFi data. First, DTR-based methods noticeably improves
the localization performance compared with the regular fin-
gerprinting. It is remarkable that LTA and RF have performed

TABLE 3: Comparison of different methods

Method Advantages Disadvantages

Fingerprinting Efficient and simple
Suitable for real-time applications

It requires frequent updates on the map
Not precise

Random Forest
It can handle large amount of data
Robust to overfitting and can handle missing data
Relatively simple

Does not adapt to changes
Significant computational resources for training

DTA Adapts to changes in the environment
Robust to overfitting and can handle missing data

Not as effictive as other methods
Computationally intensive

LTA

Adapts to changes in the environment
High accuracy
Reduced frequency of retrainings
Allows for larger radio maps

Computationally intensive
Not suitable for real-time applications
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better than DTA and fingerprinting because the final location
based on the interpolation between points.

On the other hand, fusion of technologies have proven
to provide better performance of the system. By combining
5G and WiFi, the number of APs in the scenario increases.
This implies that during both the training phase and the
operational phase, the different localization algorithms are
provided with more information about the environment. This,
in turn, results in improved final estimation by providing
more environmental information. Furthermore, fusion has the
potential to enhance connectivity, extend coverage, optimize
resources for location-based services and minimize the ex-
penses associated with deployment and infrastructure.

Related to the robustness of the different methods, LTA
and RF maintains the error stable even when the percentage
of missing data becomes significant, up to 40% of missing
data. Its robustness allows to cover larger areas, minimize
the need for frequent retraining, or decrease the number of
data points required on each map. Depending on the service
being offered, DTR-based models, specifically LTA and RF,
can be highly valuable tools for indoor positioning. In these
experiment, LTA yields better results in both experiments
than RF but it is not suitable for real-time applications.
Nonetheless, RF provides a balance between accuracy and
computational efficiency, making it ideal for real-time ser-
vices. Although RF cannot adapt to environmental changes,
DTA readjusts to them but with decreased localization ac-
curacy. As a result, DTR-based models have imposed its
applicability over fingerprinting. However, there is no single
method that is universally best for location-based services, as
it varies depending on the specific application and scenario.
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Abstract: Detecting and locating victims in emergency scenarios comprise one of the most powerful
tools to save lives. Fast actions are crucial for victims because time is running against them. Radio
devices are currently omnipresent within the physical proximity of most people and allow locating
buried victims in catastrophic scenarios. In this work, we present the benefits of using WiFi Fine
Time Measurement (FTM), Ultra-Wide Band (UWB), and fusion technologies to locate victims under
rubble. Integrating WiFi FTM and UWB in a drone may cover vast areas in a short time. Moreover,
the detection capacity of WiFi and UWB for finding individuals is also compared. These findings are
then used to propose a method for detecting and locating victims in disaster scenarios.

Keywords: detection; localization; UWB; WiFi FTM; victims

1. Introduction

Disaster management is a topic of the utmost importance in modern society. Naturally,
as Information and Communication Technologies (ICTs) progress, novel applications are
found for disaster management. These applications are subject to very challenging envi-
ronments in disasters, where existing infrastructure (such as Base Stations (BS) or Access
Points (APs)) is often inaccessible, time is a limited resource, and danger for rescuers and
victims is present at all times.

One of the most challenging tasks in a disaster scenario is the detection and localization
of victims, especially in disasters that involve being trapped under rubble. Detection and
localization comprise the first in a series of steps [1], which also include the assessment of the
victim’s status, communication, release and, transfer to a safe localization. The localization
task is performed traditionally either with direct observation by the first responders (often
with prior approximate information on where the victims might be located) [2] or with
trained canine units [3].

With the emergence of wireless networks, many new possible applications for dis-
aster management are enabled. Firstly, mobile networks provide an infrastructure-free
connectivity from the point of view of the users, making the deployment of connected first
responder assistance equipment immediate and simple. Secondly, since connected devices
are ubiquitous, the victims are also often within reach of (or very close to) them, increasing
the chances of detecting, locating, or communicating with them. To successfully localize
victims within a disaster scenario, a gross estimation with a precision below 200 m is
required [4]. This requirement is more relaxed than localization for other common location-
based services currently under research (such as self-driving vehicles [5] or augmented
reality [6], which demand centimeter-level accuracy); however, the context of the devices is
much more challenging (e.g., with partially operational infrastructure or under rubble).

In the next few years, most of the smartphones will integrate UWB chipsets [7,8]
and/or support the WiFi FTM protocol [9]. Following the trend of the market and knowing
the advantages that both technologies bring for indoor positioning, UWB and WiFi FTM
are likely to become the de facto positioning technologies for indoors [10–13]. From the
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victims’ perspective, the tendency of the integration of UWB and WiFi FTM in the chipsets
makes the cost associated with this integration virtually null.

The contributions of this paper are the study of the role of wireless networks, in partic-
ular UWB and WiFi FTM, in the detection and localization of victims in disaster scenarios,
specifically under rubble, providing an overview of the existing methods, their degree of
implementation, and their precision. In addition, in this work, a scheme for opportunis-
tically locating devices using several technologies for application in emergencies and a
proof-of-concept using real devices are presented.

The rest of the paper is organized as follows. In Section 2, an overview of the challenges
in locating victims in disasters is provided along with a review of existing solutions.
Section 3 provides an overview of the different location technologies, explaining their
features used in this work. In Section 5, the proposed opportunistic fusion method is
described, along with the particularities of using it in emergency scenarios. The proof-of-
concept and the scenario are described in Section 6. In Section 7, the results are presented
and discussed. Finally, the conclusions are reviewed in Section 9.

2. Challenges of Detection and Localization of Victims under Rubble

Rescuing people in the first 48 h, also known as the golden hours [14], is crucial.
After this time period, the chances of survival drop off drastically. Thus, a fast and efficient
deployment is essential in these emergency cases. In this section, an overview of the
challenges of locating victims and the methods used in the real world is provided.

There are many different kinds of disasters that imply having to find and rescue people
in hazardous environments. Some typical examples are earthquakes, mass or individual
transportation accidents, terrorist attacks, or extreme weather. When one of these situations
occurs, the environment where the victims are located suffers rapid and traumatic changes,
such as building collapses, flash floods, or fires. Of course, no two disasters are alike, since
the victim’s status, the resources available for the first responders, and the dangers for both
depend on very scenario-specific factors, sometimes even depending on the personal traits
of the involved actors. Consequently, victims may be located in many different places,
depending on the type of disaster and the specific factors.

Finding victims in these situations is especially challenging, and while the challenges
are very situation-specific, some general situations can be described:

• Victims are in hard-to-reach places, such as under rubble or inside deformed vehicles.
This challenge has different degrees of difficulty, depending on how hidden the victim
is. For instance, in building collapses, victims that are on the top floors are easier to
detect and rescue than those that are on lower floors [15], which are more isolated
under a thicker layer of rubble. In traffic accidents, the type of vehicle, passive safety
systems, speed, etc., play a central role in the outcome of the rescue mission.

• Victims often cannot collaborate, if they are incapacitated due to wounds or being
trapped. In the worst case, the victims may be unconscious, making them harder
to find.

• The lack of support infrastructure, such as pavement to ease the evacuation of vic-
tims in ambulances, cell towers that allow telecommunications for coordination [16],
electricity, etc.

• Time is often limited [14] to find and rescue victims, which may be wounded and
need medical attention. As time increases, the physical and psychological pressure on
victims may cause permanent damage [17].

• First responders (and victims) are subject to hazards such as falling structures, flammable
and/or toxic gas leaks, replications of the disaster, etc. Therefore, there is an even
higher need for rescue missions to succeed in the shortest possible time.

Depending on the kind of disaster and the specific context of the victim, they can be
classified into two separate groups: surface and underground victims.

Surface victims are those that end up exposed above possible debris. This is common
in situations such as floods, terrorist attacks, or earthquakes. Localization needs to be
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performed in two dimensions and with a relatively low precision, since once the first
responders are nearby, they can easily locate and access the victim. Surface victims can be
located with relatively simple techniques, such as human visualization or detection with
rescue dogs [3]. More recent IT-based solutions have been proposed, such as audio- [14] or
image-based [18] based human detection from Unmanned Aerial Vehicles (UAVs). These
techniques use the signals from the UAV’s sensors and process them in real-time with
techniques such as life signs detectors using drones in disaster zones supported by deep
learning [19], which, paired with the GNSS location, can help to pinpoint the victims on
a map. A detailed description of such a system for flood victims was described in [20].
Another prototype has emerged for surface extraction that places an autonomous wristband
on the victims for monitoring their vital signs and easing the rescue [21].

In contrast, underground victims are extremely challenging to find due to visibility
and sound being blocked by rubble. In [14], they implemented an audio-processing-based
human detector with a UAV even under rubble. The victims needed to be located in
three dimensions, in order to better assess their situation, communicate with them, and
estimate their chances of survival. Moreover, the precision requirements were higher, since
rescuing underground victims often involves complex and risky procedures to liberate
them. Finding Individuals for Disaster and Emergency Response (FINDER) uses radar for
detecting heartbeats or breathing variations of the victims [22]. However, underground
techniques are extremely complex and cover a limited area. To overcome this limitation,
the DronAid system proposed in [15] uses Passive Infrared (PIR) sensors mounted on a
UAV to scan the rubble, looking for victims trapped near the surface. Table 1 compares
the different victim detection and localization systems described above compared with the
proposed method. The crucial characteristics that we compared were: the capability of
finding individuals under rubble, a fast deployment to find victims, and the precision of
the victim’s location.

Table 1. Overview of different methods and prototypes for the detection and localization of victims.

Find Individuals
under Rubble

Fast Finding
of Individuals Precision

Visual recognition with rescue dogs [3] No Yes High

Life signs detector using a drone in
disaster zones [19] No Yes High

Audio-processing-based human
detection in disaster sites with unmanned

aerial vehicle [14]
Maybe No Low

DRONAID [15] Yes Yes Low

Methods for autonomous wristband
placement with a search-and-rescue

aerial manipulator [21]
No No Precise

FINDER [22] Yes No Precise

Victim localization using Bluetooth
Low-Energy sensors [23] Yes Yes Precise only at the surface

Detection and location of victims using
WiFi FTM and UWB Yes Yes Precise

3. Overview of Location Technologies

In this section, an overview of precise technologies for positioning, which have been
designed for challenging scenarios such as indoors, are described below.

3.1. Cellular-Based Radio

Cellular networks are currently widely used and ubiquitous, making them present in
most disaster scenarios [24]. New functionality has been added generation after generation,
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and currently, the Fifth-Generation (5G) is being deployed around the world. The avail-
ability of radio signals, which can be measured and used for ranging, makes them an ideal
candidate for detection and localization of personal devices in disaster scenarios. 5G works
on the 700 MHz, 3.5 GHz, and millimeter waves of the 26 and 28 GHz bands. Higher
frequencies allow high-precision ranging in direct Line of Sight (LoS) with the target, but
highly suffer from attenuation, multipath, and reflections in Non-Line of Sight (NLoS).
In contrast, lower frequencies are more robust to attenuation, reaching longer distances;
however, multipath effects can deteriorate the precision of the ranges. In [25], in order to
eliminate the need for clock synchronization, the use of different timing techniques such
Round-Trip Time (RTT) was proposed for indoor localization.

5G NR with millimeter waves fulfills the specifications of Release 16 [26], which
requires a localization error below ≤3 m in the horizontal and vertical planes in indoor
deployments and ≤10 m in the horizontal plane and ≤3 m the vertical plane outdoors [27].
To the best of our knowledge and due to the early-stage deployment of 5G millimeter wave
technology, there are no experiments with real data that measure the real accuracy of the
system, despite the existing terminals that work with mmWave [28]. However, in [29], a
study based on simulations concluded that the final accuracy fulfilled the requirements.
Hence, in case the 5G network cannot provide coverage where the LTE network can, UEs
may benefit from LTE as a backup for other location technologies [13,30]. End-users may
benefit from cellular localization in cases where no high-precision technologies are present.
Older cellular generations, such as 4G, usually provide a lower precision compared to 5G.
For instance, LTE utilizes the Received Signal Strength Indicator (RSSI) for ranging. RSSI
highly suffers from multipath and fading, which lead to high variations and an increase in
the ranging error.

3.2. Ultra-Wide Band

UWB stands out as one of the most-promising technologies for indoor localization [31].
It is becoming a de facto standard for indoor localization, with a growing adoption in
the market [7]. UWB technology utilizes very short pulses (in the order of nanoseconds),
which are translated into a wide bandwidth. This enables high data transmission rates
and high-precision ranging with good obstacle penetration capabilities [32] and robustness
against multipath effects in NLOS conditions [33], making UWB outstanding at detection
and positioning in emergency scenarios. Thus, UWB has been previously indicated as
a possible human detection technology in complex environments [34] or as an impulse
radar [35].

3.3. WiFi

WiFi is another ubiquitous wireless technology (although mainly in indoor scenarios
and with small deployments) used for communications. It is made up of different versions
of the IEEE802.11 protocol family, which are supported by a very wide base of consumer
devices for communications. Two different approaches of WiFi are widely implemented for
location services.

3.3.1. WiFi Fingerprinting-Based Localization

This is one of the most commonly used technologies and algorithms used for indoor
localization [36] due to the ubiquity of WiFi networks and its low cost. Fingerprinting
consists of two phases: offline training phase and online operating phase. During the
offline phase, a radio map divides the scenario into a lattice, and the RSSI of the visible
routers at each point of the lattice is stored. In the online phase, the system estimates
the UE position, comparing the RSSI information to the most similar entry of the radio
map. However, this technique cannot be used in emergency cases due to the changes in
the environment, making ranging–location systems crucial for locating victims. The main
issue of all fingerprinting techniques in emergency scenarios is the fact that one cannot
create a radio map in the offline phase. When the catastrophe comes, such as an earthquake
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or flooding, the scenario completely changes, and the radio map becomes useless for
localization service.

3.3.2. WiFi Fine Time Measurement

More recently, the IEEE 802.11mc variant added a new Fine Time Measurement (FTM)
functionality. FTM includes timestamped packets and calculates distances to the User
Equipment (UE) accurately with the Round-Trip Time (RTT) protocol [12]. This may be
very useful for emergency cases because the number of smartphones that include support
for this protocol is increasing [9]. The distance calculation to every router that supports the
FTM and RTT protocol is computed in the UE for privacy preservation, even if the UE is
not connected to the router.

3.4. Bluetooth Low-Energy

Bluetooth Low-Energy (BLE) is also another omnipresent wireless technology used in
Personal Area Networks (PANs) for data transmission. Several studies have researched
within the scope of detecting, localizing, and tracking people in indoor scenarios [37–39].
Most of these studies work in indoor spaces, applying methods such mapping and finger-
printing, which require previous knowledge of the terrain. In this work, we assumed a
potential collapse of the infrastructure due to flooding or an earthquake, which makes fin-
gerprinting techniques unfeasible for localizing victims, due to the outdated maps collected
prior to the collapse.

4. Victim Detection

Immediately after a catastrophe, a key aspect is to detect and account for the victims
trapped under the rubble, after which localization can be performed to further concentrate
the efforts of the first responders. Several techniques have been proposed for this task:

• Visual recognition with rescue dogs: the traditional task of finding victim is usually
performed either by direct observation or with the help of trained rescue dogs [3].

• Human body image detection: when the victims are incapacitated, image recognition
may help to find individuals that are on the surface [19,21].

• Audio-processing-based human detection: when victims are trapped under rubble
and there is no visual or imaging recognition, drones may integrate microphones to
detect any distress calls and notify the rescue services [14].

• Vital signs detection: Passive Infrared (PIR) sensor for detecting victims that are buried
close to the surface [15]. PIR reacts only to certain energy sources such as human body
heat. Low-power microwave radar signals can be used to detect the heartbeat and
breathing of underground victims. The limitation of such devices is the short coverage
of some meters [22].

• Localization using radio signals coming from devices that victims carry (e.g., smart-
phones) or wear (e.g., smartwatches): this paper relies on this method for detecting
and then locating the victims [23].

5. Victim Detection and Localization Method

Drones or Unmanned Aerial Vehicles (UAVs) will play a key role in the detection
and localization of victims in emergency scenarios. Several research works have used
drones for finding individuals under rubble with camera recognition [15,19,21]. Drones
can also act as mobile Access Points (APs), which provide network connectivity both to the
first responders and to the victims, who can potentially use the drones to transmit their
information. User devices that integrate WiFi interfaces periodically send a control frame
to have the nearby wireless access points’ information [40]. For this work, we exploited
this scanning procedure from the user side to detect different devices in the area and listed
by their MAC address. Once the victim is detected, more drones will approach the victim’s
location by looking at the RSSI values. When a sufficient number of drones is in the vicinity
of the victim’s location, the localization will be determined by using trilateration. Basic
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trilateration obtains the position of the target in 2D based on the intersection of the distances
from at least three reference points; for 3D, at least four reference points will be needed.
In this case, the ranging information must be obtained by timing measurements, which may
enhance the accuracy of the victim’s position compared with the RSSI ranging performance.
Figure 1 illustrates drones scanning the surface looking for victims under rubble (in red).
Once a victim is detected (in yellow), the drone notifies a central coordination system, and
the rest of the air fleet approaches the site to serve as additional reference points and to
complement the partially damaged infrastructure. When the victim is located (in green),
the system knows approximately the position of the victim and the emergency response
will start.

Figure 1. Illustration of the method.

To know the victim’s position, it is necessary to have the information of, at least,
four reference points. The higher the number of drones providing location information,
the more accurate the victim’s localization can be. Thus, fusing different technologies can
help fulfil or increment the number of visible reference points to augment the accuracy.
In [13], opportunistic fusion was proposed using several different technologies for ranging,
specifically UWB, WiFi, and LTE. Opportunistic fusion takes advantage of the fact that, in
most locations, several different radio technologies are visible and that modern mobile de-
vices support these technologies. Instead of using the reference points and ranges obtained
from a single technology (e.g., UWB), opportunistic fusion uses whichever reference points
are visible to the device.

The major challenge for this system (and, in general, for localization with mobile
devices in a catastrophe) is to collect the measurements of victims under rubble with
missing elements in the network. In this paper, opportunistic fusion is proposed for taking
advantage of whichever infrastructure is undamaged in a catastrophe (such as cellular
network base stations or WiFi routers), complemented with portable reference points (such
as drone-mounted WiFi access points with FTM capability or mobile UWB access points),
to detect, estimate the distance to, and triangulate the approximate position of the victims.
Opportunistic fusion greatly enhances the chances that the victim is within the range of
four reference points and, therefore, can be located.

One of the main requirements of this system is to have access either to the UE mea-
surements of the reference points or to the uplink measurements of the network. Either
way, the inclusion of additional functionality tailored to accurate localization in the mobile
network standards would greatly benefit the implementation of a system such as the one
described in this paper. There is, in fact, a protocol that allows the UEs to report localization
to the mobile network (from which the proposed system could extract that information)
called NRPPa [26]. Currently, this precise localization is obtained with GNSS receivers in
the UEs and is reported through NRPPa as estimated coordinates. To fuse different ranges
and different reference points, including temporary ones, the following messages should
be included [30] as an extension to NRPPa:

� Reference point identifier;
� Reference point location;
� Technology type;
� Timestamp;
� Round-trip time.
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6. Materials and Methods

Locating victims under rubble is a very challenging task, so even a gross estimation
of where they may be is of great value to first responders. While radio-based methods for
detection and localization may be of help, rubble is a very harsh environment for radio
propagation. Therefore, there is a need to better understand propagation in this kind of
environment. In this section, we insert a smartphone into a pile of rubble over 50 cm thick
in all directions to simulate a buried victim. We deployed UWB, WiFi, FTM, and LTE to
estimate the location of the UE and obtain accurate horizontal and 3D information.

Rubble was made of several metallic objects such as computers, chairs, desks, and
bricks, as shown in Figure 2, in order to emulate a disaster scenario in which the victim has
been caught under rubble. The UE used for the experiments was a Google Pixel 3, which
supports WiFi FTM. For UWB, we attached a DWM1001 device from Qorvo to the UE using
a Bluetooth serial port. The UE was equipped with an Android application that estimates
the distances to all the reference points of any technology (UWB, WiFi FTM, and LTE) that
are within coverage and sends the estimated ranges to a server, where the localization is
computed solving the trilateration problem.

We expected the radio signals to be severely affected by attenuation and multipath,
causing estimation errors in the ranges and, therefore, errors in the localization. We found
that, for the purposes of better understanding the performance of WiFi and UWB under
rubble, this emulated scenario could provide enough realism, as it could be used to assess
the accuracy.

Figure 2. Image of the scenario.

Figure 3 represents the map of the scenario where the UWB (green) and WiFi APs
(orange) are placed and the distance to the device under rubble is given. The distance from
the UWB (UWB1, UWB2, UWB3, and UWB4) and the WiFi (WiFi1, WiFi2, WiFi3) reference
points is indicated next to the dashed line. To clarify the schema, vertical and horizontal
views are provided for a better comprehension of the scenario.

The UWB reference points were also DWM 1001 devices, programmed as anchors,
and the WiFi FTM was the Google WiFi routers. UWB and WiFi reference points were
placed at 2.17, 2.43, 5.93, and 9.27 m away from the victim’s device, configured with their
default parameters [41], and their heights were 1.16, 0.39, 0.86, and 0.45 m, respectively.
The DWM1001’s power transmission is −14.3 dBm, and UWB anchors were centered in the
6 GHz frequency band [41].
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Figure 3. Schema of the position of the UWB and WiFi devices.

WiFi FTM also works on the RTT protocol; hence, its ranging accuracy is also precise.
Moreover, the implantation of the WiFi FTM chipset is widely implemented [9]. WiFi FTM
APs are part of Google routers’ family [42]. WiFi APs were placed next to the UWBs with
the same distance and heights from the victim’s device. WiFi FTM is centered in the 2.4 GHz
band as the typically WiFi frequency and transmits with a power of 28.17 dBm [42].

The LTE network consisted of up to 12 femtocells (of which, 4 were visible to the UE)
operated by the research team and located at different floors above the scenario, at 5, 9, and
15 m, and they were configured with a transmission power of −6.8 dBm and downlink and
uplink frequencies of 2630 MHz and 2510 MHz, respectively.

The WiFi FTM and UWB ranges were obtained with the RTT protocol, which estimates
the distances according the to propagation time. The measured distances were sent to
a Flask server, which was run on a laptop with Windows 10 for processing. Measure-
ments were captured during 5 min with a sampling rate of 1 s. With this distribution,
the penetration capacity and the ranging-error of UWB and WiFi FTM are calculated.

7. Results

In this section, the results of the measurement campaign are presented. We compared
the results obtained from the device under rubble with the ones with the device outside of
the pile of rubble.

7.1. Performance of Different Technologies under Rubble

UWB and WiFi FTM are outstanding precise technologies for challenging scenarios
such as indoors. Nevertheless, once the device is buried under rubble, the performance of
the ranging estimation is degraded by severe multipath and attenuation. Figure 4 shows
the ranging estimation error of the UWB anchors (UWB1, UWB2, UWB3, and UWB4) and
WiFi FTM (WiFi1, WiFi2, WiFi3) in both cases: under rubble (blue) and outside of the rubble
(red). The 80th percentile of error in both technologies increased considerably around
1 m. An important observation was that, during the whole measurement campaign under
rubble, no packet was captured by the smartphone from a UWB reference point further
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than 9 m (as a consequence, UWB4 was left out of the measurements in Figure 4), in contrast
with WiFi, which could capture the data without any problems.

Figure 4. Ranging error of all the reference points with the UE under rubble (blue) and outside the
rubble (red).

7.2. Localization Degradation under Rubble

Figure 5 represents the Cumulative Distribution Function (CDF) of the localization
error of the victim using the ranges analyzed in Section 7. The positioning error of the
measurements under rubble (green dashed line) were compared with those of indoor
localization (black line) [13] with the fusion of UWB and WiFi in both. As expected, it
can be observed that the positioning accuracy worsened with the obstacles. The pink line
represents the 80th percentile, and the error for this point was augmented by 14 m when
the victim was under rubble.
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Figure 5. Localization performance under rubble (green) and outside of rubble (black).
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8. Discussion

In this section, the results are examined and debated, showing the advantages of
using multi-technology fusion for detecting and locating victims when a disaster occurs.
While LTE and 5G NR may offer a very gross approximation of the localization, they have
serious disadvantages: in a disaster, the fixed infrastructure may be partially or totally
damaged; they offer a much lower precision when using RSSI measurements. In this work,
the scenario emulated a realistic building collapse to compare the performance of UWB
and WiFi in this kind of scenario. We found that WiFi performed better in detection and
localization than UWB. However, the use of both technologies is still useful for locating
victims. A combination of these high-precision ranging technologies helps to augment the
number of ranges, which helps to deal with the interruptions of communication with UWB
due to WiFi being stronger. Once the victim is detected, a fleet of drones can approach the
place where the victim is located with meter-level precision.

In this work, we showed how the accuracy decreases when a disaster occurs and the
victim is found under rubble, as shown in Figure 5. However, we demonstrated feasible
drones that can easily integrate the small chipsets. From the victim’s point of view, the latest
smartphone trends show that the UWB [7,8] and WiFi [9] chipsets are integrated in several
smartphones, and the tendency is to increase this number. Thus, the cost associated with
this integration is virtually null.

9. Conclusions

People usually typically have a smartphone on them, and in the case of a disaster,
such as an earthquake, these devices could be very helpful for finding individuals. Drones
are terrain independent and can easily approach a victim’s location. The integration of
WiFi FTM and UWB with the drones could be crucial for first responder activities to detect
victims under rubble. Despite the fact that WiFi presented better results with regard to
the accuracy, coverage, and penetration capabilities, as shown in Figure 4, it is worth
implementing both UWB and WiFi technologies to improve the inputs to the localization
algorithm. Future lines of work are to implement more radio technologies such as BLE or
cellular 4/5G due to their multiple advantages: to augment the coverage and probability
of detecting and localizing victims, to have higher accuracy in the localization process,
and to implement a new protocol that is more stable and faster between the first responder
services and the drones. In addition, in the scope of this work, another future goal is to
reproduce the experiment in a realistic emergency scenario in a bigger deployment with
more realistic damaged infrastructure and the participation of first responders, such as in
training installations. Moreover, a study of the integration of a real prototype within the
rescue protocols of the first responders may be carried out.
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Abstract—This comprehensive study delves into the realm of
indoor positioning technologies within the domain of Smart Ed-
ucation (SE). Focusing on typical techniques and technologies
in educational settings, the research emphasizes the importance
and potential services of localization in SE. Moreover, this work
explores the feasibility and limitations of these technologies, pro-
viding a detailed account of their role in educational settings. The
paper also contains in an innovative Proof of Concept (PoC),
demonstrating an automatic attendance control (AAC) system
that integrates 5G and WiFi technologies. This PoC effectively
showcases the possibilities and effectiveness of location-based
services in educational surroundings even with a limited budget,
setting the stage for optimizing teaching time, enhancing the quality
of education.

Index Terms—Smart Education, localization, 5G, WiFi FTM,
fusion, ML, Random Forest

I. INTRODUCTION

In the last years, the impact of precise location services is
growing in society with the advancements in technology, leading
to the use of location-based services such as autonomous robots,
e-Health or context-aware applications to provide personalized
services [1]. By providing more accurate and reliable location
information, these services can help improve safety, efficiency,
and overall effectiveness in a wide range of industries and appli-
cations. Location-based services have also had a transformative
impact on Smart Education (SE) [2], where they can be used
to improve the overall efficiency and effectiveness by providing
real-time information about the location of resources [3], such
as classrooms and labs, and the location of students or teachers.

Students are now more connected and engaged when carrying
out their academic activities with digital devices. Given the in-
creasing inclination of students to work digitally, the educational
infrastructure must satisfy this digital offer towards better future
generations. SE consists on the use of the technology to optimize
the whole educational system for a personalized teaching and
learning process for each student [4, 5]. This includes the use of
advanced algorithms, data analytics, and Artificial Intelligence
(AI) to create flexible and interactive learning environments
that can adapt to the unique needs, preferences, and abilities
of each learner [6]. SE utilizes a diverse range of digital tools
and platforms, including mobile devices, learning management
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(grant agreement number TSI-063000-2021-53) funded by the European Union-
NextGenerationEU

systems, educational apps, and Virtual Reality (VR) technolo-
gies, to develop captivating learning environments [7].

In the context of SE, the need for accurate location esti-
mation is crucial for personalized services. The most common
approach for precise localization is the use of Global Navigation
Satellite System (GNSS), which provides high accuracy in
outdoor scenarios. However, GNSS is not available indoors,
where many applications for this field are being developed,
due to signal blocking or signal reflections. To overcome this
limitation, various technologies and techniques such as 5G and
WiFi are being used to provide accurate and precise location
information indoors and in built-up areas [8]. Additionally, some
applications require the network to estimate the location of
end-users in order to save energy and reduce computational
complexity [9]. Network-based location is a better solution for
these functions, as it allows the network to estimate the location
of terminals based on data collected in the network infrastructure
without requiring cooperation from the terminals.

This paper provides an overview of the role of localization
within the services existing in an SE vertical scenario while
also offering insights into potential forthcoming services in the
upcoming years. In addition, this work contributes to the de-
velopment of an Automatic Attendance Control (AAC) system
that is carried out as a Proof of Concept (PoC) to demonstrate
a location-based service within a resource-constrained SE.

The rest of the paper is organized as follows. Section II
provides a comprehensive analysis of various use cases for
location-based services in SE. It delves into the requirements
and challenges of localization associated with these services.In
Section III, various localization techniques commonly applied
in the educational settings are explored. Section IV delves into
localization technologies that are in the context of SE. In Section
V, privacy concerns of localization within an educational context
are explained. Section VI explains the PoC, highlighting its
objective of AAC through Machine Learning (ML) and de-
tailing the methodology as well as employed classification and
regression models. Additionally, the experimental setup and the
results are presented and discussed. Finally, the conclusions are
carefully reviewed in Section VII. Figure 1 presents the structure
of the paper. The acronyms in this paper are listed in the Table
I.

II. LOCALIZATION SERVICES IN SMART EDUCATION

Education is one of the key pillars of modern society. As
human knowledge advances, the topics that are taught become
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Fig. 1: Structure of the paper

more and more complex and profound, and the teaching meth-
ods must evolve and adapt to new layers of complexity [4, 10].
For this reason, education is a very dynamic market, that adopts
not only new teaching methods, but also new technologies.
Localization, in particular, introduces a diverse range of services
aimed at actively involving and inspiring students. In this
section, an overview of different localization-based applications
in SE are presented.

A. XR and holography

eXtended Reality (XR) is a comprehensive term encompass-
ing a range of immersive technologies that merge both digital
and physical worlds. It includes VR, Augmented Reality (AR)
and Mixed Reality (MR), enabling users to simultaneously
immerse themselves in and interact with virtual and real en-
vironments [11]. On the other hand, holography refers to the
technique of encoding a light field as an interference pattern of
phase and amplitude variations. When appropriately illuminated,
a hologram diffracts incident light, creating a faithful replica
of the initial light field, resulting into a realistic representation
of the recorded 3D objects [12]. Both technologies enable
an immersive experience that transcends the boundaries of
conventional media, offering unique opportunities for diverse
applications in fields such as entertainment, education, health-
care, and engineering.

Within the realm of SE, the utilization of techniques like
gamification, which involves converting educational concepts
into game-like formats and leveraging the brain’s dopamine

TABLE I: Overview of acronyms

Acronym Definition
AoA Angle of Arrival
AP Access Point

ANN Approximate Nearest Neighbors
AI Artificial Intelligence
AR Augmented Reality

BLE Bluetooth Low Energy
CSI Channel State Information
CDF Cumulative Density Function
DFL Device-Free Localization
EU European Union
FR Frequency Range

GDPR General Data Protection Regulation
GNSS Global Navigation Satellite System
gNB gNodeB
IMU Inertial Measurement Unit
IoT Internet of Things
LOS Line-of-Sight
LS Least Squares

MIMO Multiple Input Multiple Output
ML Machine Learning
MR Mixed Reality
NB Narrow Band

NRPPa New Radio Positioning Protocol A
PAN Personal Area Network
PIR Passive Infra-Red
PoC Proof of Concept

pRRH pico-Remote Radio Heads
RF Random Forest

RSSI Received Signal Strength Indicator
RTT Round Trip Time
SE Smart Education

SSID Service Set Identifier
ToF Time of Flight

UWB Ultra Wide Band
UE User Equipment
VR Virtual Reality
XR eXtended Reality

3GPP 3rd Generation Partnership Project

response to improve the learning experience, presents an oppor-
tunity to captivate students more effectively and to foster student
engagement [13, 14]. Such gamification strategies heavily rely
on advanced technologies such as XR or holography [15],
which impose substantial demands on processing power and
communication capabilities, while also emphasizing the need
for physical portability and non-intrusiveness.

By incorporating gesture recognition [16] and location [5],
interaction with AR/VR objects can be facilitated, thereby
simplifying the complexity and cost of the end devices [17].
Furthermore, location serves as a crucial factor in the traffic
generated by SE applications, enabling efficient network man-
agement [18]. XR requires a latency below 50 ms [19] and
achieves a localization accuracy of 0.1 meters [20]. On the
other hand, holography can experience a latency as high as
100 ms [21, 22] while localization accuracy must be below
the centimeter-level [21]. When students are situated within a
classroom, broadband traffic becomes concentrated in a hotspot.
This traffic is similar among students but varies slightly based
on their precise location, such as different viewing angles of the
same XR object. Hence, if the location is known, the usage of
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edge resources can be optimized [22].
In the next decade, XR and holography could also be used

to create virtual classrooms, where students can attend classes
remotely and interact with teachers and classmates in real-
time. This could open up new possibilities for education, such
as providing access to education to remote and underserved
communities [23].

B. Indoor navigation

Indoor navigation is a technology that can be used to provide
positioning, guidance and wayfinding for people within a build-
ing or campus [24]. To provide a reliable and seamless indoor
navigation service, localization accuracy must be enhanced to
the level of meter-level in horizontal plane [25] and floor-level in
height [26]. This level of precision is necessary to ensure that
users can confidently navigate within indoor spaces, avoiding
obstacles and reaching their intended destinations accurately.
However, by leveraging a combination of position and inertial
sensors, including Inertial Measurement Unit (IMU), it becomes
possible to achieve a comprehensive and accurate navigation
experience even when the localization precision is diminished
[27].

Different technologies have claimed to provide precise lo-
calization down to some meter-level or lower. For instance,
Ultra Wide Band (UWB) technology achieves centimeter-level
accuracy with time-based estimations [28] meanwhile WiFi
802.11mc obtains an accuracy of 1-2 meters with the same
protocol [29]. 5G claims to provide <3 meters for 80% of
the cases, encompassing both horizontal and vertical planes
[30] with the aim of indoor navigation. Bluetooth Low Energy
(BLE) fulfills the requirements of precision for indoor naviga-
tion when mapping the whole scenario in a previous step for
fingerprinting [31]. However, fingerprinting is not practical for
precise navigation around a whole campus due to the cost of
deployment [32]. While 5G or WiFi Access Points (APs) would
provide services, mainly internet access, as well as localization
features, a BLE-based deployment would not offer additional
functionalities except for localization. Furthermore, for indoor
navigation systems to be truly effective, a real-time location
service is required. Users require instant updates and guidance to
make informed decisions while traversing indoor environments.
Therefore, the system should operate with a maximum latency
of 1 s [33], minimizing any perceptible delays for a fluent
navigation response [25].

Indoor navigation can be used to improve the overall effi-
ciency and experience of SE by reducing congestion and making
it easier for people to find their way to the desired classroom
or laboratory [24]. Moreover, it can set up virtual boundaries, a
feature called geo-fencing that triggers an action when a device
or a person enters or exits that boundary [34]. Geo-fencing is
a powerful tool that is often used in security systems to restrict
access to certain areas and ensure that only authorized personnel
are present in sensitive areas.

Indoor navigation is also used in emergency situations such
as fires, earthquakes, or other disasters where time is crucial,

and having a reliable indoor navigation system can be critical
to save lives. It can also be integrated with other emergency
systems, such as fire alarms, smoke detectors, and emergency
lighting, to provide a comprehensive solution for emergency pre-
paredness [35]. In the event of an emergency, the system would
automatically trigger an alert, providing immediate guidance to
individuals in the affected area making it easier for people to
quickly and safely evacuate the building while avoiding certain
spaces [36].

C. Occupancy monitoring

Occupancy monitoring is an important issue in SE, as over-
crowding can lead to safety concerns, reduced comfort and
productivity, and increased wear and tear on facilities [37, 38].
It allows administrators to track the occupancy of different areas
in real-time and enforce safe capacity limits. In addition, real-
time occupancy monitoring can provide valuable insights into
how different areas of the campus are being used, allowing
administrators to optimize the use of resources and energy
efficiency by combining with different actuators such as lighting
or air conditioners, e.g. identifying areas of low occupancy and
adjusting the lighting and temperature accordingly.

To accomplish this task, Device-Free Localization (DFL) is a
technology that can be used to track the presence and movement
of people in a given environment without the need for them to
carry any device. There are two types of DFL: based on images
and signal propagation.

Camera or vision-based systems combined with ML algo-
rithms provide a centimeter-level accuracy [39]; however, partial
occlusion results in coverage blind spots and privacy concerns
make this method unfeasible for urban areas [40]. Alternatively,
DFL systems based on signal propagation typically rely on
WiFi, Zigbee and UWB technologies [40]. When utilizing
Channel State Information (CSI), DFL systems capture the
multipath propagation during the wireless transmission offer-
ing a nonintrusive approach with high sensitivity to channel
variations [41]. These inherent characteristics make CSI-based
DFL systems within an horizontal error of few meters [42].
Moreover, DFL systems offer a latency below 1 s [40]. DFL can
also be based on the Received Signal Strength Indicator (RSSI)
between a transmitter and a receiver with LoS [43]. Given that
the human body consists of approximately 70% water, it absorbs
radio signals, leading to shadowing effects [44]. This process
primarily focuses on human movement and tracking [45, 46].
Signal propagation-based DFL systems can be categorized as
either model-based [47] or fingerprint-based methods [48].

There are several less effective technologies for nonintrusive
DFL, including air-pressure sensing and ultrasound signal reflec-
tions [49], Passive Infra-Red (PIR) which detects thermal energy
radiation from the human body [50], and CO2 concentration
measurement in buildings [51].

D. Automatic Attendance Control

Early attempts at attendance control was a labor-intensive
and time-consuming process, and the accuracy and reliability
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of the attendance data could vary depending on the expertise
of the educators. Attendance control is critical for learning,
ensuring that students are participating in classes and receiving
the education they need to succeed [52].

Over time, advancements in technology have made localiza-
tion in education more efficient and effective. Up to date, the
use of AI and ML has allowed institutions to automatically
translate the geo-location of a teacher to attendance control of
its workplace when they are in the nearby of the institution [53].
Thus, the rise of SE have evolved to encompass the need for
accurate localization data to track students’ attendance during
lectures [54].

There are different solutions to control the attendance of the
students. Camera-based systems identifies with high probability
the face of the student to track their attendance [55]. However,
this type of system carries significant privacy concerns with
additional issue of the subjects often being underage [56]. Bar-
code or QR scan [57] or RFID identification systems [58] solves
these privacy concerns. In barcode or QR systems, students
must log in through the institute portal by an application to
ensure their attendance by face id [59] or biometrics [60].
RFID identification systems check the attendance based on an
NFC system that detects the students at the beginning of the
class. QR scanning systems are more time efficient because it
makes all students to ensure their attendances in a time interval.
Nevertheless, this process halts the lecture for a brief duration.

Automatic attendance control eliminates these processes on
the user’s side to reduce the time consumed in this process to
zero. Moreover, it aids educators in identifying and addressing
any issues or challenges that students may be facing, such as
absenteeism or lack of engagement. Additionally, attendance
data can be used to evaluate the effectiveness of educational
programs and make improvements where needed. In short,
attendance control is an essential aspect of ensuring that students
are receiving a high-quality education.

In [61], an automatic attendance control system based on
localization is developed based on BLE. This system matches
the localization of the students during the lecture with the
attendance control. During this process, neither students nor
teacher intervene during the process of attendance control. For
this process, time is not critical, so even a latency of up to
a few seconds is valid [62]. The location process is done with
Approximate Nearest Neighbors (ANN), which is an ML model,
that estimates the position of the user by a previous modelling
of the scenario. Radio technologies that are usually present in

SE scenarios, such as 5G, WiFi or BLE, can also be leveraged
for this use. By using the RSSI information, the system can
automatically detect the presence of a student in a classroom
within a localization accuracy of 2-5 meters [63, 64].

Table II shows an overview of the different use cases with
their minimum location accuracy and latency required for the
80% of the cases for 5G commercial use cases [30] and a brief
description of their use in SE.

III. LOCALIZATION TECHNIQUES

Depending on the nature of the data information, e.g. sig-
nal power, distance or angle to the AP, different approaches
are commonly utilized to locate users, including location by
proximity, ranging-based methods, Angle of Arrival (AoA),
fingerprinting and model-based localization.

Location by proximity is the simplest method for determining
the User Equipment’s (UE) location, assuming it to be the
same as the AP location. This method is employed when high
accuracy is not a strict demand [65].

Ranging-based techniques, such as multilateration, involve
computing distances to APs using metrics such as RSSI or Time
of Flight (ToF) [8]. These methods achieve a high accuracy if the
ranges are precise. The final location estimation is determined
by the intersection of spheres (or circles in 2D). Nevertheless,
range estimations are prone to result into non-convergence of
the circles or hyperbolas used in the trilateration process. To
mitigate this uncertainty, techniques such as Least Squares (LS)
are applied [66].

AoA measures the angle at which the signal arrives at
the UE from the AP. This approach is employed in Multiple
Input Multiple Output (MIMO) systems because of their ability
to utilize beamforming techniques [67]. Indoor environments
present challenges for both range-based models and AoA due
to signal blocking and reflections [68].

In cases where received power remains relatively constant
over time, despite not following a predetermined propagation
model, it can serve as a stable reference. For instance, in a
location close to an AP, if the measured power is consistently
reduced due to an obstacle like a wall, this power level remains
constant as long as the obstruction remains unchanged. Each
point in space is associated with paired values comprising
reference point identifiers and unchanging received power lev-
els, forming a unique signature known as a fingerprint [69].
However, fingerprinting has notable limitations, including sen-
sitivity to variations in training and testing conditions caused

TABLE II: Comparison of different use cases

Use Case Location Accuracy Latency Description
XR 0.1 m 50 ms Immersive and interactive systems to improve the learning experienceHolography 1 cm 100 ms

Indoor Navigation 3 m 1 s Guidance for finding people/offices within a building or campus
Space Usage and

Ocuppancy Tracking 10 m 1 s Capacity control with DFL systems for safety concerns

Attendance Control 5 m 1 s To detect the presence whether a student is in a classroom
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by dynamic propagation attributes like temperature, humidity,
and obstacles [70–72]. It also requires an initial radio map
construction phase that limits the covered area, unrecorded data
points cannot be used for positioning during operational phases
[73].

To address this issue, a commonly used approach is to employ
ML algorithms to create an environment model [74–76], which
can then be utilized for estimating the position during the
exploitation phase. ML algorithms generate a comprehensive
model of the scenario through the information provided in
the training phase with a reduced number of fingerprints.
Consequently, the ML models enable a localization service
encompassing the entire dessignated area [77, 78].

IV. LOCALIZATION TECHNOLOGIES FOR SE

This section explores the radio technologies that are com-
monly present in educational environments. These technologies
are often installed for network access, serving as a backbone for
SE services. The purpose of this paper is to present them and
define how they can also be opportunistically used for indoor
positioning.

A. Cellular Network

Cellular networks offer a myriad of services based on voice
and data traffic. Currently, this technology is prevalent in edu-
cational institutions as it enables us to access any information
source at any time. Many infrastructures are deployed in edu-
cational institutions, by operators to handle high densification,
and experimental networks by certain universities for research
and development purposes.

Although we are at an early stage of 5G deployment, the 3rd
Generation Partnership Project (3GPP) has formally declared its
commitment to achieving an accuracy of less than 3 meters in
both horizontal and vertical dimensions, and up to 10 meters
in the vertical plane in open spaces for 80% of the cases
3GPP. To this end, various protocols and techniques will be
employed, including the deployment of the multi-Round Trip
Time (RTT) protocol [79], which uses timestamps to measure
the distance between the UE and the different cells to improve
the accuracy of the system. The 3GPP has noted in technical
reports, such as [30], that the use of RTT can be effectively
employed in both frequency spectrums defined within the 5G
framework. These spectrums encompass Frequency Range (FR)
1 for frequencies below 6GHz and FR 2 designed for the
millimeter band (mmWave). This protocol will be used in both
upstream and downstream communication channel, not only
from the serving cell but also from neighboring cells. This
approach is aimed of obtaining precise location of users without
incurring higher energy costs.

The implementation of 5G operating at high frequencies
presents new technical challenges in comparison to lower and
mid-band services [80]. Initially, mmWaves have a centimeter-
level location precision [81] but a shorter propagation distance,
resulting in greater Line-of-Sight (LoS) path loss than sub-6GHz
waves, necessitating smaller cell sizes and/or more powerful

radio stations [82]. Additionally, mmWaves do not propagate
through many of the external/internal building materials such
as concrete walls [83, 84]. Despite of being covered, certain
fluctuations or areas devoid of connectivity can arise challenges
that result in the inconsistent availability of SE services.

It is important to consider the evolving landscape of mobile
networks, which are increasingly moving towards the deploy-
ment of smaller cellular units. These smaller cells are expected
to be highly integrated into SE [10]. The adoption of advanced
technologies like beamforming [85] and the densification of
cells will allow the presented services in SE. Further network
densification results in UEs’ receiving greater contextual in-
formation, such as distances/angles between APs and UEs,
that substantially improves location services, among others.
Nonetheless, some cellular network manufacturers have opted
for pico-Remote Radio Heads (pRRH) -based infrastructure in
industrial deployments. This means that there exist different 5G
APs that are operating as a single cell, in a synchronized way.
This approach provides several benefits such as the avoidance of
handovers between APs when the users are moving. Neverthe-
less, it makes more difficult to use the 5G APs for localization,
since it is not possible to distinguish which AP the user is
connected to [86].

B. WiFi

Due to its widespread availability and worldwide deployment,
WiFi networks offer global coverage in educational areas that
can be the backbone for location-based services within SE.
Eduroam is the secure, worldwide roaming access educational
network developed for the international research and educa-
tion, accessible to all students [87]. This network, based on
a single shared SSID (Service Set Identifier), has become a
standard that selects APs and enables roaming, guaranteeing
continuous connectivity while moving between campuses or
affiliated institutions [88]. Eduroam stands out for providing
a secure worldwide service through the implementation of
robust authentication protocols like EAP and WPA2-Enterprise
encryption [89].

When WiFi employs the IEEE 802.11mc standard, it incor-
porates a feature known as Fine Time Measurement (FTM),
which facilitates precise distance estimation from the UE to
the AP. This estimation is accomplished by the insertion of
timestamps and the utilization of the RTT protocol [29, 90]. This
release is intended to transform the indoor positioning industry
in the coming years, as new smartphones are adopting the IEEE
802.11mc protocol universally [91]. Implementing a 5G network
and the necessary infrastructure can be expensive [92], and may
not be feasible for all schools or educational institutions. Thus,
WiFi technology with eduroam network only needs to change
the APs to implement the IEEE 802.11mc protocol to provide
an accurate localization service.

The protocol estimates with an accuracy of around one meter
the distance of any user that supports the protocol without
the need to be connected to the AP [93]. The information
is calculated on the UE side to safeguard user privacy, since
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the location information is not shared among the nodes in the
network. Nevertheless, it is also remarkable the extensive study
of the conventional WiFi for localization using signal power
[68, 94, 95] known as fingerprinting.

C. Bluetooth

Bluetooth is an ubiquitous technology owing to its widespread
adoption in Personal Area Networks (PANs) such as smart-
watches, headphones or smartphones. It is a short-range wire-
less communications technology which facilitates cost-effective,
low-bandwidth, and energy-efficient communication thanks to
the BLE protocol [96]. Notably, BLE-based positioning relies
on the measurement of signal power as a key determinant [97].
However, this technology offers low precision in localization
terms. Under specific LoS conditions and with proximity to APs,
an accuracy of only a few meters error can be obtained [98].
Furthermore, BLE holds considerable promise for forthcoming
sensor implementations in the Internet of Things (IoT) [99, 100].
Consequently, while Bluetooth technology demonstrates consid-
erable potential, it is not yet as implemented as cellular networks
or WiFi in this educational context.

Attendance control via Bluetooth has already been imple-
mented in SE [61]. Despite BLE provides the benefit of
broadcasting mode without the requirement for pairing, this
characteristic makes BLE vulnerable to passive sniffing attacks
[101]. Additionally, BLE has limited coverage; therefore, the
most feasible approach for user localisation is fingerprinting, as
demonstrated in [61]. However, fingerprinting is a non-scalable
technique that necessitates a comprehensive measurement of-
fline phase.

D. Internet of Things (IoT)

A wide range of sensors (e.g. smoke detectors, temperature,
and proximity sensors) or beacons (e.g. WiFi or Bluetooth)
fall under the category of IoT devices, which play a crucial
role in the educational sector as a fundamental enabler [102].
The integration of IoT systems and devices enables multiple
applications such as resource monitoring or occupancy tracking
[38]. IoT information is typically centralized into a system
that cross-correlates data from various IoT enablers to provide
localization information [103].

The use of low-cost sensors in IoT allows effective control
and monitoring of large areas, contributing to the optimization of
spaces and resources. Nevertheless, IoT devices are vulnerable
to security breaches that may compromise confidential infor-
mation and personal privacy [104]. In addition, it is crucial to
consider the diversity of the infrastructure across educational
institutions, including universities and schools, as well as the
resources and advantages afforded by any financial investments
made.

The success of a location-based service is largely determined
by the chosen educational establishment. It is evident that
universities prioritize the allocation of greater resources towards
infrastructure technology in comparison to primary or secondary
schools. Some universities, such as the University of Malaga,

utilise IoT networks that monitor and investigate the effect of
vegetation conditions (temperature, humidity, etc.) on students’
comfort levels [10]. The University of Zaragoza utilises a spatial
and geographic information system to provide ongoing access
to the inventory of its facilities and available classrooms [105].
Similarly, the University of Alicante employs a vehicle mobility
management system to monitor use of its car parks [106].

E. Computer Vision

Multiple camera-based applications exist for real-time mon-
itoring of educational facilities, such as libraries, cafeterias
or classrooms [107]. Furthermore, it is possible to determine
levels of occupancy in these spaces using the computer vision,
allowing for more efficient use of resources [108].

Image processing constitutes the fundamental element of
localization and tracking with computer vision. It provides
accurate navigational data which correlates both localization
and motion information with centimetric precision [39]. This
technology relies on fixed cameras placed at strategic locations
within the infrastructure, such as campuses or educational
settings. To implement navigation and tracking through the SE
needs a map of the building and a configuration phase that
involves marking the positions of stationary cameras on the
map [109]. The algorithms employed constantly update the
navigation status of multiple students based on their current
foreground state and previous positions [110]. By examining
changes in the image structure, computer vision objectively
identifies the foreground elements through pixel correlation
[111]. Nevertheless, enlarging the monitored areas results in
a significant increase in expense, both in terms of effort and
infrastructure, in order to uphold a high level of accuracy.

V. PRIVACY CONCERNS

A potential limitation of using localization in SE are the
privacy concerns of students. Institutions may need to imple-
ment safeguards to ensure that students’ location data is not
misused [112]. To address these privacy concerns, educational
institutions may need to implement strict policies and proce-
dures around the collection and use of location data, as well as
a clear and transparent disclosure of these policies.

The General Data Protection Regulation (GDPR) is an
European Union (EU) regulation that governs the protection
of personal data. In relation to localization privacy, GDPR
establishes several requirements for companies that collect,
process, and store location data [113]. These requirements
include transparency, ensuring that only the minimum amount
of data is collected, ensuring that data is accurate and up-to-
date, implementing appropriate security measures, limiting data
retention and giving individuals the right to access, rectify, and
erase their location data [114]. Additionally, GDPR requires
institutions to appoint a data protection officer if they process
or monitor location data on a large scale or if the core activities
of their business involve regular and systematic monitoring of
individuals [113].
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VI. PROOF OF CONCEPT

In this section, the PoC is described in full detail. It im-
plements an attendance control system for SE that locates
students within a laboratory using cellular technology and WiFi
networks, both operating independently and combined. Differ-
ent techniques for classification and regression are explained,
and the different challenges and limitations that this PoC can
encounter are defined. In addition, the experiments and the
scenario setups are described. Results of the different techniques
and technologies are discussed. Finally, a proposal for an
architecture that integrates this service within an OpenRAN
derived from this PoC is given.

A. Objectives

The main objective consists on localizing the students within
a specific classroom depending on their radio signal information
for an automatic attendance control system in real-time. To
achieve this goal, a comparative analysis is conducted between
two different methodologies of Random Forest (RF).

The first approach utilizes a purely classification-based ML
model, which determines whether the student is in a laboratory
or not based on the provided input. Conversely, the second
approach entails a location regression model that estimates
the student’s position and subsequently classifies whether the
student is situated within a laboratory area. Thus, both systems
use, as input, the RSSI signal obtained from 5G and WiFi net-
works working both together and independently. In this case, the
system uses RF method that is straightforward to implement and
can accomplish high precision in classification and regression
processes. The objectives of this PoC are disclosed as follows:

• Performance validation of the automatic attendance control
system.

• Comparison of classification and regression success rate.
• Demonstration of the viability and benefits of the oppor-

tunistic fusion for location-based services for SE.

B. Methodology

ML techniques enable the prediction of whether the user is
inside a classroom. Specifically, RF is used in this PoC because
it is a simple technique and can accomplish a high location
precision, particularly when used with a significant amount of
training data [115]. This technique combines the predictions
from various single models, known as base models, to create a
final outcome. RFs are a versatile tool for a range of ML tasks
such as classification, regression or anomaly detection [116].
RFs are particularly effective in classification and regression
tasks as they can effectively merge the predictions of multiple
decision trees to provide a final location of the UE [117].

RFs create decision trees through a process called bootstrap-
ping, which involves randomly selecting a subset of the training
data and using this subset to create a decision tree, this process is
repeated multiple times, resulting in a large number of decision
trees that are all trained on different subsets of the data [118].
The final prediction is then made by averaging the predictions

of all the decision trees in the forest as illustrated in Figure 2. In
the case of the classification process, as shown in Figure 2 (a),
a majority voting mechanism is employed to determine the final
output, which corresponds to the most commonly voted label.
In contrast, in the regression model process, depicted in Figure
2 (b), the estimation of the location is achieved by averaging
the positions across the trees. RFs are robust to the presence
of noise in the data, as the averaging process helps to reduce
the impact of any individual decision tree that may be making
incorrect predictions [119].

...
Tree 1

RSSI vector

Tree 2 Tree S

ŷ1 ŷ2 ŷS

(b) Regression Model

...

...
Tree 1

RSSI vector

Tree 2 Tree S

Lab 2 Lab 1 Lab 1

Majority Voting

(a) Classification Model

Fig. 2: RF schema

C. Challenges and limitations of the PoC

Due to the high concentration of students within a classroom
environment, the personal devices utilized by these students
possess the potential to introduce interference within the radio
frequency spectrum degrading the end-user position estimation.
In addition, areas without coverage may be generated, relying
solely on 5G or WiFi localization for attendance control be-
comes problematic since students may encounter difficulties in
establishing network connections.

In this PoC, the focus is on the basic infrastructure commonly
found in primary or secondary schools, including cellular net-
works and WiFi. As a result, this PoC can be conducted at any
educational institue with limited resources.
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D. Experimental setup

The scenario where the PoC was deployed is located at the
University of Malaga and composed by two different labora-
tories as shown in Figure 3. It is a medium-cluttered scenario
with instrumentation equipment that create signal reflections in
the whole area. Both 5G and WiFi networks were utilized to
conduct the measurement campaign.

Fig. 3: Images of both laboratories

To minimize interference with commercial networks, three
gNodeBs (gNBs) were configured for the 5G network, with the
stations located at different heights (2.5m and 3.5m), as shown
in the map of the scenario map in Figure 4. Additionally, Google
WiFi mesh routers were used as WiFi APs, placed on shelves
at a height of 2 meters. For the 5G network, the gNBs were
placed in the ceiling to provide good visibility and transmit
at a frequency of 3774.990 MHz with a power of 20 dBm.
The scenario consisted of two laboratories, with an additional
laboratory where there is a 5G AP, which included metallic ele-
ments that could potentially cause signal blocking, attenuation,
and multipath effects. In this study, a dataset comprising more
than 250 samples was employed. To facilitate RF training and
evaluation, the data was divided into a training set and a testing
set, visually depicted in Figure 4 as orange and green dots,
respectively. The 20% of the measurements were designated for
testing. To ensure reliable statistical outcomes, the experiment
was repeated a thousand times, with each iteration involving
random selection of training and testing points using the Monte
Carlo method. Figure 4 illustrates one instance of this iterative
process, ensuring precise statistical results. A Motorola Edge 20
smartphone, operating on Android 11, serves as the target UE
for determining location.

9.46 m9.46 m 14.77 m

13.7 m

8.6 m

3.2 m

h=2.5m

h=2.5mh=3.5m

Lab 1Lab 2

Lab 3

5G PicoCell WiFi Ground Truth Testing

Fig. 4: Map of the scenario

To collect the RSSI of serving and neighboring cells in both
5G and WiFi networks, an smartphone application has been
created. The data collected by this application is subsequently
transmitted via the 5G network to a server, where the mea-
surement samples are stored in a MySQL database for future
analysis. The application also includes a feature for indicating
the ground truth location, which is then included along with
the measured data. By using this setup and collecting data
application from real-world scenarios, we aimed to accurately
evaluate the performance of the classification system.

E. Results

This section presents the performance of the localization and
classification results achieved from the PoC, which aimed to
assess the reliability of the system for classifying a student’s
location within a specific classroom. To achieve this goal, the
performance of both RF models are evaluated by comparing
the accuracy of final classification obtained from 5G and WiFi
networks, both together and independently.

1) Comparing Accuracy of Classification and Localization-
Based Regression Models: in order to assess the effectiveness of
the classification and localization-based regression models, it is
crucial to compare the accuracy of the classification process in
correctly identifying the laboratory where the student is placed.
Figure 5 illustrates the percentage of accuracy performance
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of the classification (orange) and localization-based regression
(blue) models for 5G, WiFi, and their fusion.
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Fig. 5: Comparative accuracy analysis of classification (orange)
and regression (blue) RF models for 5G, WiFi and Fusion

The findings demonstrate that the regression model and the
fusion of different technologies significantly enhance the overall
classification performance of the system. In indoor environ-
ments, signal propagation conditions tend to be challenging,
resulting in a random reception of RSSI by the UEs due to
blockages and multipath effects. Based on the user’s position
estimation, the system determines whether the user is situated
within a classroom. Consequently, in regions closer to the
classroom boundaries, there is an enhancement in performance
compared to the pure classification method. This enhancement
is attributed to the fact that regression systems first estimate
the UEs’ location and subsequently assign it to a particular
classroom.

2) Localization performance by regression: the system clas-
sifies the student’s location in a specific laboratory. Figure
6 represents the Cumulative Density Function (CDF) of the
horizontal localization error. The localization error is relative to
the disparity between the estimated final position of the user and
the ground truth position. As it can be observed, the performance
of 5G (red dotted line) is better than WiFi (blue dashed line).
However, the fusion (green line) of both technologies improves
the overall performance compared with each technology in
isolation. Fusing 5G and WiFi achieves a location error of 5
meters in 80% of the cases, thereby satisfying the location
requirements stated in Table II as originally mentioned.

The better precision of the regression, the better performance
at the classification process is expected. Notably, when exam-
ining the data independently, 5G obtains higher localization
precision resulting in a higher accuracy classification results.
Consequently, when combining 5G with WiFi data, there is
a noticeable enhancement in classification accuracy than in
isolation.

By combining two technologies, the system not only improves
its classification accuracy but also extends its coverage area
beyond what could be achieved with a single technology.
Simultaneously employing two supplementary technologies of-

5G

2
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0.6
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Horizontal Error [m]

WiFi
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Fig. 6: CDF of localization regression for 5G, WiFi and fusion

fers redundancy in case of system failure or outage, further
enhancing the robustness of the system.

VII. CONCLUSION

Location-based services are increasingly used in education to
enhance the learning experience and increase efficiency, with
the implementation of XR and indoor navigation on campuses.

This paper aims to provide an overview of localization in
SE with real-world examples, analyzing the main technologies
and techniques employed to improve the quality of education.
After analyzing the challenges and limitations of the different
technologies in this educational context, we conducted an ex-
periment on a system created to automate attendance control in
education settings with a limited budget. The system effectively
demonstrated the advantages of combining various available
technologies within educational institutions, as shown by real
data.

This PoC illustrates that a localization-based regression model
performs better than a simple classifier model. The proposed
AAC system can be readily implemented in academic settings,
offering a straightforward and unobtrusive method for enhancing
teaching and learning efficiency. The attendance monitoring
procedure may be executed using students’ mobile devices, as
all such devices come equipped with both cellular and WiFi
technologies. Additionally, the system’s data can be analyzed to
identify attendance patterns, allowing teachers to optimize class
scheduling and delivery. The proposed system streamlines atten-
dance tracking and could provide other location-based services
for students, including space usage and occupancy tracking.
The potential of wide-spread 5G and WiFi technologies in the
education sector to revolutionise how students learn and interact
with their surroundings is significant.
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ABSTRACT Location will have a central role in Research and Development (R&D) towards 6G networks,
both as a service offered by the network (improving the current offering of 5G) and as an input to
increasingly location-aware services and network functions. To integrate location into 6G standards, it will
be very important to design validation systems such as testbeds, even when the actual technology is not
yet commercially available. This paper performs a review of the use cases and their requirements, enabling
technologies in 6G, and challenges; and proposes a flexible testbed architecture for performing network
location related R&D. This architecture will allow to deploy an evolving infrastructure which will allow
early validation of 6G technologies.

INDEX TERMS Testbed, proof-of-concept, B5G, 6G, location, positioning.

I. INTRODUCTION
In the last years, as mobile devices have taken the world, loca-
tion has become a key dimension in communications. New
location-aware services are being proposed and deployed,
such as localization in emergency cases (floods, fires,
earthquakes, etc.) [1], intruder detection [2], Unmanned
Autonomous Robots (UAR) navigation [3] or self-driving
vehicles. Also, existing procedures of network management
are now being enriched with location as a new dimension,
such as traffic prediction based on location [4].

Many of these applications cannot rely on traditional
Global Navigation Satellite Systems (GNSS). In some cases,
they work in indoor environments, where GNSS cannot be
used due to lack of satellite visibility. In other cases, energy
constraints require that the location is estimated in the net-
work instead of in the device, to save on computational power
or the need for additional location circuitry. Some applica-
tions also require the network to know the position, which
would require the terminals to transmit their location using
specific protocols [5](with their associated costs). Therefore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

there is a need for network based location estimation [6].
In this case, mobile network infrastructure is used for locating
a user instead of satellites, using signal features such as
the received power or angle of arrival. The performance of
network based location will greatly depend on the capabilities
of the underlying network technology.

While 5G is still on an early-stage deployment, studies
to foresee how the Sixth Generation (6G) cellular networks
will evolve in the next ten years have started, with white
papers such as [7] by the European Commission or [8]
by the International Telecommunication Union (ITU), and
projects such as Hexa-X [9]. 6G will bring better network
capabilities than 5G [10], such as throughputs of Tbps [11],
latencies below the millisecond [12], very reliable communi-
cation (99.9999%) [13] or high-accuracy localization to the
centimetre-level [14].

While the grounds for the development of 6G are being set-
tled, there is no unified definition of what such networks will
specifically contain. Most authors [15], [16], [17] agree that
Artificial Intelligence (AI) and Machine Learning (ML) will
play a central role both in the user and control planes, giving
place to new applications withML as a Service (MLaaS) [18],
[19], [20] and novel AI/ML-based network management
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schemes. On the architectural level, Network Function Vir-
tualization (NFV) will implement the network elements that
support both the user and control planes [21], using Com-
mercial Off-The-Shelf (COTS) hardware and reducing the
cost of infrastructure. In this respect, Open Radio Access
Networks (Open RAN) [22], [23] is a major breakthrough
that is already being used in 5G networks and will continue
to be a central feature in 6G, enabling the easy integration
of software components from different vendors and speedy
creation of new services and functions. Software Defined
Networks (SDN [24]) will allow the definition of a dynamic
architecture, that can reconfigure the network quickly and
adapt it to changes in context (such as changes in traffic,
variations in user behaviors, the Deep Network Slicing [17],
[25] functionality, the occurrence of catastrophic events, etc.).
In this context, 6G will develop a new concept of network
operations that will be based on dynamic resource allocation
(both in terms of network structure and network functions)
for optimizing the general network efficiency [26]. At the
physical layer, the migration to higher and wider bands will
continue in 6G [27], and new elements, such as smart meta-
surfaces [2], [28] and massive antenna arrays [29] will enable
faster data rates, with a more efficient use of the power.
Another important aspect of 6G will be the interoperabil-
ity [30] with other networks, such as prior 3GPP generations
(4/5 G) or non-3GPP technologies (WiFi, LoRA, Sigfox,
etc.). While most visions do not consider heterogeneity as a
core aspect of 6G, coexistencewill be a very important aspect,
both as a challenge and as an opportunity.

Several projects have emerged for improving the location
accuracy in existing 5G networks up to the meter-level for
indoors and outdoors, such as the LOCUS [31] or 5G EVE
[32] H2020 projects. With all the aforementioned novelties,
6G will bring a slew of opportunities for better network
location. Some authors have already proposed visions of loca-
tion in 6G [2], [33]. Location will be integrated in basic 6G
operation, alongwith communications [34], [35], [36], thanks
to THz frequencies that allow high resolutions for radio-based
sensing. Narrower beams [33] will allow to better resolve
multipath components for angle-based location. Reconfig-
urable Intelligent Surfaces (RIS) [2] will also improve loca-
tion by making the radio environment more predictable. At a
higher level, location estimated with these enablers will have
its own network function, andwill be offered as a service [37].
This service can be offered to applications and network man-
agement [38].

While these works reflect on both the enablers for location
in 6G (e.g., wideband signals and ML) and location as an
enabler of some 6G functions (e.g., context aware manage-
ment), they do not address an important aspect of devel-
opment of location technologies in 6G: the infrastructure
required for creating proof-of-concepts and evaluating the
developed technical components. This aspect is especially
relevant at the present time, when development is in the early
stages. While simulations are a common way of evaluating

location methods [39], the assumptions that are usually done
have long been known to add bias to the results [40]. In prior
mobile network generations, research on location [41] includ-
ing testbeds has been done once the core components of the
technology were well defined and commercial components
were available [42], [43], [44], [45], [46], [47]. Testbeds are
often limited to existing commercially available technology
and implemented using closed solutions by vendors. Thus,
the architecture of the testbed is usually determined by these
factors. This limits the type of experiments that can be done
to those that the commercial equipment supports, and there-
fore, there is a need for a well-planned architecture that is
defined prior to the acquisition of equipment. This paper
proposes a testbed architecture for 6G-based location that can
be extended as 6G technologies progress. Since 6G will be
the most location-centric of all 3GPP networks yet, it is very
important to start this development from the very beginning
of the cycle of definition. This will help integrate location
and its dependencies (e.g., services to compute location based
on measurements or the required signaling) into the early
iterations of the first 6G definitions.

This paper will study the task of designing a testbed for
location research in 6G. First a review of the uses of loca-
tion in future 6G-supported applications, its role within the
operation of 6G networks and the enablers offered by 6G
technologies will be done, highlighting the open research
challenges that will need at some point to be studied in a
testbed. The requirements and challenges of location will
then be explored, identifying which key aspects should be
studied in the future and which hardware/software equipment
would be needed to evaluate and demonstrate the developed
technical components. With these elements, this paper will
then propose an architecture for developing location testbeds
and review existing implementations for the components of
the identified system blocks. Figure 1 summarizes the contri-
bution of this paper.

This paper is organized as follows. In Section II,
an overview of existing testbeds will be done, describing
some common design principles and relevant implementation
aspects. This review will produce two inputs to the design
of the architecture, in the form of ideas that can be used in
the implementation and challenges that may be present in
the process. In Section III, the key use cases are defined,
and their requirements in terms of accuracy, latency, and
frequency are defined, as well as the main challenges they
offer. The review of articles in this section will serve as a
source for open research questions that may be answered
by experiments done in testbeds. In Section 3, location in
6G is discussed, both reviewing the 6G technologies that are
enablers of location, as well as 6G functions that depend on
location, both of which must be supported by the proposed
architecture, and detailing further open research questions
that require evaluation on testbeds. In Section V, a blueprint
for a comprehensive testbed will be described, detailing the
different required components to evaluate the technologies
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FIGURE 1. Paper organization and contributions.

that will eventually lead to 6G standards. A review of existing
technologies that can be used for the implementation is also
done in this section, alongwith recommendations for building
a real testbed based on the proposed blueprint. Section VI
will describe a real implementation based on the proposed
architecture, and which will illustrate how to apply the guide-
lines. The open challenges for implementation will then be
discussed in Section VII, along with recommendations on
how to overcome these challenges. Finally, in Section VIII,
draws the conclusions of the study.

II. RELATED WORKS
In this section, a brief review of existing location testbeds will
be done, pointing out specific particularities and ideas that
will be used for the development of the architecture proposed
in this paper.

Ultimately, testbeds are used to do proof-of-concepts of
pre-existing theoretical development. In location, these devel-
opment can be either algorithms that provide an estimation
for location, or that depend on location as an input. The
workflow of research and development of such algorithms
goes through several phases, starting with an analytical devel-
opment, followed normally by simulations and validated
through proof-of-concepts in testbeds. Such testbeds can be
pre-existing ones, developed with enough flexibility so as to
admit experiments on different algorithms; or ad-hoc, specif-
ically designed and deployed for demonstrating an algorithm.

Generic location testbeds [48], [49], [50] are designed to
test any location technology, including location algorithms
and location-aware services. Such testbeds normally provide
a physical space where the experiments take place, a system
for providing ground truth (i.e., the actual coordinates of a
target, to be used to estimate the error of location algorithms)
and a system for collecting data and running experiments.
For instance, in [48], an office environment is equipped
with elements to perform experiments. Such elements include
mobile robots that automate test, equipped with sensors that
perform Simultaneous Location and Mapping (SLAM) and
which provide a ground truth location. In [50], a factory lab
emulates an industrial setting for algorithms used in Industry
4.0 services. In this case, no ground truth is provided, leav-
ing this aspect open for experimental design, but a specific
component for deploying experiments and collecting data is
described. The Emulab testbed [49] provides a generic wire-
less network testbed, which includes functions for location.
A robotic platform is deployed in a large office space, with
overhead cameras recording a live video feed with tracking
algorithms providing real-time ground truth location. A sub-
system to program experiments, collect data, and control
everything remotely has also been developed.

Some testbeds are slightly less generic by limiting their
scope to specific radio technologies; for instance toWiFi [51]
using Received Signal Strength Indicator (RSSI) measure-
ments, or IEEE 802.15.4 [52] with Time of Flight (ToF)
measurements. Cellular technologies are well represented in
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this category, thanks to the growing demand for location
based services in mobile networks. For instance, in [43],
an experimental Long Term Evolution (LTE) cell is deployed
in two different, reconfigurable, indoor scenarios (an empty
room and an office setting). It supports ToF and Angle of
Arrival (AoA) measurements, and the ground truth is pro-
vided by markings on the floor, which are manually fed to the
collected data. In [45], a testbed for 5G location is proposed,
with robots equipped with SLAM providing ground truth
and automation. While it is oriented to 5G, it also supports
other technologies, such as WiFi Fine Time Measurement
(WiFi-FTM) and vision-based location. The physical setting
is in several different indoor areas, including office and open
spaces. While there are no location-specific testbeds for 6G,
some proposals for generic testbeds are emerging, such as the
Techtile testbed [53]. In this testbed, tile-based generic radio
elements conform an indoor scenario for testing multiple
6G technologies, incluiding mmWave communications and
visible light communications. While it is not specifically
oriented to location, it has been used for experimenting with
ultrasonic and visible light location. It contains a subsystem
for collecting data and programming experiments.

Ad-hoc testbeds are developed to demonstrate a specific
algorithm. While they lack the flexibility to adapt to differ-
ent experiments, they are sometimes as complex as generic
testbeds, in terms of number and variety of hardware and
software elements. The main difference is normally that they
lack a programmable component and generic data collection
systems that allow experimentation flexibility. For instance,
in [54], a testbed for demonstrating a specific range esti-
mation algorithm using wireless networks is demonstrated
in a testbed that allows both indoor and outdoor scenarios.
In [42], a testbed for demonstrating a location algorithm
based on a deep neural network is deployed in two different
indoor scenarios (residential and office). A mobile app is
developed for taking powermeasurements of surrounding cell
towers and marking ground truth location on a map. In [44],
vertical location with cellular networks is tested in a testbed
consisting of Software Defined Radio (SDR) base stations
and terminals, and compared with Global Positioning System
(GPS) and barometer based estimation. In some testbeds in
this category, full location is never estimated, but only the
elements required for location. For instance, in [46], only
AoA measurements of a single terminal and a single 5G base
station are taken in an outdoor parking lot, with the purpose
of demonstrating a specific network management scheme.

In this paper, a generic architecture for testbeds is proposed
in Section V. The proposed architecture provides a blueprint
for any type of 6G location testbed, generic (which can be
achieved by systematically implementing all the proposed
components) or ad-hoc (using the architecture as a generic
framework and only implementing the required components
for a specific proof-of-concept). A special focus is set on 6G,
studying the enabler technologies and new services that it
will bring, and exploring the elements that can be procured
for a 6G location testbed. This architecture synthesizes the

different building blocks of the testbeds cited in this section,
along with the experience of the authors in prior work using
testbeds. The testbed used in [47] and later expanded to
add capabilities and flexibility, is used as an example of the
proposed algorithm in Section VI.

A. KEY TAKEOUTS
In this section a quick overview of existing location testbeds
has been done. This paper proposes a blueprint for future 6G
location testbeds, such that they are implemented following
a pre-established plan that responds to the needs of 6G net-
works and applications. Some ideas that have been proposed
in the testbeds reviewed in this section, such as using a ground
truth system, or robots for acquiring measurements, can be
exported to future 6G testbeds. A clear division between
generic and ad-hoc testbeds is also noted, where generic
testbeds are implemented to support any experiment in the
future, and ad-hoc testbeds to test a specific algorithm or
component.

III. KEY USE CASES AND REQUIREMENTS
When development for 5G started, mobile networks were
already a commodity, and new services were constantly
deployed. But mobile services were no longer limited to
end users; around the same time an explosion in Cellular
Internet of Things (CIoT [55]) services and applications
took place. Thus, 5G was designed not solely as a human-
centric network, but also as a CIoT provider. While tradi-
tional human-centric applications had more or less simple
Key Performance Indicators (KPI) requirements (mainly ever
increasing bandwidths for multimedia services) in previous
generations, in 5G, requirements had many more dimensions
(e.g., reliability, device density, latency, end-to-end quality
of service, etc.). Three service categories were defined for
5G [56]:

• Ultra Reliable LowLatencyCommunications (URLLC):
communications with very high reliability (above
99.999%) and very low latency (below 10ms).

• Massive Machine Type Communications (mMTC): ser-
vices with a very high density of devices (around 1 mil-
lion devices per km2).

• Enhanced Mobile Broadband (eMBB): services with
very high bandwidth requirements (up to 10Gbps).

These KPIs, which measure the performance of the network,
would, on their turn determine the performance of the appli-
cations that used the 5G network, which was measured in
Service KPIs (SKPIs). The SKPIs were extracted from the
use cases that were intended for 5G, and the KPIs that defined
the different classes of traffic were derived from there.

Location SKPIs [5] were also defined in 5G, with accu-
racy (error lower than 50m horizontally and 5m vertically
outdoors, and lower than 3m horizontally and vertically for
indoors) and location acquisition latency (30 seconds out-
doors and 1 second indoors) being the main ones. These
requirements were not part of the initial release of 5G
(Release 15), but came as an addition in Release 16.
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FIGURE 2. 6G use cases and their approximate precision and latency
requirements, as described in Section III.

In 6G, the services that will be supported aremore demand-
ing, responding to the decade of technological and social
advances that has passed since the inception of the first 5G
definition. The SKPI requirements are extreme, requiring
performances far superior to those that current 5G technology
can provide. From these extreme SKPIs new KPI require-
ments will be derived, redefining the service categories [57]
defined for 5G with traffic that has characteristics that com-
bine requirements of more than one category. In 6G, not only
are the required SKPIs higher and the KPI requirements more
complex, but networked applications are expected to also
have a positive societal impact, measured in Key Societal
Value Indicators (KVI [9]), such as the sustainability, trust-
worthiness, or inclusiveness. Naturally, location SKPIs will
also be much more demanding and the applications will have
KVI requirements that must be achieved by the network.

In this section, a review of a set of novel use cases for
6G networks that are highly location-dependent will be done,
based on a selection of existing reviews of use cases [15],
[34], [36], [58]. Figure 2 summarizes these use cases. The
dashed line represents the limits of current mobile technol-
ogy. The requirements for the use cases are detailed in the rest
of this section. For each one a brief summary will be given,
along with an analysis of the SKPIs (accuracy, latency, and
update frequency) and the KVIs (trustworthiness, sustainabil-
ity, and inclusiveness).

A. SELF DRIVING CARS
As the electric vehicle gains market, the demand for higher
security standards grow and drivers seek increasing degrees

of comfort. To cover these demands, the development of
autonomous driving [59] becomes necessary. Autonomous
driving is in the crossroads of several cutting-edge tech-
nologies, such as AI/ML [60], [61], advanced sensors [62],
URLLC communications [63] and high accuracy loca-
tion [64]. Autonomous cars interact with different elements
of the environment, such as other vehicles, pedestrians, and
road signalling. Some of these elements are not equipped
with communications equipment, so advanced sensors, such
as LiDAR [65], [66] would be required. Others, such as traffic
signals, can be equipped with communications elements [67]
that interact with the vehicle through wireless Vehicle to
Infrastructure (V2I) or Vehicle to Vehicle (V2V) links. With
SLAM the vehicle can combine the information of sensors
and location providers to predict the trajectory andmake deci-
sions in real-time depending on unforeseen events. Some of
these decisions cannot be takenwith the information available
to a single vehicle, such as taking routes to help harmonize
traffic, so they must be taken in a centralized element outside
of the vehicles [61].

Naturally, location is a major aspect of autonomous driv-
ing. Location information is used in many different functions
of autonomous driving, such as route planning and track-
ing [68], course prediction for collision avoidance (with other
vehicles, pedestrians, and other obstacles) [65], lane chang-
ing [69], fleet management [70], traffic measurement [71],
etc. Not all of these applications will have similar require-
ments; for instance, the accuracy required for traffic mea-
surement is in the tens of meters, while lane changing and
course prediction would need sub meter accuracy (along with
accurate estimations of speed and acceleration). Regarding
localization latency, to provide an accurate prediction of the
course, a latency of 100 ms [72] would be required in order
to have a margin for reaction in case of potential collisions.
Update frequency would depend on aspects such as the cruise
speed and the type of road. For instance, in highways, while
the speed is high, a relatively low location update frequency
would work well for lane estimation, course prediction, etc.
In an urban area, or in a parking lot, on the other hand, the
geographical features are much smaller, so a high location
update rate (up to 10 Hz) would be required.

Location will also have to meet high KVI requirements for
autonomous driving. Trustworthiness is the most important
aspect in this case. The location provided by the networkmust
be correct and resistant to tampering to avoid possible risky
situations and accidents. Privacy, which is another aspect of
trustworthiness, must also be preserved, so an attacker cannot
gain access to a specific vehicle location [73]. Inclusiveness is
a key factor in autonomous driving, in the sense that a higher
number of connected vehicles will help the overall functions
of autonomous driving work better. In [74], it is shown
how a high penetration rate (i.e., proportion of vehicles that
can communicate) can drastically reduce traffic congestion.
In fact, penetration rate has always been the main challenge in
vehicular communications, along with a proper infrastructure
connectivity for V2I.
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While most of this activity is done outdoors, where
advanced GNSS systems can provide a location down to
the centimeter [75], some of it takes part either in challeng-
ing scenarios like urban canyons [76], [77], in tunnels [78]
and in underground parking lots [79] where GNSS is either
unavailable or offers a very low accuracy. 6G networks are
expected to cover both indoors and outdoors, especially in
densely populated areas, so in these scenarios, 6G can be a
viable alternative to GNSS (provided it can achieve the SKPI
and KVI requirements disclosed earlier and summarized in
Table 1). Some studies of 6G connectivity have been done
for V2V and V2I [80], but there are currently no studies
on location for this use case. A testbed with the appropri-
ate infrastructure (roads, vehicles, signaling elements, etc.)
would be required to test network location and V2V and V2I
location dependent services.

B. SOCIAL MEDIA
Social media have gained a central role in society in the last
years. In the market, there are general social networks (such
as Facebook or Twitter) and purpose specific social networks
(such as Foursquare, which is centered on location specific
data). In many cases, the revenue model of social media
services is that of a free service sustained by customized ad
delivery. Therefore, there are actually two groups of users
of social media: the end users and the entities that use the
network for delivering their ads.

Geographic information is becoming an increasingly
important data source both for the end user and the ad delivery
service [81], [82], [83]. This dependence is more obvious in
social media that are built around geographical information,
such as Foursquare or GoogleMaps. Location in social media
is used mainly to geotag publications, to offer information
about the surroundings of the user and to deliver ads that
are relevant to a specific place. All these applications have
relatively light requirements, with location accuracies of up to
tens of meters [84], [85], several seconds being an acceptable
latency and no regular update required (only when interaction
with the network occurs).

While the technical requirements may be loose, the KVIs
in social networking are the main issue. First of all, trustwor-
thiness is the deciding factor in the usage of social media for
many users. Location tracking should be used in benefit of
the users, and not to violate their privacy. As per regulations
such as General Data Protection Regulation (GDPR) [86],
users must be in control of their data, including their location,
and must have the ability of fully disabling it. Additionally,
the entities that hold location information (e.g., the social
network provider or the wireless operator) must also protect it
and avoid information leaks [87]. Inclusiveness is also impor-
tant, since social networks are becoming the main playground
for public debate and freedom of speech [88]. Thus, it is
important that the location function is available to all users,
with a quality that is enough to provide an acceptable social
network service.

The open research questions in this use case are mainly
centered around the end services, owing to the fact that
these use cases are not especially restrictive with location.
Detection of bots [89] is a hot topic in social media, where
location analysis can play an important role. Finally, the most
important challenge in social media is in the privacy of the
end users [90], which must be protected from other users and
from undesired information leaks to ad networks and mali-
cious actors. As such, a 6G testbed should offer the required
functions for testing algorithms for privacy preservation.

C. E-HEALTH
According to the World Health Organization (WHO) [91],
healthcare-based devices and facilities can benefit from wire-
less networks to provide a personalized care. While some
development was well underway, the COVID-19 pandemic
was a major booster of e-Health technologies [92]. These
applications cover different types of monitorization (e.g.,
smartbands [93]), remote presence applications (remote oper-
ation [94] and remote doctor visits [95]) and transportation
(ambulance service enhancedwith vehicular communications
and health sensors [96], or drones for transporting drugs and
organs [97]).

Location plays an important role in some of these applica-
tions. Some smartbands use location for tracking the move-
ment of users and logging physical activity. Telepresence
robots require location for indoor navigation and object
manipulation. Drones and ambulances also need location for
route planning and navigation. The requirements in terms of
SKPIs depend on the scenario. Outdoor applications, such
as ambulances, drones, or smartband sports trackers may
work with location accuracies of a few meters; while indoor
applications, such as telepresence, will normally require sub
meter accuracy. Regarding location acquisition latency, the
only critical application would be drones, which may face
catastrophic consequences if location is not timely (e.g., col-
lision with buildings or other drones). In this case, location
sensors should have a maximum latency of 50 ms and a
refresh rate of 20 Hz [98].

Health data is considered one of the most sensitive kind
of information on individuals, therefore, privacy should be
a major priority in all the applications. This is applicable to
patient location too. Sustainability will also be amajor aspect,
since many of the devices will be battery-powered. In order
to avoid an increase in chemical waste, and enhance the user
friendliness, location (and, in general, wireless technologies
in these use cases) should minimize the impact on device
power and hence, the need for replacing batteries. Regarding
inclusiveness, the health sector strives for covering as much
of the population as possible, with an economically viable
cost structure. Location technologies must be simple in order
to have a low cost.

The convergence of location and communication [36] in
6G will help in the development of low cost devices. Very
accurate location and pose estimation of instruments for
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remote surgery [99] must be investigated and tested. Specifi-
cally, whether 6G on its own can provide the required location
quality is an open research question, which must be tested as
the technology rolls out.

D. EMERGENCY SCENARIOS
In the last years, disaster management has received much
attention from the wireless research community, with projects
such as the European H2020 RESPOND-A [100] project or
government agencies such as the US’s Firstnet [101]. This
underlines the important role that wireless technologies can
eventually have in the work of first responders.

There are numerous tasks in disaster management where
location is a key tool. For instance, coordination of first
responders [102] is a major issue, requiring that a central
command monitors the location of the acting personnel to
better manage the resources and avoid hazardous zones.
Another important task is to map the disaster area, identifying
deviations with respect to the pre-disaster map, and locating
hazards such as chemical spills or flammable gases. For such
tracking [103], location must have an accuracy of fewmeters,
and latency and frequency of few seconds.

Victim location is another important task, which must be
done either by visual inspection, canine units, robots, or by
detecting wireless devices [104]. Location in this case must
be done again with an accuracy of few meters, so that visual
inspection can further determine the exact location and sta-
tus of the victim. In this case, latency and location update
frequency are not too critical, since the victims are not able
to move. A higher latency with an accurate location is much
better than a quick but imprecise location.

6G and location can be a major enabler of new life-saving
protocols, by improving working conditions of first respon-
ders and the chances of victims. In this sense, the inclusive-
ness KVI must measure the survival opportunities of victims
in different situations, such as those that are under rubble,
or closer to ground zero. Trustworthiness will be measured
mainly in the fidelity of the information, for instance, in the
first responder command unit (which combines the accuracy
in space, the delay of the presented location, and the informa-
tion of surrounding hazards).

Emergency scenarios are often chaotic and disordered,
each having different challenges for first responders, victims,
and deployed equipment. For location, the main challenges
are the potential lack of infrastructure and the need to com-
municate and locate victims under rubble. The lack of infras-
tructure that can be used as reference points for location can
be partially solved with portable equipment, such as portable
base stations [104] or fusion of technologies [105]. In the
case of victims trapped under rubble, location is especially
challenging, since rubble acts as heavy clutter for wireless
signals [106]. This may greatly affect the vertical location
accuracy. In these cases, a dense deployment of reference
points, for instance, from heavily sensorized buildings [3],
will increase the chances of location.

E. HAPTIC SENSORS AND GAMING
Gaming is one of the fastest growing markets in entertain-
ment in the last years. As gaming propagates among new
demographics, the variety in experiences and devices grows.
Technologies such as Extended Reality (XR) [107], will
enable first-person views in an immersive and interactive
experience over digital environments. Within XR, Virtual
Reality (VR) provides a fully immersive experience, where
the user is completely surrounded by virtual objects and can
only interact with them; and Augmented Reality (AR) pro-
vides a mixed experience, where the virtual objects interact
both with the user and the real environment. While devices
like 3D glasses are used for displaying the virtual object,
haptic interfaces [108] allow tactile interaction with physical
feedback to the user. To quantify the requirements of gaming
over mobile networks, a new concept has emerged as Quality-
of-Physical-Experience (QoPE) [57] which merges physical
aspects from the Quality of Service (QoS) and Quality of
Experience (QoE) such as latency and video quality opinion,
respectively.

Location plays a key role in XR and haptic interfaces.
The user location and body pose are required to compute
their view of the virtual objects. An accuracy of 10 cm or
less [109] is required to provide a good experience. But most
importantly, to avoid dizziness, the user location must be
updated with a very low latency (below 20 ms [109]). These
requirements can be met by devices that run location and
tracking systems, along with 3D rendering, but such devices
have a very high cost that hampers the market accessibility
to casual users or to users with a lower economic capacity.
Cloud gaming [110] solves partially this problem by moving
the rendering to the cloud or network edge, but user location
must also be sent to the network with a very low latency.

Trustworthiness will be one of the main KVIs for most
users, which will need to trust that their privacy is respected
within gaming sessions, especially when any kind of econom-
ical transaction occurs. Location must therefore be computed
and used in a secure manner, ideally within the premises of
the network operator (in the network edge). Inclusivity will
be achieved mainly by keeping a low cost in the devices, such
that they are affordable for all users, all while maintaining a
certain QoPE.

5G localization requirements are <3m for 80% of users in
indoor deployments [111] which can be considered the main
scenario in gaming. Therefore, 6G must overcome the limi-
tations of 5G with extremely low latency and high accuracy
location within a challenging indoor scenario.

F. SMART EDUCATION
Education is one of the key pillars of modern society, from
very early ages to university education and even mid-career
training. As human knowledge advances, the topics that are
taught become more and more complex and profound, and
the teaching methods must evolve and adapt to new layers of
complexity [112], [113]. For this reason, education is a very
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dynamic market, that adopts not only new teaching methods,
but also new technologies. For example, a hot topic nowadays
is teaching programming from early ages [114]; and typical
blackboard and chalk classes are not an efficient way for this.
Instead, in Smart Education methods such as gamification,
which relies on transforming the concepts to games and using
the dopamine response of the brain to enhance learning, can
be used to better engage students. Such gamification meth-
ods use technologies like XR or holography [115], which
have heavy processing and communications requirements, all
while also being physically portable and non-intrusive. These
technologies, along with other networked technologies (file
sharing, streaming, activity recognition), have requirements
which need to be served by 6G infrastructure.

In Smart Education, location plays an important role in
several applications. Apart fromXR and holography, location
is also important in activity recognition. For instance, gesture
recognition [116] and location can be used to interact with
the AR/VR objects, reducing the complexity (and cost) of
the end devices. Sentiment analysis [117] can also be applied
to receive a feedback on the learning experience, detecting
whether the students are engaging or not in the lessons. The
location requirement of activity recognition is similar to that
described for gaming, since the basic technologies will be
very similar. Location also plays an important role as a feature
of the traffic generated by Smart Education applications,
which may be used for efficient network management. When
students are all located within a classroom [118], broadband
traffic will be concentrated in a hotspot served by a few
or even just one access point. Such traffic will be similar
for all the students, with changes dependent on their exact
location (e.g., slightly different viewing angles of the same
XR object), so edge resources can be used in a smart manner
if the location is known.

Summaryzing, location in Smart Education will mainly
have the same requirements as in gaming, XR, and holog-
raphy, with some particularities on the contents that may
be rendered in batches for groups of users that are near
each other. All of this must be done under strict privacy and
security standards to achieve a high trustworthiness, and a low
cost for high inclusivity.

The main challenge is the indoors nature of education,
together with the high density of broadband users, which also
reflects in high computing power requirements.

G. AUTONOMOUS ROBOTS
Autonomous robots are cyber-physical systems that have the
ability of moving around the space without a driver, and
have been an important part of the innovations in several
markets, such as manufacturing, logistics, first responders,
or in wireless networks. Overall, the Autonomous Robotics
market [119] is expected to grow 19.6% until 2027, so it will
constitute an ever-growing use case for 6G networks.

Autonomous robots maymove on a two-dimensional space
(when they move on land [120] or over the water [121]),

or on a three-dimensional space (in the case of drones [122] or
submarines [123]). The accuracy of location depends on the
size of the robot and the characteristics of the environment.
In the case of open spaces without any obstacles, location
will mainly be used for navigation and can have an accuracy
of several meters. On the other hand, if location is used
in an environment with obstacles such as walls or other
robots, narrow corridors, etc. location will also be used for
collision avoidance, and the accuracy must then be in the
order of centimeters. For instance, cooperative autonomous
robots will get centimetre-level localization, from 10cm in
industrial scenarios to 50cm for regular consumer cases [34].
Latency and update frequency also depend on what loca-
tion is used for, as well as the speed of navigation. In the
most critical case, the robot must have time to react to the
location updates [124]. For instance, drones [98] moving
at several meters per second in a dense area should have
location updates of themselves and neighboring drones with
a frequency of several updates per second (20 Hz), and a
latency in the range of tens of milliseconds. Not only location
should be provided within these tight margins, but reliability
should be very high, avoiding especially situations where
several consecutive location updates aremissed. Another very
important point would be synchronization; to have a correct
real-time view of the environment and plan safe trajectories,
autonomous robots should be able to coordinate with a correct
timing down to the millisecond.

Regarding trustworthiness, it will be more important in
scenarios where the robots have critical roles or may cause
harm if a wrong location is provided to them. Therefore,
location must be provided in a way that it is not possible to
falsify the information. Sustainability must also be ensured
to improve that battery-powered robots are able to work for a
long time without the need for recharging.

Challenges for location also vary depending on the envi-
ronment. It will be simpler outdoors, where Line of Sight
(LOS) is available and the requirements tend to be more
loose. Indoors, on the other hand, Non-Line of Sight (NLOS)
propagation dominates, making accurate location harder, and
the requirements are higher. Indoor scenarios with high clut-
ter will be common in this use case, since robots will be used
in scenarios such as factories or distribution centers [125].
A testbed should include the required elements for testing
new location algorithms in these scenarios.

H. KEY TAKEOUTS
In this section, a review of 6G-based location has been done,
describing each of the use cases, along with the requirements
that they have in terms of SKPIs and KVIs. The results of
this analysis are summarized in Table 1. A testbed designed
to support these use cases or others that are similar, should be
able to validate that they comply with the requirements.

IV. LOCATION IN 6G
Location consists of obtaining the coordinates of a target in a
2 or 3 dimensional space defined by a coordinate or reference
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TABLE 1. Summary of requirements and challenges of the use cases of 6G location.

system. To obtain the absolute coordinates, the relative posi-
tion of the target must first be computed with respect to the
position of one or more reference points whose coordinates
are previously known. Several enabling techniques are used
for obtaining the relative position information with respect
to the reference points and for combining the information to
obtain the location.

The obtained coordinate can then be used for location-
aware applications, such as those described in Section III.
In 6G networks, location will also be used in network func-
tions and network management, making it an integral part of
the system.

In this section, the role of 6G networks in location will be
reviewed. First, an overview of location techniques will be
done in Section IV-A, followed by a review of the enabling
technologies in 6G in Section IV-B. Finally, the use of loca-
tion in 6G functions will be shown in Section IV-C.

A. LOCATION TECHNIQUES
Location techniques obtain an estimation for the location
given a set of readings on the reference points. There are
several techniques that can be used, depending on the type
of available information, computational resources, and per-
formance requirements.

1) LOCATION BY PROXIMITY
The simplest form of location is by proximity of a reference
point (Figure 3a). The gross location obtained in this case is
equal to the position of the single reference point. The actual
estimation is not exactly a single point, but a set of points
covering the whole coverage area of the reference point with
different degrees of certainty. Points further from the refer-
ence point will have a lower certainty, because the probability
of detection is reduced with distance. This technique is used,
for instance, in Bluetooth Low Energy (BLE) [126], [127],
for applications where accuracy is normally not very high.

2) TRILATERATION
Amore accurate location can be done with trilateration [105]
(Figure 3b). In this case, the data collected from the reference
points is the distance or range. The range to each reference
point defines a circle over which the target may be located.
The location is then estimated by the interception of 4 circles
(or 3 in 2D location). There are severalmethods for estimating
the range with wireless technology:

• Power-based estimation: this method uses fading to
estimate the distance to the reference point. Given a
known transmission power, the distance can be obtained
by reverting a propagation model. The propagation
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FIGURE 3. Representation of the four main location techniques.

model must be selected taking into consideration the
radio technology that is used, the frequency and the
environment. For instance, determining whether there
is LOS or NLOS [128] is a key aspect to select the
model. This method is subject to a high ranging error
due to fast fading and multipath propagation. This
method has been used in previous mobile network
generations [129], [130].

• Time of Flight (ToF) measurements: this method is
based on knowing the time that a signal takes to travel
through the air between the reference point and the
target. The advantage of this method is that it is not
affected by fading. Multipath can also be mitigated if
the signals are short and there is LOS [131]. Even
with NLOS, the accuracy is higher than with power
based methods [132]. Direct ToF measurement requires
a very tight synchronization between the target and the

reference points, making the system very costly. As an
alternative, the Round Trip Time (RTT) of the signal
can be measured. This is done using a protocol where
the signal transmitted by one end is replied by a signal
from the other end after a predetermined time. The trans-
mitting end can then estimate the ToF in both directions
based solely on its own clock. This is the approach used
in technologies such as Ultra Wide Band (UWB [105],
[133]) or WiFi Fine Time Measurement (WiFi-FTM),
which are capable of achieving cm-level accuracy [105].
ToF has also been tested in 5G [134].

• Time difference of Arrival (TDoA) [135]: RTT requires
a protocol between the target and the reference points.
An alternative way to calculate distances relying on a
single clock is estimating the difference in ToF of a
signal between the target and two reference points. This
difference can be translated in a difference of distances,
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that can be used to define a hyperbola instead of a circle
where a user is located. The position can be estimated by
the superposition of these hyperbolas instead of circles.
This method has also been tested in 5G [136].

Nevertheless, range estimations have errors, and it may hap-
pen that the circles or hyperbolas used for trilateration do
not cross at a single point or at all, as shown in Figure 3b
for 2D location. The actual ranges are represented as dashed
lines, while the estimated ranges with errors are shown as full
lines. This creates an uncertainty in the location, shown as
the red smudge. The darker places of the smudge are those
where the confidence for location is higher given the available
information. The actual position is not within the smudge,
reflecting that there will be an error in this case once the
uncertainty is solved. To solve the uncertainty, techniques
such as Least Squares (LS) orWeighted Least Squares (WLS)
are used.

Trilateration requires a certain density of reference points,
such that all the points within the area are covered at least by
4 of them. This can prove challenging, especially in indoor
scenarios, where obstacles cause shadowing. Either the den-
sity (and hence the cost) must be very high, or the scenario
will have coverage holes. One technique that can mitigate
this is opportunistic fusion [105], which uses ranges from
different technologies. This improves the density by using
reference points that are deployed not only for location, but
also for wireless communications. This is especially useful in
indoor scenarios, where several technologies may coexist; or
in emergency situations, where damaged infrastructure can
be complemented with low cost and low deployment effort
reference points.

3) ANGLE OF ARRIVAL/DEPARTURE
Another magnitude that can be estimated between the ref-
erence points and the target is the Angle of Arrival (AoA),
which measures the angle at which the signal from the
reference points reaches the target, or Angle of Departure
(AoD), which measures the angle at which the reference
point transmits a signal. These estimations can be done with
Multiple Input Multiple Output (MIMO) systems that can
either estimate the AoA [137] or that are capable of doing
beamforming. Location can be estimated with three AoA or
AoD measurements, as shown in Figure 3c. As in the case
of trilateration, the error in the estimated angle creates an
uncertainty that is solved with LS, WLS, etc.

AoA has been used in 5G [138] achieving sub-meter
accuracy in simulations. However, AoA highly suffers from
multipath [139]. AoA can also be combined with ToA/TDoA
systems [140], combining the advantages of each one.

4) FINGERPRINTING
In indoor scenarios, range estimations can be especially dif-
ficult to do and may be prone to large errors. While ToF
greatly reduces these errors, it is not always possible to use
it, due to the high cost of deploying location-specific radio
devices with high density. This is the case, for instance,

with WiFi, which is commonly available in indoor scenarios
such as offices and residential areas. Moreover, WiFi in such
scenarios is densely deployed, with a large number of Access
Points (APs) visible to a device at a given point in space.

While the received power may not follow a specific propa-
gation model, if the environment does not change drastically,
it tends to remain static over time. For instance, if at a point
that is near a WiFi AP the measured power is abnormally low
due to an obstacle like a wall, it will not change over time
if the obstacle remains static. Thus, each point in space will
have a collection of tuples of reference point identifiers (e.g.,
WiFi Service Set Identifiers) and received powers that do not
change over time. These tuples conform a unique signature
or fingerprint that identifies each point in space. This is the
base of fingerprinting (Figure 3d).

Fingerprinting has therefore two steps: a training step,
where a map of signatures is collected (normally dividing the
map in a fixed size grid), and an exploitation step, where the
measured powers are compared with the signatures to obtain
the most similar. The highest possible accuracy depends
on the size of the grid defined during training. There is a
tradeoff between accuracy and complexity, since a fine grid
also implies a much longer training step. Fingerprinting can
achieve a high accuracy when the density of reference points
is high.

Fingerprinting is traditionally associated with WiFi [141],
thanks to the high availability of signals in the average res-
idential or office indoor environments. Fingerprinting has
been used in mobile networks such as in LTE [142] or
5G [143]. In 6G, the higher densification of base stations will
increase the resolution of fingerprinting based location.

While fingerprinting can achieve a high accuracy with low
infrastructure investment, it has some major drawbacks. The
main one is the need for a complex training, which severely
limits the applicability in certain scenarios where prior explo-
ration is not possible or where a large area must be covered.
Another important drawback is that on longer timescales the
fingerprints may vary (e.g., due to WiFi APs or objects that
produce reflections or shadowing being relocated, changes in
air humidity, etc.), requiring frequent retrainings of the map.

5) POSE ESTIMATION
Up to this point, techniques that return the location in space
have been described; location being a synonym for the vector
of coordinates in a specific reference system. This kind of
location considers that the target is a single point. Another
important magnitude that is often part of the location problem
is the pose, which acknowledges that the target is not a single
point, but a collection of geometrical shapes that are oriented
in specific ways.

There are two approaches to pose estimation that can be
combined in different ways. The first one is the estimation of
the orientation of an object within the reference system, that is
also known as 6D pose estimation [144]. In this case, the three
location dimensions are complemented by three orientation
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FIGURE 4. 6D pose estimation adds roll, pitch and yaw to the usual
cartesian coordinates.

parameters (roll, pitch and yaw, shown in Figure 4). These
pose parameters consider a solid object, or define an outline
of an object that can be further described by the other pose
estimation approach. Wireless technologies have been used
for 6D pose estimation; for instance, in [145], a mmWave
(24 GHz) radar is used to estimate the pose of mobile robots.

The pose of a non-rigid object can also be defined as the
position of its moving parts with respect to each other. The
typical example is the estimation of human body pose [146]
that allows gesture recognition [116], or even facial recog-
nition [147]. In this case, the problem consists of locating
several points of the object with respect to each other, and
it can be formulated as the estimation of 3D location of
each point with respect to a common reference system. The
major challenge in this case is that the accuracy must be very
high [148] in situations where the object may interfere with
location signals [149].

6) LOCATION FUNCTION PLACEMENT AND PRIVACY
All the location techniques described earlier are agnostic of
placement, that is, they can run either in the target or in a
network infrastructure that interconnects the reference points
(e.g., the 6G network). The placement of the location function
will define a set of mechanisms that must be implemented to
allow location estimation.

If the location function runs in the target, mechanisms
should be in place to inform the target of the location and
identification of the reference points. This can be done,
for instance, with a predefined map, or with SLAM [150]
techniques. In mobile networks, the coordinates of the base
station can be transmitted through broadcasting channels,
such as the System Information Block; but this has not been
done in prior generations. Once the location of the reference
points is known, the target needs to know the distances if
trilateration is being used. The RTT algorithms used in UWB

and WiFi-FTM both allow the device to estimate its own
distance to the reference points. For AoA, the terminal must
use some type of MIMO technique that allows it to calculate
angles. The networkmay also transmit AoA, AoD, and TDoA
measurements to the terminals [151], [152]. In the case of
fingerprinting, the device must receive a digital copy of the
computed (and updated) map. With these elements, the ter-
minal can estimate its own location, without the need for the
network of computing it. This has the drawback of requiring
a high computing capacity for this (which may be a problem
in IoT devices) and consuming energy at a higher rate. If the
network needs the location, a protocol must be established
such that the device sends its coordinates to the network. Such
a protocol exists, for instance, in LTE, in the LTE Positioning
Protocol (LPP [5]).

Location can also be calculated in the network. In this case,
a central location service must be defined within the network
functions. Such entity would receive range or AoD/AoA
estimations to compute the location, either from the reference
points or from the targets [151], [152]. If computed in the
network, TDoA is calculated at different reference points,
and is limited by the synchronization of their clocks [153].
For fingerprinting, a protocol should be established between
the target and the location service over which the former can
send readings. This relieves the target of the required compu-
tational and energetic expenses. If the target needs to know
its own position, a client-server protocol must be established
with the location service. This is the reasoning behind pro-
posals such as the LOCUS platform [31] for 5G. The recent
technical specification group of 3GPP has acknowledged
the problem of cellular-based positioning and hybrid com-
bination with non-3GPP technologies [10] in a centralized
location service. These new specifications contemplate the
possibility of the terminal transmitting measurements such
as the ToF, AoA, and the Reference Signal Received Power
(RSRP) to the location service.

Since in 6G trustworthiness will be one of the main KVIs,
it is important to point out the implications for privacy of
the decision on placement. A decentralized scheme where the
position is calculated by the target terminal (that is properly
secured) will be private by design if and only if the network
does not participate in the estimation of the ranges. In other
words, RTT protocols should not be used, since in that case,
the network can also obtain the location of the user and a
malicious third party can also intercept such signals. Even in
that case, the network will always have a gross location esti-
mation by the technique of the closest reference point (i.e., the
serving cell). In the case of a centralized location, privacy is
not guaranteed by design [90], and specific countermeasures
must be put in place. For instance, the messages interchanged
with the location service must be encrypted and anonymized,
for instance, with temporary identifiers. In this case, it is
up to the operator to follow the personal data management
regulations, that, in the case of the GDPR [86] for instance,
force them to delete data on request, or protect them from
possible leaks.
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B. 6G LOCATION ENABLERS
While there is yet no written consensus of what 6G will
exactly be, research is ramping up, white papers [2] are
suggesting the core components of 6G and research projects
with international consortiums have started [9]. Some of these
components may be included in earlier, Beyond 5G (B5G)
releases, while some may even not make it into the initial
release of 6G. As location is an increasingly hot topic in
mobile networks and services, it will be an important objec-
tive for B5G/6G technologies. In this section, a review of the
main technologies that are expected to be part of 6G will be
done, based on the visions of papers such as [33], [36], and
[107], which explore the relation between 6G and location.
For each one, the main aspects that need to be tested in a
testbed are explored.

1) HIGHER BANDS AND BANDWIDTHS
The migration to higher bandwidths has been a constant in
subsequent mobile network generations, starting from the 30-
200 kHz of GSM/GPRS channels [154] to up to 800 MHz in
Frequency Range 2 (FR2) in 5G [155]. In 6G, channel band-
widths will further increase up to 2-10 GHz per channel in
the THz band [34]. To achieve this, higher carrier frequencies
shall be used. While in 5G one of the main novelties was
the introduction of FR2 (also known as mmWave), in 6G,
frequencies above 100 GHz (also known as µmWave) [2] or
even in the THz band [16] are envisioned.

This brings two main advantages with regards to location;
firstly, higher bandwidths have much lower beam widths [2],
which coupled with beamforming, can lead to very accurate
angle estimations; and secondly, large bandwidths allow very
short signals, which can be used for better discarding multi-
path [156] components in time (similar to UWB [133], [157],
[158]). On the other hand, atmospheric absorption is much
higher at such high frequencies, leading to small ranges and
the need of Line-of-Sight propagation.

These new features of 6G are a natural evolution of the
physical layer of 5G; and as such, these benefits on location
were already observed in 5G with respect to prior gener-
ations. In other words, mmWave also offered an increased
directionality [159] and allowed ToFmeasurements, although
not with the accuracy expected from µmWave. To evaluate
the exact benefits of µmWave in location, several different
aspects must be measured. Firstly, the achievable direction-
ality, which will provide a specific angular accuracy must
be measured. Secondly, the ToF resolution must be assessed,
which will depend on the shortest achievable pulse and the
atmospheric effects, which are much more relevant at higher
frequencies. The required 6G RTT protocols must also be
designed and tested.

2) VIRTUALIZATION AND OPEN RAN
The architecture of the mobile network has changed through-
out the different generations. While in 2G and 3G net-
work functions were tightly associated to specific inflexible

FIGURE 5. Open RAN architecture, where all functions are virtual and
SDRs perform the physical radio functions.

elements, in 4G there was a simplification in the architec-
ture [160]; and in 5G the introduction of SDN [161] and
Open RAN [22], [23] simplified the implementation of the
core network with COTS hardware and even cloud-based
virtual machines. In 6G, this trend towards virtual machines
continues. Network functions are implemented as microser-
vices that can be containerized with technologies such as
Docker [162], [163], [164], [165] or Kernel-based Virtual
Machines (KVM) [163], [166], deployed in the cloud and
orchestrated with scalable solutions such as Kubernetes [167]
or OpenStack [168]. This approach will define a network
infrastructure that is essentially a set of microservices that
need a certain organization. Open RAN [169] defines a stan-
dardized architecture (Figure 5) that allows interoperability
between components developed by different vendors. The
main component elements are:

• Distributed Unit (DU): contains the lower layers of a
traditional base station (Physical layer, Medium Access
Control, and Radio Link Control).

• Control Unit (CU): contains the higher layers of a base
station. A single CU can have numerous DUs distributed
over a wide area.

• Near Real-Time Radio Intelligent Controller (RT-RIC):
will contain the network functions that are time sensi-
tive, such as mobility management, security, etc.

• Service Management and Orchestration Framework:
containing the network management functions (in the
Non-RT-RIC), configuration, policies, etc.

An important aspect of this architecture is its openness, which
adds flexibility to the composition of the network, allowing
the integration of new and more efficient implementations of
network functions, which can be developed and distributed by
small and specialized vendors. These software components
are called xApps, and will give place to a market of competing
solutions for low level functions in the 6G network. This will
also greatly simplify the inclusion of new network functions
and reduce the time-to-market of novel schemes developed in
the research community.

Open RAN greatly simplifies the integration of location
in the network operation. Access to information of the CU
can help obtain physical layer measurements (such as Timing
Advance, ToA, or AoA) taken at the DU. Furthermore, access
to information from several DUs can enable trilateration
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within a single CU. This can be done either passively (by
having an xApp that collects data and derives distances to
DU antennas) or actively (by having the DUs communicating
with the terminal in order to estimate the distance with pro-
tocols such as RTT). Thanks to the tight integration offered
by the Near-RT-RIC, this will produce location latencies that
are very low, and will also allow for high frequency location
updates.

Many questions remain open, such as whether a location
xApp will have in practice a negative impact over the per-
formance of a CU, which is translated into lower quality of
service. To measure this, the memory and processing time of
different location algorithms and protocols should be mea-
sured within an Open RAN architecture.

3) DENSIFICATION AND CELL-FREE ARCHITECTURE
Another aspect that has constantly increased with each gen-
eration of mobile networks is the densification of base sta-
tions. This is a direct consequence of migration to higher
frequencies and bandwidths. As higher frequencies are used,
path loss also increases, driving to a need of either a higher
transmission power or a lower cell radius. Lower cell radii
also imply a lower number of users per cell, which allows
for higher bandwidth and more resources per user. Regarding
cell radius, there are macrocells (with coverages up to several
km), small cells (with up to 100m) and femtocells (which
cover the area of a home or small office). For 6G, the concept
of cells is expected to be changed [11], [17], [170]. DUs are
much simpler (and therefore, cheaper) and flexible than base
stations, and can be added and removed with much less effort,
allowing for a scalable network. Additionally, DUs may even
be mounted on mobile platforms, to provide temporary con-
nectivity for IoT [171] or disaster scenarios [172] using, for
instance, Unmanned Aerial Vehicles (UAV).

Regarding location, DUs can act as reference points, and as
they will be packed more densely, it is expected that the ter-
minals will have more location information available. Also,
the smaller size of the coverage area of one DUwill provide a
finer location by proximity. In addition, UAV-mounted DUs
may improve location by increasing the density temporarily
when needed [173] (e.g., in emergencies or special events).

To characterize the advantages of the cell-free architecture
of 6G, a measurement of the time required to coordinate
several DUs must be obtained, as well as an exploration of
the potential pitfalls (such as a target only being visible to less
than 3 DUs) and solutions that can be proposed. Regarding
densification, the tradeoff between a lower intercell distance
and higher path loss must be evaluated. The higher DU den-
sity also may favor the usage of fingerprinting, so measure-
ments that also characterize this aspect (e.g., map of visible
DUs over an area) could also be of great value.

4) AI AND ML AS ENABLERS OF LOCATION
One of the most cited novelties of 6G are the increased
integration with AI and ML [17], [174]. There are three roles

that AI/ML will be used for in 6G: running network func-
tions, network management, and to be offered as a service
for user applications (MLaaS) [18], [19], [20]. To support
these roles, some works suggest the use of a specific AI/ML
component within the network, such that all the computing
resources (hardware accelerators, storage, software libraries,
etc.) are centralized in a single point. This will allow to
better dimension and capitalize the dedicated resources. Such
a component would centralize all the datasets and models
used in the above mentioned functions. Nevertheless, this
can be problematic for some cases. For instance, to protect
privacy, some datasets may not be acquired and stored for
long terms, so schemes such as federated learning [175],
[176] have also been proposed for 6G services and functions.
In federated learning, several nodes perform ML on their
own datasets, and share the resulting model, which theoreti-
cally does not have sensitive information. The applications of
AI/ML for the operation of the network are further explained
in Section IV-C. Cloud-based AI/ML services constitute a
novel and active market [19]. Mobile network operators have
an edge over other providers for offering such services.
Firstly, they can offer services that are much closer to the end
users, located within the CU, with much lower latency for
data transmission. Secondly, they can reuse hardware (such
as hardware AI/ML accelerators) and software (such as spe-
cific algorithms or pre-trained models) components that are
already being used for network functions and orchestration.

AI/ML as a service offered by the 6G network can be
used as an enabler of location. Location with soft informa-
tion [177] is a clear example of this. Some AI/ML tech-
niques can help improve location accuracy; for instance,
Kalman Filters [178] are commonly used to improve location
through fusion with Inertial Motion Unit (IMU) data [179],
and LOS/NLOS conditions can be estimated with ML [180]
to improve ranging information. Source weighting based
on accuracy has also shown improvements in location
accuracy [105].

In the near future, there will be many aspects of AI/ML
to evaluate towards 6G in real testbeds. Aspects such as
dataset sizes, computing performance (in terms of memory
and processor time) and learning and estimation times will
all determine the location acquisition latency, frequency, and
accuracy when AI/ML is an enabler of location.

5) EDGE COMPUTING
In 5G, one of the key technologies for achieving low latencies
was Edge Computing [181], where the end-to-end services
were ‘‘moved’’ to the network edge. This was possible thanks
to cloud computing technologies [182], where a service can
be disaggregated into several servers which share information
over a backhaul connection. In 6G, this trend continues,
with more sophisticated Edge Computing schemes such as
federated learning [175]; and the addition of xApps allows a
cross-layer integration between end-to-end services and the
CU/DU.
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While location already benefits from Edge Computing in
5G [183], [184], the integration with CU/DU can further
enhance location accuracy, for instance, by connecting it
with external data services that allow context awareness (e.g.,
by integrating geographical Application Programming Inter-
faces -APIs- in the estimation of distances with physical mag-
nitudes). This can be done without significantly increasing
location acquisition latency.

To explore the integration of Edge Computing into
6G and location, several research questions remain open.
For instance, instantiating Edge services implies some
delay [185], so the impact of this delay should be further
investigated and solutions developed to overcome this prob-
lem. One potential solution would be the predictive instanti-
ation based on context awareness [186], [187]. Furthermore,
the procurement of computing resources in the Edge (in terms
of memory and computing power) is also an open research
question, which has some precedents in 5G, for instance for
task offloading from the terminals [188], [189]. In 6G, other
uses, such as federated learning [190] will also require a
careful resource planning in the Edge.

6) COEXISTENCE WITH OTHER NETWORKS
As mobile network generations have progressed, backwards
compatibility has not been maintained. This has driven to
devices and networks where radio interfaces for several
generations, ranging from 2G to 5G are present simulta-
neously. Given the inertia of older generations, it is very
likely that in 6G, several 3GPP technologies coexist in the
same network [30]. Moreover, other radio technologies are
also present in the same spaces than mobile networks, such
as WiFi, LoraWAN [191], Bluetooth, etc. Coexistence with
older generations and other radio technologies has been a
widely studied issue in prior generations, leading to the devel-
opment of schemes such as Listen Before Talk (LBT) in 5G
non-licensed spectrum bands [192]. While coexistence with
other technologies is an important challenge, synergies have
also been exploited for improving the quality of service. Inter-
technology handovers [193] can be used to handoff traffic to
Radio Access Networks (RANs) of different 3GPP Releases,
for instance, when an imbalance in traffic is detected or
when a user exits the coverage area of the newer generation.
Inter-technology synergy has also been proposed with non-
3GPP technologies, for instance, with optical networks [194],
WiFi [195], capillary networks [196] or LoRaWAN [191].

Location can greatly benefit from the coexistence of sev-
eral RAN technologies. Technologies such as UWB [133]
and WiFi-FTM [197] are currently competing in the market
of indoor location. Both of these technologies use a flavor
of the RTT protocol to estimate the distance to the reference
points. UWB has been a de-facto standard for indoor location
for a long time, and is now starting to acquire a significant
market share in consumer devices [198]. WiFi-FTM [105],
[199] is more recent and is part of IEEE 802.11mc, so it
has a great potential of adoption by consumer devices,

especially because it can provide location without the need
of connecting to an access point [200]. Both of these tech-
nologies offer local coverage, and can complement mobile
network based location indoors, with techniques such as
range fusion [47], [105]. Other location technologies such
as WiFi fingerprinting [141], GNSS [140], [201] (which is
already integrated with LTE through LPP [5] and in 5G
through New Radio Positioning Protocol A -NRPPa [202]),
GNSS with Real-Time Kinematics (RTK) [203], Bluetooth
proximity [126], [127] or SigFox [204] can also be used to
improve future 6G location. Thanks to mechanisms such as
Kalman Filters, readings from sensors in devices (such as
IMUs) or even from sensing functions of 6G (e.g., passive
RADAR [36]) can also be used to improve location while
tracking a specific user.

6G location can be complemented with the aforemen-
tioned technologies, either to improve accuracy (for instance,
by using fusion with UWB), latency, or update frequency
(e.g., with Kalman Filters). Another important aspect that
can be improved is availability of location. As described in
Section III-B, at least 4 ranges are required for 3D location.
But it is possible that at some points in space (especially
in indoor spaces), there are less than 4 visible CUs. In that
case, complementing with other technologies opportunisti-
cally [105] can improve the chances of acquiring location.
The exact improvements that can be obtained will depend on
environmental aspects such as topography of the surround-
ings, available networks, density of CUs and reference points
of other technologies, etc.; and will come at a cost that also
has to be measured in a testbed, mainly in terms of excess of
power consumption (in the network due to the deployment of
other RANs and in the terminals due to the activity of more
network interfaces) and computational resources.

7) SMART METASURFACES
In traditional mobile communications, reflections are usu-
ally considered random and uncontrollable. Reflections are
sometimes considered a negative effect that causes scatter-
ing and needs to be mitigated. On the other hand, reflec-
tions are also used for NLOS communications. With smart
metasurfaces [28], [205], the reflections can be strategically
modulated to improve the propagation conditions. Smart
metasurfaces are made up of nanostructures and metama-
terials that can shape the electromagnetic properties of the
surface (such as its reflectivity, selectivity to frequencies and
polarization, etc.).

Regarding location, smart metasurfaces can improve loca-
tion in interiors, where NLOS conditions are dominant, for
instance, exploiting near-field effects [36].

Smart metasurfaces are a cutting edge technology, where
much research and development must still be done and major
challenges overcome. For instance, a major question when
using smart metasurfaces is where to install them [206] in
order to obtain the best results. The physical characteristics of
the materials are also an open research question [207], as well
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as the propagation models with materials with different sets
of characteristics [208].

8) MASSIVE MIMO
In Massive MIMO (mMIMO), devices have many antennas
(up to millions of elements [16]), to allow for different kinds
of connectivity improvement. mMIMO has been used in 5G
for beamforming [209] allowing very narrow and quickly
reconfigurable beams, spatial multiplexing to increase the
capacity of individual users, increased diversity gain [210] to
achieve a higher reliability and to estimate the AoA in com-
munications [138]. In 6G, with THz frequencies, mMIMO
antennas can be very small [211], using advanced fabrication
processes with metamaterials.

mMIMO offers some interesting elements for location sys-
tems. AoA estimation is an obvious location enabler, as pre-
viously discussed in Section III-C. In 6G, thanks to a higher
number of antennas, these estimations may be much more
accurate. Furthermore, the use of THz arrays will allow the
use of personal radars [2], which can create radio images
from the surrounding environments, for applications such as
SLAM.

To further investigate these technologies, testbed measure-
ments should include mMIMO antennas and transceivers.
Aspects such as spatial and angular resolutions need to be
assessed in order to establish the location accuracy that can be
achieved. Moreover, some other practical aspects still need to
be studied, such as the power consumption, or the reliability
of personal radars in different scenarios (for instance, whether
the user of the device needs to proactively interact with the
device to obtain a radio map of the environment).

9) D2D
In mobile networks, terminals usually connect to a single
serving base station. As new releases have arrived, this orig-
inal scheme has been modified adding alternative configura-
tions such as multiconnectivity [212] and Device To Device
(D2D [213]) to the 3GPP standards. D2D allows terminals
to directly communicate among each other. D2D communi-
cations can help save energy [214] when Peer-to-Peer (P2P)
services are running within a small geographical area. In this
case, terminals that are within the local area can use a much
lower transmission power to reach nearby terminals, instead
of a distant base station. D2D can also be used for extending
the coverage of the mobile network [215], using terminals
as relays of the base station to serve other nearby terminals
that are out of coverage due to obstacles. In 6G [216], all the
technical improvements, such as AI/ML, Edge Computing,
novel architecture, etc. will enhance D2D communications.

D2D can be used for cooperative location [156], where
terminals use the signals from other terminals (either pas-
sively or actively) to estimate distances for trilateration or
fingerprinting. This is especially useful in situations where
some terminals are not within the coverage area of a fixed
reference point.

D2D helps in situations where coverage is problematic,
both for communications and location. However, these situa-
tions tend to occur when the propagation conditions are harsh,
for instance, in underground or industrial settings. In these
situations, while D2D would potentially improve the chances
of having enough distance measurements for location, these
distances will likely be inaccurate, since they also depend on
the quality of the channel. To assess the usefulness of D2D for
location in 6G, a study of the accuracy in real situations must
be done, as well as the achievable improvement on reliability
(in other words, the improvement of the chances of measuring
enough reference points).

C. 6G LOCATION-DEPENDENT FUNCTIONALITY
While 6G provides many enablers for new and improved
location functions, as shown in the previous section, it is
also the most location-dependent mobile generation so far.
Several of potential B5G and 6G technologies will heavily
rely on location information. The design and testing process
of these technologies will require in the near future a testbed
with location capabilities that mimic those expected for 6G.
These location-dependent functionalities will be described in
this section, along with the general requirements they impose
on the location service.

1) RAN FUNCTIONS
Mobile networks operation relies on a complex set of indi-
vidual functions in the RAN. For instance, handovers in their
different flavors (soft, softer, and hard) and cell reselection
are the basis of mobility from the very early 3GPP releases,
complemented with more advanced functions such as beam
selection and secondary cell selection for multiconnectivity.
Other RAN functions are not directly related with mobility,
but with traffic management, for instance, traffic steering or
admission control. In recent years, these functions have been
complemented with AI/ML techniques to make them proac-
tive. For instance, in [125], schemes for adjusting network
slice resources in different scenarios are proposed, based
on predictors of traffic composition. In 6G, as most of the
functions of the RAN tend to be virtualized, management
can be much more flexible, allowing not only to adjust radio
resources, but also computational resources [217]. In fact,
Open RAN will greatly augment the possibilities of manage-
ment in the releases leading to 6G [218].

Location will play a major role in network functions in 6G.
For instance, resources can be dynamically assigned to DUs
and specific beams in function of the projected aggregated
location of the users in the network. This will allow to do a
more efficient usage of resources.

For these functions, location will need to meet some spec-
ifications that depend on the specific function and the service
that is being provided. For instance, in multiconnectivity for
URLLC, the selection of new secondary base stations or the
change of beams must be done in a short period, so the
terminal never loses network connectivity. Location latency
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will then need to be very low (in the order of fewms) to ensure
a correct assignment of resources. Regarding accuracy, it will
depend on the size of the radio features (coverage area, beam
width, etc.) that a specific function covers.

2) NETWORK MANAGEMENT
Networkmanagement comprises the configuration, optimiza-
tion, and troubleshooting of RANand core network functions.
As mobile networks have become more complex, automation
of network management has become an increasing neces-
sity. In the last years, many different solutions, ranging
from very specific management problems [125], [206], [219]
to whole Self-Organized Network (SON) architectures
[220], [221], [222] based on AI/ML and Big Data analytics,
have been proposed. Such proposals respond to the increase
in complexity of network management due to, among oth-
ers, the coexistence of different RANs (2/3/4/5G, WiFi,
LPWANs). In 6G, AI/ML will be an integral part of the
core network, and it is expected that management automation
relies heavily on it [223], enabling intent-based management,
which translates business requirements into specific network
parameter configurations. Open RAN will increase the com-
plexity of management, but will also increase the range of
possible operations that can be done without human interven-
tion (such as adding or subtracting computing infrastructure).
Network optimization is normally done offline, that is, it is a
long term task that continuously monitors the network state
and implements gradually a fine tuning of network functions.
While it is not temporally sensitive, automatic optimization
cannot take too long to adapt the resources to changes of
the environment or traffic. For instance, for human-centric
services, the permissible timeframes have been reduced from
several days in early network generations to several minutes
in 5G. Regarding troubleshooting, automation must fulfill
four tasks [221]: detection of the problem and definition
of which network elements are affected, compensation (i.e.,
redirection of redundant equipment in the network to serve
the affected users), diagnosis or root cause analysis, and
resolution. The time frame of troubleshooting depends on the
type of failure, ranging from low priority ones (such as cells
having non-optimal configuration parameters) which can be
observed for several days before being resolved, to critical
ones (such as coverage holes in areas with URLLC termi-
nals), which must be corrected proactively, before users are
affected.

Location will be a key resource for many management
functions. Both radio resources (such as bandwidth or radi-
ated power) and computing resources (memory, compute
time, and priority of virtual functions) can be proactively
redistributed among different DUs in function of where the
users are concentrated or where they are moving. Moreover,
configuration can be done taking into account specific users
with critical requirements, helping to optimize the network
for them. Location can also be an invaluable resource for
troubleshooting; for instance to locate coverage holes or inef-
ficiencies in beam parameters.

The requirements imposed over the location service will
vary with the specific management function. For instance, for
a CU to proactively optimize the resources (radio and com-
puting) of several DUs, the aggregated location of users must
be calculated with a delay in the order of tens of seconds to
few minutes for end-user communications. Above this, users
may notice some effects derived from resource scarcity. Nev-
ertheless, if the DUs are serving trafficwith high performance
requirements, it is possible that the resource management
must be done in much shorter periods (tens of ms) to ensure
that the terminals will have resources when needed. In this
case, location must be calculated with a latency in the order of
few ms. In any case, this low latency would only be required
for critical terminals or for terminals that are moving very
fast.

3) COMPUTATIONAL RESOURCE PLACEMENT
With Open RAN, network elements are virtualized, con-
tainerized, and run over COTS computers with diverse plat-
form architectures, operating systems, resources, and place-
ments (i.e., the location of the physical computer running the
virtual image). A single instance of a specific function (e.g.,
a CU) can even run on a distributed cloud, having parts of
it run over different physical machines. This adds some new
dimensions to the mobile network management: computing
power (in terms of processing capacity), memory and stor-
age space, energy consumption, and placement. Placement is
especially relevant in time-sensitive applications where the
additional latency introduced by the backbone network in
higher layer functions (e.g., authentication) is not affordable.
In 6G, thanks to Open RAN and virtualization, placement has
a more profound influence than in prior generations, since not
only the end services can be moved to the edge (as in 5G), but
also RAN and core network functions [224], [225].

To successfully exploit the capability of changing the
placement of network functions in 6G, the key aspect to know
about the users is their location. Similarly to management,
only the location of users that have special needs must be
known. With this information, virtualized functions can be
moved near the users cutting the latency introduced by the
network. Furthermore, with trajectory analysis, a proactive
placement of the functions can be done.

In the case of placement of resources, the required location
is coarse, not needing an accuracy that is much higher than the
service area of a DU. Nevertheless, for more sophisticated
mechanisms, such as proactive placement based on trajec-
tory analysis, a higher accuracy may be required, down to
several meters. To test such mechanisms, a testbed should
have the capability of dynamically placing functions within a
representative area, and measuring KPIs such as reduction in
latency due to a correct placement or proportion of incorrect
placements in proactive placement.

4) CONTEXT AWARENESS
Mobile networks exist within a context [226] that directly
affects them in several ways. Some of the most obvious con-
textual factors are external interference, and traffic patterns
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due to events that occur within the coverage area of the
network, such as social events [227], disasters (which may
also damage the network infrastructure) or user mobility pat-
terns [177]. On a smaller scale, the radioelectric environment
may also change, for instance, within a small area the passage
of cars, or opening/closing doors maymodify the LOS/NLOS
conditions. The knowledge of these contextual factors will
allow to better plan networks, perform proactive management
and placement of functions.

Location of users with respect to network infrastructure is
a very important contextual factor. It may define not only
LOS/NLOS conditions of individual users, but also mobil-
ity patterns of the users as a whole [177]. This informa-
tion is important for context aware functionality, such as
context-aware network management or physical layer con-
figuration. For location aware functionality, the accuracy and
latency required for the location will highly depend on the
specific function. For instance, in high-level network man-
agement, aggregation of locations will somehow reduce the
impact of individual errors, so a low accuracy (of up to tens
of meters) is acceptable. LOS/NLOS detection, on the other
hand,may have amuch less permissive accuracy requirement,
especially in indoor scenarios, where conditions change in
sub-meter scales.

To test such functions in a testbed, magnitudes such as the
sensitivity to location errors and latency must be measured.
Another important aspect is the rate of users that are reporting
location. Since not all users may be located (due to device
capabilities or privacy options), it may happen that only a
sample of the users are located, so the representativeness
of such sample will determine the performance of location
aware network functions.

5) LOCATION AS ENABLER OF AI AND ML
As earlier described in Section IV-B, AI and ML can be used
as enablers for location. Conversely, location can be used as
an input for location-aware models in AI/ML. In prior mobile
network generations, AI/ML have been proposed for sev-
eral network functionalities and management mechanisms.
The concept of SON, which was proposed back when 3G
was rolling out, relies heavily on AI/ML for tasks such as
troubleshooting and parameter optimization. In 4G, SON
functions were also proposed [221], and some of them, such
as Automatic Neighbor Relation (ANR) were even part of the
3GPP standard [228]. As the research on 5G is still ongoing,
AI/ML solutions to common problems abound, especially
to manage complex functions such as Network Slicing [56],
[125].With 6G, the use of more sophisticated AI/ML systems
are expected. There are three roles that AI/MLwill take in 6G:

• AI/ML for running network functions: some common
functions, such as resource assignment [217], traffic
steering [229] or security [230] will be implemented
with AI/ML algorithms that make them predictive and
adaptable to the changes in the environment. These func-
tions will be part of the Near-RT-RIC and distributed as
xApps.

• AI/ML for network management: AI/ML algorithms
will also be used for network orchestration functions in
the Non-RT-RIC. Research is ongoing for orchestration
tasks such as network optimization [231], while oth-
ers, like troubleshooting, have not yet received much
attention.

• AI/ML as a service: as already explained in
Section IV-B.

For all of these functions, location can be used as an input
in AI/ML algorithms. Location information has been used for
tasks such as network orchestration [177] or virtual function
placement [186], [187].

When location is the enabler of other functions and ser-
vices, the problem to study is whether its performance meets
the requirements. Moreover, dataset security must also be
explored, evaluating risks such as model inversion [230] or
dataset poisoning [20].

D. KEY TAKEOUTS
In this section, the location topics related with 6G have been
reviewed.

First, a short review of location techniques was done,
showing the type of algorithms that run in the devices that are
tested in a location testbed. This will, in its turn, define which
elements must be present in the testbed and the workflow
that must be followed. For instance, a fingerprinting based
location device must include mechanisms for building the
map prior to further evaluation.

The 6G technologies that will be enablers for location have
also been reviewed, along with the open research questions.
A location testbed may support all or some of these technolo-
gies, depending on whether an integrated or partial evaluation
of these aspects is required.

Finally, location-aware functions in 6G have been
reviewed. In this case, location acts as an input to the func-
tions and must be provided by the testbed. It is up to the
specific experiment whether the source of location is part of
the test (i.e., the location computed solely by 6G techniques
or devices that are present in 6G devices) or just part of the
ground truth.

V. ARCHITECTURE FOR A 6G LOCATION TESTBED
In this section, an architecture for a testbed for 6G location
will be described, fully detailing each part and the considera-
tions for material procurement. The proposed architecture is
meant for implementing testbeds where an iterative approach
can be applied. The operators of the testbed will devise exper-
iments to test location devices, location algorithms, or loca-
tion based functionalities and services (which will be referred
to as Device Under Test or DUT hereafter), and program the
testbed to perform them and collect data. This data will then
be automatically analyzed with previously programmed data
analytics mechanisms within the infrastructure of the testbed.
The output will inform the operators about the behavior of
the DUT and its compliance of certain requirements, and
adjustments can be done on it for the next iteration. Once a
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certain level of maturity of the DUT is reached, it can leave
the testbed and further advance in the R&D workflow.

Figure 6 shows the overall proposed architecture. This
architecture has four scopes: the physical scope which com-
poses the physical setting of the testbed; the 6G network
scope made up of an Open RAN based infrastructure; the
service scope containing the applications; and the Research
and Development (R&D) scope which adds the testbed func-
tionality to the standard equipment and services of the other
scopes. In the following subsections, each of these scopes will
be studied in further detail, listing some COTS components
that may be procured for implementing this architecture.

A. PHYSICAL SCOPE
The physical scope comprehends all the elements that com-
pose the physical setting of the testbed. Compared with
testbeds for other purposes, the physical scope of a location
testbed is especially important and complex, since location is
a highly environment-dependent functionality. The physical
scope contains the physical space, the elements to calculate
the ground truth, and the hardware (6G and other technologies
such as UWB and WiFi-FTM).

1) PHYSICAL SPACE
The physical space or setting is the environment where the
testbed is deployed. It will greatly determine the challenges
for location as well as the location solutions that can be used.
There are several aspects that must be taken into account for
choosing a location:

• Indoors vs outdoors: in indoor scenarios [232], walls and
furniture will act as obstacles, making propagation more
difficult and creating more NLOS propagation situa-
tions. On the other hand, indoor scenarios are also more
prone to have more dense deployments, which helps
location by having more reference points. In outdoor
environments, LOS propagation is more common, and
deployments tend to be more sparse. In outdoor scenar-
ios, GNSS systems can also be used for complementing
6G location.

• Mobility of targets: targets that are moving fast or
change course will pose several challenges, such as
needing a high frequency and low latency in loca-
tion; and a high Doppler effect [233]. They will also
pose challenges to logistics, requiring the physical setup
to be especially planned for the mobile targets with
the appropriate clearance or elements such as rails or
robots [48], [49].

• Density of clutter: in indoor scenarios, the density of
obstacles such as furniture, metallic structures, walls,
or even people, will define the propagation character-
istics and hence the properties of location. In outdoor
spaces, the density of obstacles also plays an important
role, for instance in urban canyons or parking lots.

• Deployment density: the density of reference points
plays a major role in the accuracy of location. Higher
densities will normally produce a higher accuracy, at a

higher hardware cost. Network access points usually
act as location reference points, but to achieve a higher
density, location-specific equipment can also be used,
even with different technologies [105].

• Special scenarios: the testbed can emulate a generic
environment (e.g., generic outdoors or indoors), or spe-
cific settings, such as factories [50] for industrial com-
munications and location, cities (on full or reduced
scale) for vehicular location [234], etc. Specific
location-aware applications will be analyzed in the ser-
vice scope, but having a realistic physical setting will
help to better understand the interworking of the service
with the environment.

The physical setting is one of the main decisions to take
when deploying a testbed. Since the physical setting is the
base over which the rest of the elements will be mounted,
it is also important to choose it early in the process of design.
Apart from the type of environment, other practical decisions
must be taken, such as the total area that the setting will cover,
whether it is a public space or reserved only for experimen-
tation, and the layout of the space. The setting can even be
nomadic if the purpose of the testbed is to evaluate location
in different settings. In this case, a protocol must be put in
place to evaluate the terrain, acquire a map and deploy the
equipment each time that the setting is changed.

Finally, another aspect that must be taken into account
is the spectrum licensing. To radiate in certain frequencies,
a license (which can be shared with mobile network opera-
tors) and detailed frequency planning is required. Occasion-
ally this is not enough, and to avoid interference with the
public mobile network some limits must be respected, such
as transmission power, tilt, or distance from base stations of
the operator.

2) GROUND TRUTH
The ground truth refers to the actual value of a magni-
tude, free of estimation error. It is used to validate methods
for approximating the value of the magnitude, and is nor-
mally taken in measurement campaigns oriented to valida-
tion. In the case of location, ground truth is the actual location
of a target over the 2D or 3D map of the physical setting.
If time is also taken into account (i.e., in the case of moving
targets), the ground truth is a 3 or 4 dimensional vector,
with a timestamp being one of the components of the vector.
It is important to have an accurate ground truth, because the
whole purpose of the testbed is to compare the outcome of
location algorithms or location-aware mechanisms with the
information provided by the ground truth. In other words, the
accuracy of the ground truth will determine the validity of
the testbed.

The ground truth can be estimated through three possible
strategies:

• Markings on the floor: painting marks on predetermined
places will ensure that the target is in a known position.
The achievable accuracy is very high in this case, with
instruments such as laser distance scanners. Another
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FIGURE 6. Proposed architecture for the 6G location testbed. Blue arrows indicate the data flow (measurements towards the R&D scope and commands
from the IDCE element).

option is using a grid with fixed size cells, which will
help to place targets in known positions. The grid can
be used either as a guide for fine tuning the target
position (by measuring the distance to the closest grid
lines), or as a coarse approximation to the ground truth
(by using the position of the cell where the target is
located as an approximation for its position). Some
examples of testbeds using this approach are [43], [51].
Markings on the floor can provide a very reliable and
accurate (down to the mm) 2D ground truth, but it has
several problems. Firstly, this approach is not ideal for
3D positioning, since it requires supporting elements
(e.g. metallic stands) that may introduce biases in the
location methods studied in the testbed (e.g. due to
reflections). Secondly, they are not valid for moving
objects, since targets must be previously placed on the
markings. Thirdly, this approach is not automatable,

since it requires to manually place objects on the
markings.

• Sensors: location of the targets can also be acquired by
external sensors, such as cameras [235], motion sens-
ing devices, radars, or IMUs. These sensors must be
strategically placed on the physical setting in order to
obtain timely and accurate information. The accuracy
that can be achieved depends greatly on the specific
device used. In [235], for instance, an accuracy below
10cm is achieved indoors with video feeds. Some sen-
sors can also do 3D location without the need for sup-
ports. Sensors also have the advantages of being able to
easily measure moving targets and being fully automat-
able. This comes at a higher cost in equipment, which
may also increase the work in redeployments in nomadic
testbeds. Testbeds like the one described in [49] use this
approach combined with mobile robots.
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• Location technologies: if the testbed is not intended for
measuring multi-technology location, other technolo-
gies, such as UWB, WiFi-FTM, or GNSS can be used
for obtaining a ground truth. The accuracy achievable
with these technologies varies greatly on the specific
device, the radioelectric features of the physical setting,
and the density of deployment of reference points. UWB
andWiFi can achieve accuracy down to several cm [47],
while GNSS varies between several meters [201] down
to sub-cm with GPS-RTK [203]. The cost of such tech-
nologies is normally higher for more accurate and high-
quality equipment, and they also have installation costs
(in terms of planning, testing, and validating their setup).
All of these technologies support 3D location, moving
targets, and are highly automatable. For example, the
testbed described in [45] uses this approach.

The ground truth system must be deployed and calibrated
before the operation of the testbed. Calibration consists of
a validation of the location provided by the system. To do
this, several known positions must bemeasured on the ground
truth system, and the provided locationmustmatch the known
position. Once this is done, the information provided by the
ground truth system is considered to be correct. To maintain
this trust in the system, regular calibration might be needed.
For this, tools like laser distance scanners might be used.
The markings on the floor approach can also be used for
calibration, and a permanent grid can be set up to make
this task easier; especially in the case of fixed testbeds. For
nomadic testbeds, a calibration phase must be included in the
redeployment protocol.

Once set up and calibrated the ground truth system will
provide the 2, 3, or 4 dimensional vectors of the location of
the targets over the physical setting. An interface between
the ground truth system and the R&D scope must be set
up. For the markings on the floor approach, a user interface
that allows to manually introduce the measurements must be
developed (e.g., the mobile application described in [42]),
taking into account User Experience considerations that sim-
plify operation and prevent human error. In the case of sensors
and other location technologies, they will usually provide
interfaces for data acquisition, such as HTTP, MQTT, or USB
interfaces, so an adapter must be developed to connect it to the
testbed data acquisition system.

3) HARDWARE
With the setting and the ground truth in place, the next item to
consider for the design of a testbed is the location hardware.
This item refers to the hardware of the location system under
test, not the ground truth hardware. The required hardware
can be classified in the following items:

• Access points and radio elements: the infrastructure
of the physical layer of the network must be planned,
acquired, and deployed according to a prior design. This
will include mainly the Radio Unit (RU), made up of
SDR devices (such as LimeSDR [236] or USRP [237])
with diverse types of antennas (dipoles, directional

antennas, andmMIMO arrays). Depending on the objec-
tive of the testbed, the setup might reflect a well planned
network, with a good coverage over the physical setting,
or a deployment with coverage holes (e.g., for emulating
disaster scenarios or underserved areas).

• RIS: since in 6G RIS will likely play an important role,
they can also be part of the testbed. RISmay be deployed
on preselected surfaces of the physical setting, with the
possibility ofmoving them around if the purpose of a test
is to assess the placement of RIS over different surfaces.

• Terminals: the terminals will be the targets for location.
While 6G terminals are still years from being commer-
cially available, the testbed can be prepared for even-
tually admitting them when they are released. While
at the time of writing this paper 6G devices are still
far from reaching the market (with few experimental
devices starting development [238]), several decisions
may future-proof the testbed. One option is to not use
COTS devices, but experimental prototypes based on
SDR (such as LimeSDR [236] or USRP [237] devices)
and programmable platforms, such as PC/laptops, Rasp-
berryPi [239] or HiFive [240]. This will require a deep
knowledge of the end service by the testbed operators;
or outsourcing the production of such devices to exter-
nal organizations. Another option is to use 5G devices,
especially while a 6G standard is not available and
the testbed implements a 5G RAN/Core. Such devices
would become obsolete once a 6G RAN/Core is avail-
able, but in the mean time, they can be used to reliably
perform scaled-down experiments without the need of
fully developing experimental prototypes of the end ser-
vices. They will also provide a better grasp of secondary
effects that may not be modeled in experimental proto-
types. Such terminals can be static or mobile (carried by
vehicles, robots, or persons).

• Computing hardware: With Open RAN, most of the 6G
network is completely virtualized, so computing power
is a very important requirement. A major advantage of
network virtualization is that COTS computing equip-
ment can be used, greatly simplifying the process of
hardware acquisition. Therefore, the computing hard-
ware can be standard computers, based on Intel/AMD
or ARM [241] architectures. In the near future, the
RISC-V [242], [243] architecture is also expected to
gain popularity in open systems such as Open RAN.
The computing hardware can be either concentrated in
one powerful computer, or distributed on a network-
connected cloud. Also, hardware for backups (e.g.,
Network Attached Storage systems) must be acquired,
as well as systems for ensuring continuous operations
(i.e., UPS or generators, depending on the size of the
installation).

• Backbone network: in the case that the computing
hardware is designed as a cloud, a backbone net-
work must also be deployed. To ensure low laten-
cies and high bandwidths, it may be necessary to use

VOLUME 11, 2023 10073



E. J. Khatib et al.: Designing a 6G Testbed for Location: Use Cases, Challenges, Enablers and Requirements

optic fiber connections instead of traditional ethernet
cables.

• Complementary location technologies: in the case that
the testbed includes multi-technology location, other
technologies such as UWB and WiFi-FTM may be
planned, deployed, and used over the physical setting,
and connected to the 6G core network to provide mea-
surements. This design must also reflect the intended
objective of the testbed (e.g., using sparse deployments
of UWB/WiFi to complement 6G location). This setup
will most likely differ from the setup of these tech-
nologies as ground truth. In any case, they cannot play
simultaneously a dual role as part of the location system
under test and as ground truth.

Once all these elements have been planned according to
a specific testbed design, they can be acquired and installed
in the physical setting. Installation may be permanent or
removable, and in the case of nomadic setups, impact over
the environment (e.g., holes in walls for mounts) must be
minimized.

Another important aspect to take into account are replace-
ments. Ideally, replacementsmust be available before needed,
so acquisitions should be done with a margin for extra
replacement parts. Replacements for commercial equipment
(such as specific models of smartphones) can be especially
hard to find in the market after some time.

B. 6G NETWORK SCOPE
This completely software scope contains the 6G RAN and
Core network. To run the network, either cloud or local com-
puting infrastructure is needed (which are part of the physical
scope). To successfully run a testbed, such a network imple-
mentation must be open source, or at least, fully configurable
with the possibility of adding new custom functions. The
6G network will also contain all the required logic for Edge
Computing and MLaaS. The 6G network will run two types
of virtual machines: the Open RAN virtual machine, and
the core network virtual machine; each made up of several
software entities.

1) OPEN RAN VIRTUAL MACHINE
In traditional networks, the RAN is a separate entity made up
of a network of physical nodes containing different network
functions. In the Open RAN approach, that started with 5G
and will be fully adopted in 6G, all the functions are virtual-
ized and run as microservices in containers such as Docker or
KVM. As described in Section IV-B, to have a functional 6G
network, the following virtual elements would be needed:

• Base stations: what in prior generations is a single entity,
in Open RAN can be made up of three disaggregated
elements: the RU (which stands between the 6G net-
work and the physical scopes), the DU (which controls
several RUs) and the CU (which controls several DUs
and may run edge services). The RUs were described
in Section V-A. The DU and CU will be software
components running as microservices in the physical

computer that is the closest to the RUs, and can in some
cases be integrated as a single element.

• Near-RT-RIC: should be deployed in a physical machine
where it has ample resources and priority, as well as a
good connectivity with the CUs of the network. This
virtual function should also support the easy addition of
microservices through a remote connection such as SSH
or a remote package manager, to easily add and remove
xApps.

• Non-RT-RIC: the network management functions run-
ning in the RAN (e.g. decentralized optimization algo-
rithms) will be done in this element, which will run
either in the computing infrastructure of the testbed or
even in a remote cloud.

Implementations for 6GOpen RAN do not exist yet, so two
options can be weighted: either using a 5G Open RAN as
a placeholder for 6G, or using an experimental 6G Open
RAN platform. The first option can be used for developing
services and schemes with performances that are scaled down
to the capabilities of 5G, with the promise of providing better
results once 6G functions are available to them. This option
must be done with a path for upgrading the RAN to 6G
once a viable implementation exists. Experimental 6G Open
RAN platforms will be developed on the basis of 5G Open
RAN [22], so most likely, they will be able to work out of the
box, albeit with more effort from the operator of the testbed
and subject to possible software instability.

In any of the two options, the adoption of open source
solutions, such as theO-RANAlliance [169] implementation,
will have several advantages: access to source code allow-
ing to better understand the inner workings of the system
and to modify any functionality, easy development of new
functionality that depends on the CU and DU microservices,
andmost importantly, future-proofing the testbed by ensuring
that it will support a 6G (and beyond) Open RAN once it is
available.

2) CORE NETWORK VIRTUAL MACHINE
The core network of a mobile network traditionally contains
the higher layer functionality of the control plane, as well
as the Packet Gateway (PGW or the equivalent function)
which connects the user plane to the Internet. 2G and 3G
also had gateways to the Public Switched Telephone Network
(PTSN), but in 4G an onwards this element was removed in
favor of Voice over IP (VoIP). In 5G the User Plane Function
(UPF [244]) acts as an evolved PGW, with additional QoS
functions, packet inspection services, and multi-RAN sup-
port. In the control plane, the 5G core network contains func-
tions such as the Access and Mobility Management Function
(AMF) and the Session Management Function (SMF). These
functions are already virtualized in 5G. In 6G, it is expected
that these functions are complemented with novel services
such as the MLaaS component and a specific component for
user location.

The AI/ML component [17] will offer ML to other core
network functions, RAN functions that are not delay-sensitive
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(e.g., those running on the Non-RT-RIC) and even end ser-
vices through a yet to be established MLaaS API. The
AI/ML functions will be a virtual machine running over a
physical machine with specialized ML accelerators (such
as CUDA-capable GPUs [245] or the Intel Movidius [246]
platform). Therefore, to have a powerful AI/ML component
in the testbed, the acquisition of such devices would be rec-
ommendable, and the development of a standardized interface
to the rest of the core network, RAN, and end services.

The user location component will be of utmost impor-
tance in the proposed testbed architecture. It will contain
the functions that gather information from the RAN, such as
measurements of RTT or RSRP in 6G, measurements from
other interconnected systems such as UWB or WiFi-FTM,
and measurements from the terminals (e.g., GNSS readings),
to estimate a user location. This component may offer the
real-time calculated location to the terminals, other network
functions or external services (if the user privacy settings
allow this), and also perform location-aware computations,
such as tracking and mapping. There are ongoing works for
implementing this component for 5G networks, such as the
LOCUS project [31]. In the 6G testbed, this component may
be populated with the functionality that is standardized in
the next 3GPP releases leading to 6G; but at the moment
of writing this paper, it will be an empty component which
development will be the very objective of the testbed. There-
fore, it will be the main component that is connected to the
R&D scope; where new schemes will be developed, deployed
in the location function, and validated.

Just as in the case of the 6G RAN, there is no standard
implementation for a 6G core network yet. Again, the testbed
designer can opt either to adopt an existing 5G Core network
(such as [247], [248] and [249]), or using an experimental 6G
core network, with the same implications as in the Open RAN
part. Also in this case, it is recommendable to use an open
source implementation that adopts new technologies leading
to 6G.

C. SERVICE SCOPE
The end services will use the 6G network for implementing
different location aware applications over the physical set-
ting. These services will be fully controlled by the testbed
operator, such that they can be programmed, monitored, and
assessed. It will run over hardware such as smartphones,
laptops, mobile robots, or drones, on the terminal side; and
cloud servers on the backend side. In the case of a location
testbed, location-related services will be evaluated. Such ser-
vices either depend on location (i.e., are location-aware) or
impact the network in different manners depending on their
location.

Location-aware services are those that need to know the
location of the users with requirements such as accuracy,
latency, or frequency. A comprehensive list of such applica-
tions is given in Section III. The testbed must measure two
aspects:

• Application performance: given a specific set of location
characteristics, the testbedwill measure the performance
of the applications by closely monitoring them with
sensors embedded within the DUTs or with external
sensors (such as cameras). These monitoring systems
will measure different SKPIs such as navigation errors in
robots or self-driving cars, or QoPE in XR applications.

• Location as a Service performance: once the require-
ments of specific services are known, the performance of
the location component will be monitored for different
services, finding whether it fulfills the requirements, the
factors that may affect the QoS, etc.

The selection of applications will determine the purpose
of the testbed. General purpose testbeds may add generic ser-
vices, such as location with potentially mobile users. Special
purpose testbeds may, on the other hand, acquire a set of
services that are specific to a special scenario. These choices
will be complemented with specific choices in the physical
layout, emulating the environment where these services will
run. Ideally, such applications must also have open specifica-
tions, such that developing components to connect them to the
R&D scope for monitoring and for programming is feasible.

Applications will also play a role on creating different
effects that may affect the location function. For instance,
functions that rely on the aggregated location of users (such
as location-aware network management algorithms) will ulti-
mately depend on certain services running within the cov-
erage area of the network. This scope will have to be able
to emulate different situations where the services are not
location dependent, but where their characteristics will affect
other location dependent functions. For this, full applications
or simply traffic emulators can be programmed and deployed
in the testbed; the only requirement being that they can be
controlled to perform experiments.

D. R&D SCOPE
This scope comprehends all the actual monitoring of the
other scopes and development work. It comprehends a data
management system that will receive ground truth measure-
ments, measurements from devices and from the network,
from external systems, and from end services. These mea-
surements will be stored in data repositories and processed in
an evaluation framework, offering the developer insights on
the DUT. The developer will then use the obtained insights
to modify the DUT with an Integrated Development and
Control Environment (IDCE). From the IDCE, new programs
or configurations can be deployed to the physical, network,
and application scopes; the full testbed can be controlled
and progress of the development process can be saved in
development repositories where the work may find a path to
market.

1) DATA MANAGEMENT SYSTEM
The data management system is one of the most complex
parts of the testbed. While the other parts of the system
may be implemented potentially with COTS equipment, the
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data management system must be developed customized for
the acquired materials. The data will come from 7 different
origins:

• The 6G RAN: magnitudes present in the network oper-
ation, such as raw measurements used for location (e.g.,
RTT, RSRP, etc.), KPIs of the different RAN compo-
nents (such as total RU Throughput, packet loss, etc.)
or computing load of the virtual machines, etc.

• The location component: as one of the most impor-
tant components of the location testbed, the location
component will be heavily monitored, measuring mag-
nitudes related to the estimated location, such as the
accuracy, the compliance of requirements, the resource
consumption, etc.

• The 6G core network virtual machine: other components
of the 6G core network may also be of interest for the
development of location-aware management, such as the
throughput at the UPF, or the resource consumption in
AI/ML services.

• Device measurements: raw measurements taken from
the device for location estimation (RTT, RSRP, etc. from
the 6G network or other RAN technologies), GNSS
measurements, device status, etc.

• Multi-tech measurements: range measurements from
complementary technologies such as UWB or WiFi-
FTM.

• Ground truth measurements: actual positions of the
location targets, taken with the devices described in
Section V-A. As earlier stated, for the R&D scope, these
measurements will be considered free of errors.

• Service measurements: as described in Section V-C,
numerous performance measurements must be taken
from the service scope. Such measurements will be
highly dependent on the specific service.

All of these data sources must be collected and centralized
in the data management system, where some normalization
must take place before the data can be stored and used. To do
this, the data management system is made up of several sub-
components (Figure 7):

• Data collection network: one or several networks will
be set up to connect the devices where the data is
collected for the testbed. Such networks will ideally
be isolated from the RANs of the technologies that
are being tested. Depending on the device, alternative
network interfaces will be used for this purpose. For
instance, for DWM1001 UWB devices, USB, and BLE
connections [250] can be used to transmit the UWB
measurements. In USRP SDR devices, Ethernet and/or
PCIE interfaces can be used; and in smartphones, USB-
OTG, or BLE can be used, freeing 5/6G, WiFi, and
UWB for the tests. This implies that the data collection
network will be on its own a multi-technology network,
requiring that the data management system has the cor-
responding interfaces.

• Data collection probes: specific components developed
for the device over which each of the data sources is

located that will collect the required data and send it to
the testbed through the data collection network. The data
that will be collected will come from sources that have
varied data collection interfaces, so custom components
using the tools provided by the manufacturers must be
developed for each source, with different challenges in
each one. For instance, collecting data from proprietary
devices in the service scope may be very difficult due
to lack of developer documentation or access to certain
functions. Another challenge is the maintenance of a
large code base with components of many different plat-
forms and programming languages (e.g., C-based probes
for USRP SDR [237] devices, Kotlin code for Android
smartphones, etc.).

• Probe drivers: the probes, that will be running in the
devices must be managed remotely by the testbed. The
driver for each probe will connect to the probe over
the data collection network and send start/stop com-
mands, reconfigurations, software updates, etc. Since
each probe will have a different behavior (i.e., different
protocols, command formats, etc. depending on the spe-
cific platform they are programmed for), these drivers
must provide a common interface towards the testbeds
with a common set of commands and parameters, to sim-
plify the orchestration of the testbed.

• Data format adapters: the probes will extract data in
formats that highly depend on the platform and the
specific magnitude that is being measured. For instance,
RTT measured in Google WiFi devices [251] will come
as a Kotlin or Java object, while RTT measured in
DWM1001 comes in plain text. The probes should not
do any conversion to minimize the impact on computing
resources and battery on the monitored devices, so they
will capture this raw data and send it to the testbed,
where the adapters will translate them to a common
format.

• Data storage: the data obtained will be stored in a
database that can later be accessed by the evaluation
framework. The database must fulfill two requirements:
a high capacity and a relatively high throughput. Since
the testbed is designed to assess the performance of
location, and not to control any system in a closed loop,
latency is not a major issue.

• API interface: once the data is stored, it must be
accessed from the evaluation framework. Here, an open
and well documented interface must be used. Most
databases already offer this, but in some cases the
interface may be cumbersome and security policies
within the organization running the testbed may limit
the network access only to HTTP/HTTPS requests.
In these cases, Representational State Transfer (REST)
interfaces may be a good option to add to the data
management system and act as the external query
interface. Technologies such as Django REST Frame-
work [252] may simplify the development of this
interface.
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FIGURE 7. Parts of the data management system. Data is acquired with APIs where available and with
custom components elsewhere.

2) EVALUATION FRAMEWORK
The evaluation framework will take the measurements col-
lected in the data repositories and extract the derived metrics
which assessment is the objective of the testbed. The evalu-
ation framework produces human-readable outputs that will
help developers iteratively work on new location schemes and
location-aware applications.

The evaluation framework will extract the magnitudes
(accuracy, latency, and frequency), and assess whether they
reach the minimal requirements of the applications (as
described in Sections III and IV-C). These metrics will be
extracted from the data collected from the data sources
described in Section V-D1.

The extraction of these metrics may imply a large amount
of computations, with relatively low complexities (mainly
distances between the ground truth and the estimated posi-
tion, differences of the performance indicators with the
requirements, etc.). The key point in this component is
flexibility (in other words, the ability of setting up new
calculations for different tests) and rich statistical analysis
functions. Platforms such as Python [253] and Python-based
data analytics tools (such as Jupyter [254] or Orange [255]),
R [256], SPSS [257] or Matlab [258] may all provide such
tools. It is up to the developer preference to choose among
these platforms, as well as the cost of licensing.

Another important task that this block will do is live rep-
resentation of metrics for live demos. For this, the aforemen-
tioned platforms offer tools for live graphics, and platforms
like Grafana [259] can be deployed too.

Finally, libraries such as FPDF [260] can be used in this
component for automated reports for product evaluation and
certification.

3) INTEGRATED DEVELOPMENT AND CONTROL
ENVIRONMENT
This element is the interface of the testbed users (developers
and researchers) with the rest of the system. It allows full
control of all the elements and enables the R&D workflow.

This workflow, as described earlier consists of two roles:
testbed control and location development.

The control work that must be done on the testbed consists
of four steps:

• Designing an experiment: the first phase will be to deter-
mine the objective of the experiment (i.e., what needs to
be measured) and the DUT. It may be the performance
of a location method, a location device, or a location-
aware service. Along with the objective and the DUT,
a hypothesis must be formulated, defining the expected
results; as well as the boundary conditions and the envi-
ronment setup.

• Configuring the environment: the next step is to
configure the environmental variables to the experi-
mental setting design specifications. This may involve
reconfiguring the elements of the physical space, chang-
ing network parameters and service configurations. The
evaluation framework must also be programmed to col-
lect and show the designed output magnitudes.

• Launching the experiment: the experiment will be run in
an automated or manual manner. This stage may involve
moving elements through the physical space to assess
for mobility in the DUT.

• Collecting results: the testbed will automatically col-
lect measurements, store them, and process them in the
evaluation framework. This stage consists of extracting
information from the results of the evaluation frame-
work, comparing them with the hypothesis and formu-
lating conclusions based on this information.

The results of the experiments may lead to additional
development on the DUT. To do this, the IDCE will offer
functionality to help in the development, such as text editors
with syntax highlighting and support for all the possible pro-
gramming languages that the DUT may use. The IDCE will
allow the users to easily push updates to the DUT, whether it
is an end service running in the cloud and/or terminals, a 6G
orchestration function running in the Non-RT-RIC, an xApp
running in the Near-RT-RIC, or a location algorithm running
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in the location component of the 6G core network. The IDCE
will also offer these facilities for development of computa-
tion programs in the Evaluation framework and for updating
software components throughout the testbed.

Some testbeds that use a similar approach are [49], [50],
[53], [232]. Another function that the IDCE must offer is
some degree of automation for live demonstrations, where it
may replay experiments with minimal operator intervention.

The IDCE will run in one or several computers. The main
terminal may be a laptop or desktop computer, with the
appropriate network connections. Secondary terminals may
be used for assistance during the execution of experiments,
for instant, tablets, or smartphones that allow control of cer-
tain components of the testbed (as done in [42]). For this role,
consumer-grade devices with average computing power can
be used, reducing material costs, since heavy computation is
not done on them.

Regarding the software of the IDCE, it must have several
interfaces:

• With the 6G network: it must be able to modify the
network settings to adjust the required experimental con-
ditions, and start/stop functions.

• With the end services: to configure them and send differ-
ent events, such as connectivity interruption, user inter-
action, etc. This interface is dual, with one side being on
the user terminal, and the other in the remote server.

• With the physical scope: to control the environment
before and during the experiment. Some of the interac-
tions must be done manually (e.g., moving partitions),
while others can be automated with elements like robots
as done in [48] and [49].

• With the development repositories: to publish develop-
ment work on the DUT.

For the implementation of this component, two approaches
can be used. The first one is to use discrete software com-
ponents, some of them provided by vendors (e.g., software
for the control of the 6G network, Integrated Development
Environments, such as Spyder [261] or Matlab [258]) and
others customized for the testbed (e.g., control logic for the
probes). While this option may result in a less integrated
environment, it may also be less costly. The other approach
is to develop a fully integrated environment, where all the
functions are integrated into a single interface. This option
may be more expensive, but give place to a much more
streamlined workflow.

4) DEVELOPMENT REPOSITORIES
The testbed will ultimately be used for developing new
location schemes or location-aware functions. During the
R&D workflow, it is expected that the maturity of the DUT
improves iteratively, resulting in a code that can be distributed
either within the entity that owns the testbed, or publicly.
In parallel, the development process may be done by a
team of developers, so a control version system would be
required to have a seamless workflow. For all these reasons,
a repository with version control would be a very important

component of the R&D scope. Platforms such as GIT [262]
can be used for implementing this element.

E. KEY TAKEOUTS
This section described an architecture for implementing a
testbed for 6G location. The architecture has four loosely
connected scopes, which enables updating each of them sep-
arately and therefore greatly simplifies extensibility as 6G
technologies progress.

The Physical scope concerns all aspects that are related
with the environment of the network and services, such as
the physical space, the measurement of ground truth, and the
hardware.

The 6G network scope contains a full 6G network, which
must follow the latest developments and standards. Thanks to
technologies such as Open RAN and SDR, this can be done
with ease and relative cost-efficiency.

The service scope includes all the end services that rely
on network-based location, and can be used for end-to-end
evaluation.

Finally, the R&D scope includes all the control logic
for the testbed, including data acquisition and processing,
a development environment, and data and code repositories
for integration with external systems.

For each of these scopes, a small overview of existing
technologies is done, showing the path to begin a real-world
implementation.

VI. IMPLEMENTATION EXAMPLE
In this section, an example of an implementation of the pro-
posed architecture is described. The purpose of this section
is to show how the guidelines disclosed in this paper can
be applied in practice, and how they can be used to per-
form a successful test. Specifically, a nomadic testbed was
implemented in the University of Málaga (UMA) in the con-
text of the LOCUS project [31] to measure the performance
improvements achieved with range fusion [105] over single-
technology location. In this case, the range fusion algorithm
is the DUT.

The experiments that were carried out seek to obtain the
reliability and accuracy of the location service in two different
scenarios: a classroom for the education use case [47] and a
building under construction [263]. The hypotheses of these
measurements are twofold. On the one hand, it is expected
that network location will help improve the coverage of the
accurate location systems (WiFi-FTM andUWB in this case),
and therefore, its reliability. On the other hand, it is expected
that, in points where there are more than one accurate tech-
nology available, it can help improve the accuracy. The exper-
iments will show whether these hypotheses hold up or not.

A. PHYSICAL SCOPE SETUP
Two physical settings have been selected for the experiments:

• Education use case: two laboratories separated by a
partition and connected by a stretch of open air corridor
in the UMA were selected. Figure 8 shows a map of the
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FIGURE 8. Physical layout of a testbed for location for education.

FIGURE 9. Picture of the classroom scenario with ground truth markings
on the floor.

scenario. The location of the reference points of three
different technologies (UWB, WiFi FTM and LTE) is
also shown. The clutter in this scenario is moderate,
as shown in Figure 9, consisting of long workshop tables
with PCs, monitors, and electronic lab instrumentation.
The total size of the scenario is 24 × 17 meters with a
height of 3.5 meters. The ceiling contains some struc-
tural elements and light fixtures.

• Building in construction: the selected building
(Figure 10) was in the phase where the main structure
was already constructed, with external walls and internal
partitions still missing. The measurements were taken in
three different floors: the ground floor (without walls),
and two underground floors, where the parkings were
meant to eventually be constructed. In the underground
floors, the foundations protected the building from

FIGURE 10. Construction scenario where the portable testbed was
deployed.

FIGURE 11. Physical layout of a testbed for location in a construction site.

surrounding underground water aquifers. The con-
structed structure was made up of reinforced concrete,
and largemetallic structures such as cranes were present.
The total area covered by the scenario was 45 ×

28 meters. Figure 11 shows a map of the−1 floor, where
theWiFi FTM andUWB reference points were installed.
It can be seen that there are no partitions in the space, and
only the pillars and some walls conforming a stairway
(towards center-left of the scenario) are present. The
measurement points were replicated in the ground and
−2 floors.

In these scenarios the following radio equipment was
deployed:

• DWM1001 UWB [250] from Qorvo as high accuracy
location technology. Each reference point was powered
by a USB adapter.

• Google WiFi routers [264], with WiFi-FTM support.
• Indoor Huawei LTE network [112] as cellular technol-
ogy (only used in the education scenario).

• Experimental terminal made up of a stock Google
Pixel 3 (which supports WiFi-FTM) with two
DWM 1001 UWB tags attached through BLE links
(Depicted in Figure 12 and summarized in Table 2).
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TABLE 2. Summary of the characteristics of the components of the
experimental terminal.

FIGURE 12. Experimental terminal running the data acquisition app.

Regarding ground truth, in the three scenarios the mark-
ings on the floor approach was used, establishing a relation
between the sample and the point using time stamps. Figure 9
highlights the locations of the markings on the floor for the
education use case.

B. 6G NETWORK SCOPE PARTIAL IMPLEMENTATION
Since 6G is still not available, and the objective of this testbed
is not to test the radio aspects of cellular technologies, WiFi
was used as a backbone for connectivity. LTE was used for
network-based measurements in the education scenario.

The LOCUS platform [31], [177] devises a network loca-
tion function as the one described in Section V-B, that
receives information from the terminals, network, and con-
textual sources to determine user location, and also acts as
location server. In this testbed, an implementation of the
location function was done, following the LOCUS platform
definition, as shown in Figure 15with the following elements:

• Data collector: collects ranging information that may
come from the reference points or the terminal. In this
specific case, the ranges were measured in the terminal
for simplicity.

• Data parser: unifies the format of the collected data
and translates LTE power measurements into distance
estimations. This is not done for UWB and WiFi-FTM

because these technologies directly provide a range esti-
mation.

• Location estimator: using the measured ranges, esti-
mates the location of the user with range fusion as
described in [47] and [105].

• RabbitMQ messaging service: connects the three
elements and also acts as external interface for
location-dependent services and functions. As an exper-
imental platform no intermediary element is used, but
in more mature prototypes, an element that also imple-
ments authentication and permission flags should be
used as public interface.

The location function will run in a laptop that also contains
the R&D scope functionality.

The data provided to the location service is collected in the
terminal, using anAndroid app that collects range estimations
from the WiFi-FTM API [251], the UWB devices attached
to the smartphone [265] and the RSRP of the serving, and
neighbor LTE cells [266]. The app sends this data encoded in
JSON to the location service. Figure 14 shows a screenshot
of the developed application, where the name and coordinates
of a ground truth point can be inserted and the acquisition
of data commanded. Figure 13 shows the flowchart of the
concentrator component that runs once the data collection is
commanded in the GUI and that collects the data captured by
background processes.

C. SERVICE SCOPE MEASUREMENTS
A generic service scope was implemented in this case, since
E2E measurements were not being taken. The only important
aspect in these experiments was measuring the following
metrics, which will affect the potential end services:

• Reliability: probability that the network can provide a
location. It will do so if the terminal is in coverage;
that is, if it is within range of 3 reference points (for
2D location). In these experiments, the reliability will
be measured as the proportion of measurement points in
coverage.

• Accuracy: represents the correctness of the estimated
location. In these experiments, the average horizontal
(2 dimensional) accuracy will be measured in meters.

D. R&D SCOPE IMPLEMENTATION
The R&D scope will be very simple in this case, including
the following elements:

• Probe in the location service: a RabbitMQ consumer will
be implemented, listening to the publishers of the three
other elements.

• Collection network: since the location service will run
in the same laptop as the R&D scope functions, the
probe will be connected through the loopback network
interface.

• Reliability estimation: the raw data will be explored
to find how many reference points are visible in each
sample.
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FIGURE 13. Flowchart of the data concentrator in the Android application.

• Error estimation: the error will be calculated compar-
ing the location service with the ground truth offline.
A prior data preparation phase will first associate the
time stamps to ground truth locations (based on man-
ually taken annotations), and then add the ground truth
location to the collected data based on their timestamps.
The error will then be calculated and the Empirical
Cumulative Distribution Function (ECDF) represented.

E. RESULTS AND DISCUSSION
The reliability results are represented in Figures 16 and 17
and the accuracy results in Figures 19 and 20 for each scenario
using both a single technology and range fusion.

FIGURE 14. Android app acting as a probe in an experimental terminal.

FIGURE 15. Location functionality block inspired on the Locus [31]
platform.

It can be seen that, in all scenarios, reliability is higher
when using fusion, since it ‘‘fills the gaps’’ where less than
three reference points of a single technology are present.
In the education scenario (Figure 16), UWB on its own
provides a reliability of 48.46% and WiFi-FTM on its own,
85.77%. The fusion of both improves the reliability to
95.77%, since points that previously were not covered by a
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FIGURE 16. Reliability measurement results for the education scenario,
showing the proportion of readings that have enough reference points to
perform location.

FIGURE 17. Reliability measurement results for the construction scenario,
showing the proportion of readings that have enough reference points to
perform location.

technology on its own due to insufficient visible reference
points can now benefit from using additional reference points.
This is also the case with LTE, which on its own provides
a reliability of 78.46%, but helps improve reliability of a
pure UWB setup up to 98.46%. In the construction scenario
(Figure 17), a similar behavior can be observed, with UWB
on its own having a reliability of 88.42%,WiFi-FTM 95.51%
and the fusion of both 98.17%. In this case, the nomadic
testbed did not allow taking LTE measurements, so its effects
cannot be evaluated for this scenario.

Figure 18 shows the ground truth of the measurements
in the classroom and three different estimations: with UWB
only, with WiFi-FTM only, and fusion of both. The improve-
ment of location accuracy with fusion is obvious, and can
also be observed in Figures 19 and 20. When more than
three highly accurate ranges are used, accuracy will be higher
due to the overdetermination of the WLS problem. In the
education scenario (Figure 19), UWB has a 90th percentile
of error of 5.61 m, WiFi 9.33 m and the fusion of both
reduces the error to 1.46 m. On the other hand, if an inac-
curate ranging technique is used, then accuracy will be low.
This is very obvious in the fusion of UWB and LTE, which
increments the 90th percentile of the error to 34.55 m. This
highlights that the role of LTE in this case is not improving
the accuracy, but the reliability, as shown in Figure 16. The

inaccurate locations are replacing what otherwise would be
a sample without enough ranges to estimate location with
a single technology. In the construction scenario location is
generally slightly less precise than in the education scenario,
having values of the 90th percentile of the error of 14.6 m for
UWB, 7.75 m for WiFi-FTM and 8.23 m for fusion. In this
case, overdetermination does not improve the precision of
WiFi-FTM. As Figure 20 shows, UWB is much less precise
than WiFi-FTM in this scenario, and fusion produces some
results that are very close to pure WiFi-FTM. Combining this
information with Figure 17, it can be seen that the effect of
UWB here is an improvement over the reliability, similar to
what LTE did with UWB in the education scenario.

F. KEY TAKEOUTS
This example covered a trivial testbed used for the specific
demonstration of a range fusion algorithm in different sce-
narios. Due to the limited scope of these experiments, only
a partial implementation of the architecture was required,
but a more sophisticated setup would add flexibility for dif-
ferent kinds of experiments, as well as extensibility during
the development and rollout of novel 6G technologies in the
future.

VII. CHALLENGES
While the proposed architecture can alleviate many of the
difficulties found when implementing and operating a loca-
tion testbed, there are some important challenges that may
be present in some settings. When building a testbed of any
type, there are some general administrative challenges that are
almost always present, such as the allocation of the required
physical space, the procurement of funds, etc. There are other
challenges that are specific to 6G, which are reviewed in
this section, along with the outline of some possible lines of
action. These challenges can be classified in two big groups:
administrative (those related with the non-technical factors
of the testbed) and technical (those related directly with the
technical components).

A. ADMINISTRATIVE CHALLENGES
Administrative challenges cover the difficulties related with
the management of financial resources, regulations, and busi-
ness relations with vendors. These challenges are often very
limiting and may impose restrictions on the technical scope,
such as the type of experiments that can and cannot be done in
the testbed. In the case of 6G, the following challenges may
be met:

• Availability of 6G equipment and vendors: 6G is still
far from having a standardized implementation [267].
The techniques that will be included are not even
decided; all that can be found in the bibliography is
still merely speculative. This may make it difficult for
designers to choose the exact components that will go
into the testbed. Moreover, because there is no 6G hard-
ware/software commercially available yet, it may be
difficult to justify the acquisition of highly experimental
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FIGURE 18. Sample of estimated locations (blue dots) compared to the ground truth (orange dots) in the education scenario using only UWB, only
WiFi-FTM and the fusion of both.

FIGURE 19. ECDF of the error in the location estimation for the education
scenario.

FIGURE 20. ECDF of the error in the location estimation for the
construction scenario.

(and often expensive) hardware to accounting sections
of the organizations that are implementing the testbed.
Once decided and approved, the procurement of compo-
nents may also be difficult, with a limited set of vendors
of specific experimental hardware. From the adminis-
trative point of view, there is no clear solution to this

challenge, so finding alternatives becomes a technical
problem.

• Vendor dependency: the reduced number of specialized
vendors may become an administrative problem in sev-
eral different ways. Firstly, the leverage for negotiating
prices is quite limited. Secondly, the dependency on one
vendor puts the organization implementing the testbed in
a vulnerable position in case the vendor stops giving sup-
port or upgrades (e.g., because of contract expirations
or even bankrupcy of the vendor). Some factors to take
into account when choosing vendors should therefore
be their solvency, possible offers of extended support
and more importantly, the use of generic components
that are well documented and can be supported by third
parties in case of need. The use of open source software
and hardware components is a good warranty to avoid
vendor dependency [268].

• Vendor limitations: some vendors offer their solutions
with great limitations, such as the inability of modifying
firmware or accessing core components of the system.
These limitations may be imposed in several ways: by
license or by obfuscation of functions. These terms of
service limit the types of experiment that can be done
with the components, becoming a technical challenge.
From the administrative side, selecting vendors taking
into account the lack of limitations should be a prior-
ity, but given the reduced number of vendors, it may
sometimes be impossible. The establishment of agree-
ments for joint research can then be used for obtaining
improved access to the acquired components.

• Spectrum licensing: in the case of a mobile network
testbed, one major administrative aspect is obtaining the
rights for radiating into licensed bands. Since there is
a commercial interest in the usage of such bands, it is
often limited to operators that are reluctant to yield part
of their capacity to research facilities.Moreover, as 6G is
still under development, its bands are still not allocated
and they are prone to change once the first digital divi-
dends are released. For organizations implementing the
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testbed, especially small ones, obtaining licensed spec-
trum may be too costly to be feasible. The alternative is
to establish partnerships with operators that cede part of
the spectrum part of the time such that experiments can
be done. Avoiding interference with the wider mobile
network may also help to ensure collaboration from
operators.

• Privacy: when studying location, it is often overlooked
that a terminal is tied to a user. The location of a person
is an especially privacy-sensitive data, so there must be
mechanisms to avoid collecting or appropriately stor-
ing this information following regulations such as the
European Unions’ General Data Protection Regulation
(GDPR) Article 17 [86]. Most testbeds will use their
own terminals meant to be used inside the premises of
the organization and during work hours. Nevertheless,
it is important to implement a clear policy of data pro-
tection (e.g., instructing workers not to use the termi-
nals out of periods of time established for experiments).
In case that personal equipment must necessarily be
used, anonymizationmechanismsmust be put into place,
alongwith an audit that ensures that personal data cannot
be reconstructed.

B. TECHNICAL CHALLENGES
Technical challenges cover the difficulties related with the
implementation and operation of the testbed from the purely
technological perspective. These challenges stem from the
capabilities of the acquired equipment, and are often subject
to the decisions taken on the administrative side. The proposal
of the architecture described in this paper aims at limiting
the effects of such decisions, by making it easier to acquire
generic equipment and isolate the limitations of some compo-
nents on the overall testbed. Still, some challenges may arise
when implementing the architecture over real equipment:

• Use of experimental 6G technology: as described ear-
lier, the procurement of equipment may be difficult for
experimental 6G components who have been chosen
based on speculations. Nevertheless, these speculations
are based on educated guesses, and the ballpark estima-
tions that are being made are enough for developing a
testbed that can eventually host standard 6G techniques.
Thanks to SDN and SDR, generic, COTS hardware can
be acquired, which will be compatible with 6G functions
in the future. The choice of terminals for end services is
another major challenge, since there are no 6G terminals
yet, and there are no commercial terminals that can be
upgraded to 6G in the future. To future proof the ter-
minals, therefore, adoption of a flexible platform (e.g.,
SDR devices that can be programmed to act as a specific
terminal) will also be necessary. In any case, the cost of
acquiring 5G terminals and replacing them with 6G in
the future is not economically unfeasible.

• Interoperability of different components: in a testbed, all
components should be able to interoperate, that is, they
should have the interfaces for the R&D scope to monitor

and manage them. This may mean that some develop-
ment work is required for the adapters (as described
in Sections V-D1 and V-D3) which may imply some
hacking [269] if the original equipment does not support
all the required functions. Vendors may support by either
developing the required functions or providing docu-
mentation; but using open source componentsmay avoid
the need of relying on the vendor. Another problem that
may occur is vendor lock-in (i.e., the component is only
compatible with other components by the same vendor),
which can be avoided again by using mostly open source
components.

• Maintenance over time: the proposed architecture is
meant to evolve over time, with new components or
upgrades to those that are already integrated. This
implies that a continuous effort must be done to main-
tain compatibility between the different components
and avoid bad development practices such as the lava
flow anti-pattern [270], where a software component
is quickly modified by different developers to support
specific experiments; which may on its turn result in
code duplication giving place to a parallel versions that
grow incompatible over time.

• Interference with commercial networks: a 6G testbed
will most likely run in an area where commercial cel-
lular networks operate. As such, it can interfere (see
administrative challenges) and be interfered by these
networks. The interference from the commercial net-
work may cause errors in the 6G-based location esti-
mations. To avoid this, isolating the network is again a
good solution, which can work for indoor environments.
Outdoor settings, on the other hand will have more prob-
lems, so interference should be considered a limiting
factor or even taken into account as a factor that adds
realism to the experiments.

C. KEY TAKEOUTS
In this section, the main challenges for implementing
a testbed based on the proposed architecture have been
reviewed. Administrative challenges are usually the main
limitation, but with the proposed architecture, its effects can
be alleviated. Nevertheless, some issues, such as licensing or
accessing all the capabilities of acquired equipment, can only
be solved by establishing partnerships with operators and
vendors. Technical challenges mainly stem from the current
lack of 6G standards, and can be resolved by using Open
RAN and SDR components, and favoring open source over
proprietary solutions.

VIII. CONCLUSION
This paper has done a thorough review of the expectations
of 6G location in the near future. 6G will bring a slew of
new enabling technologies (such as THz communications,
RIS, and AI/ML) that will improve the capacity of estimating
ranges of the network, and hence, to calculate positions. 6G
devices will also benefit from the increasing number of other
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location technologies, which can be used to further improve
location thanks to fusion techniques. Conversely, an increas-
ing number of location aware services will benefit from the
location that the 6G network can provide, as well as network
functions.

To develop and test these location techniques and location
aware applications of the future, the R&D community needs a
testbed that is purposefully built for location in 6G. The main
requirements of such a platform are that it has to cover all
the possible 6G enablers, and do that as 6G technologies are
being developed. This is a very challenging task, which can
be solved by using as many open components as possible.

The proposed testbed architecture disaggregates the ele-
ments into four scopes, each loosely connected to the others,
such that they can be upgraded separately as new 6G software
is available. These four scopes (physical, network, service,
and R&D) have been described in detail, showing exam-
ples of the building block implementations that are currently
available.

The proposed architecture can be used as a base for a
blueprint of a location testbed, resulting in a flexible and
future-proof design. An example showing a nomadic testbed
based on this architecture has been shown in this paper. This
testbed did not have any 6G hardware, since there are no
available devices yet, but the development (hardware and
software) done for it can be reused once some of the com-
ponents (namely the terminal and LTE network used in the
example) are switched by 6G equipment.
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Capítulo 6

Conclusiones

En este capítulo se resume la investigación realizada en la tesis, y para hacerlo se divide
en tres secciones. En la primera Sección, la 6.1, se repasan los objetivos de la tesis y se
destacan las principales contribuciones de cada uno. La Sección 6.2 propone algunas
posibles líneas de investigación futura relacionadas con la investigación llevada a cabo.
Finalmente, en la Sección 6.3 se presenta una lista de publicaciones y otras actividades
relacionadas con la tesis.

6.1 Contribuciones

Esta tesis tiene como objetivo mejorar el sistema de localización mediante el uso de
diferentes fuentes de información. Con el fin de abordar los diferentes desafíos que
existen para una localización precisa en escenarios complejos, se han establecido los
objetivos esenciales para superarlos. Se ha establecido un total de seis objetivos que
se desarrollan a lo largo de este trabajo. El Obj. 1 está directamente relacionado con
el estudio previo y la simulación de fusionar los rangos en el algoritmo de trilateración
para comprobar la viabilidad del sistema. Los Obj. 2 y 3 abarcan el desarrollo de un
framework para la recogida de datos y su post-procesado para así poder determinar
algunas características tanto de las tecnologías asociadas como de los algoritmos uti-
lizados. Los Obj. 4 y 5 proponen diferentes aplicaciones basadas en localización para
escenarios complejos como son los escenarios de interior y los de emergencias. Por úl-
timo, el Obj. 6 define una arquitectura para poder desarrollar pruebas y poder validar
algoritmos antes de que la tecnología salga al mercado. A continuación, se expondrán
las contribuciones que están relacionadas con cada uno de estos objetivos:
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Obj. 1. Estudiar la viabilidad de la fusión de tecnologías en un entorno simu-

lado.

• En primer lugar, en este trabajo se ha llevado a cabo la fusión de diferentes
tecnologías con diferentes rangos de precisión. Para ello, se ha simulado un
escenario de interior en el que la información de UWB y LTE se han fusio-
nado para poder mejorar la precisión de localización de forma oportunista.
Además, se amplía la cobertura en la que se utilizan los rangos precisos de
UWB.

• En segundo lugar, se ha propuesto una modificación del protocolo NRPPa
para mejorar la integración de una tecnología de alta precisión, en este caso
de UWB.

• Por último, se demuestra que el uso de la fusión reduce los costes de despliegue
de las tecnologías orientadas a la localización, al reducir la necesidad de un
despliegue denso de puntos de referencia.

Obj. 2. Desarrollar un framework para recoger medidas reales de diferentes

tecnologías de posicionamiento.

• Para conseguir este objetivo, se ha desarrollado una aplicación móvil capaz
de capturar la información del entorno y enviarla a un servidor para pro-
cesar la información en tiempo real o en diferido como objetivo del proyecto
LOCUS [12]. Esta aplicación es capaz de capturar la información de la red
celular, BLE, UWB y WiFi (incluyendo el protocolo 802.11mc).

• Capturar la información del entorno y estudiar las posiciones de los puntos de
referencia. Para ello, se han obtenido los planos de los escenarios utilizados
y se ha estudiado previamente dónde colocar las posiciones de los puntos
de referencia de las diferentes tecnologías para que los experimentos sean
más completos, es decir, situaciones de LoS y NLoS, bloqueos y zonas sin
cobertura de algunos puntos de referencia, etc. Además, se ha llevado a cabo
una planificación de los puntos de referencia de la toma de medidas que han
sido obtenidas con precisión centimétrica gracias a medidores láseres y son
cruciales para conocer el error asociado a las medidas obtenidas.

• Una vez capturada la información, ésta se envía a un servidor que procesa la
información en tiempo real y la almacena para hacer los estudios realizados
a lo largo de esta tesis.



CAPÍTULO 6. CONCLUSIONES 159

Obj. 3. Caracterizar las tecnologías UWB y WiFi en diferentes escenarios.

• A través del framework creado en el objetivo anterior, se han podido al-
macenar los datos y procesar la información necesaria para caracterizar las
tecnologías UWB y WiFi como tecnologías de alta precisión para la locali-
zación de usuarios.

• La caracterización de las tecnologías se ha realizado en diferentes escenarios
como se ha podido observar a lo largo de las diferentes publicaciones.

• La tecnología UWB es una tecnología de alta precisión muy útil en escena-
rios con reflexiones en la que es necesario tener visibilidad con el objetivo.
De esta manera, su rendimiento en términos de localización es excelente en
este tipo de situaciones, consiguiendo precisiones del orden de pocos centí-
metros. Incluso en escenarios más complejos, la precisión sigue siendo su
mejor característica frente a otras tecnologías. Sin embargo, sus capacida-
des de penetración de obstáculos y su rango de cobertura demostraron su
ineficiencia en entornos con una estructura irregular. La limitación del área
de cobertura hace que su aplicación sea muy útil para entornos acotados y
redes de área personal como es el caso de la realidad virtual.

• La tecnología WiFi FTM basada en el protocolo 802.11mc es una tecno-
logía que ha demostrado ser muy eficiente en muchos ámbitos. En primer
lugar, posee una relación entre alcance y precisión bastante interesante ya
que permite cubrir áreas grandes como facultades o centros comerciales de
manera que permite proveer una localización precisa (con una precisión del
orden de los pocos metros) con un despliegue reducido y económico. La
implantación del protocolo 802.11mc para proveer de WiFi FTM está alta-
mente integrada en los teléfonos móviles por lo que solamente falta esperar
a su incorporación en los routers con dicho protocolo. La gran ventaja del
WiFi respecto a UWB es su bajo consumo energético, su implantación a
nivel mundial y su constante mejora de nuevos modelos como es ahora WiFi
6.

• Una vez presentadas las ventajas y desventajas de ambas tecnologías, podrí-
amos indicar que el uso dual de ambas tecnologías presenta grandes ventajas
y es una tendencia como se muestra gracias a la integración de chips UWB
y WiFi FTM cada vez en más dispositivos móviles.
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Obj. 4. Proponer un sistema de detección y localización de usuarios en esce-

narios de emergencia.

• En este trabajo se ha investigado acerca de diferentes tecnologías para la
detección y localización como son la tecnología celular, BLE, UWB y WiFi,
y se han propuesto las dos últimas como aquellas que ofrecen mejores carac-
terísticas para la localización de víctimas bajo escombros. En este estudio
se propone un protocolo de comunicación como una extensión del protocolo
NRPPa para mejorar la comunicación entre los servicios de rescate y los
servicios o aplicaciones de localización de víctimas.

• El sistema de detección y localización propuesto para rescatar víctimas que
se encuentren inconscientes o atrapadas bajo escombros tiene un gran po-
tencial ya que en escenarios con derrumbamientos, asumimos que los únicos
dispositivos que están disponibles para su detección son aquellos que no
necesitan estar conectados a la red eléctrica, es decir, móviles y pulseras
inteligentes. Este tipo de dispositivos siempre suelen llevarse encima por lo
que nos indica la posición directa de las víctimas. Además, todas las inter-
ferencias y posibles detecciones creadas por otros dispositivos (por ejemplo,
televisiones inteligentes, asistentes de casa, altavoces inteligentes o incluso
los routers de las casas/oficinas) se anulan gracias a la caída de la corriente
dentro del área afectada.

• El sistema propuesto es una simplificación completa de un escenario de emer-
gencia pero que nos permite comprobar las ventajas que tienen las diferentes
tecnologías para la localización y detección. Un dron que sobrevuele un área
de emergencias, gracias a que es independiente de la superficie, puede cubrir
grandes cantidades de terrenos en pocos minutos. Lo que permite obtener
un sistema capaz de detectar y localizar múltiples víctimas de forma rápida
y en un área extensa.

Obj. 5. Estudiar y proponer una aplicación basada localización para una edu-

cación inteligente.

• El uso de los servicios basados en la localización para la educación es cada vez
más frecuente con la implantación de servicios como la realidad extendidad
o la navegación a través de grandes instituciones educativas. El impacto de
las tecnologías 5G y WiFi en el ámbito educativo es de gran importancia,



CAPÍTULO 6. CONCLUSIONES 161

ya que tienen el potencial de transformar la manera en que los estudiantes
aprenden y se relacionan con su entorno en este sector.

• Tras mostrar en una visión general de algunos servicios basados en loca-
lización que se utilizarán en el futuro, se ha llevado a cabo una prueba
de concepto para automatizar el control de asistencia en entornos educati-
vos. El sistema propuesto puede implementarse fácilmente en instituciones
educativas, ofreciendo un método sencillo y no intrusivo para mejorar la
eficiencia de la enseñanza y el aprendizaje. El proceso de control de asis-
tencia se puede realizar a través de los dispositivos móviles de los alumnos,
ya que todos ellos disponen de tecnología móvil y WiFi. Además, los datos
del sistema pueden analizarse para identificar patrones de asistencia, lo que
permite a los profesores optimizar la programación y la impartición de las
clases.

Obj. 6. Evaluar la localización en escenarios de interior con mapas incompletos.

• Uno de los mayores inconvenientes que sufren los sistemas de localización
basados en mapas radio es el coste asociado a la recogida de datos para
la fase de entrenamiento y futuros reentrenamientos. Por ello, el uso de
modelos de ML nos permite reducir en gran medida el número de puntos
necesarios para modelar un escenario concreto.

• Tras estudiar diversos algoritmos de localización basados en modelos, se ha
llevado a cabo un experimento real en la que se observa cómo se degradan
los algoritmos basados en mapas radio y los basados en modelos a medida
que se van reduciendo el número de puntos de entrenamiento hasta el 20%.

• Los sistemas basados en modelos en escenarios que cumplan las mismas
características físicas permiten que los modelos de localización sean extra-
polables y se permita la escalabilidad de los servicios.

Obj. 7. Proponer una arquitectura flexible para comprobar la viabilidad de

algoritmos basados en localización.

• Se ha descubierto que no existe una arquitectura o diseño estándar para
verificar las diferentes tecnologías o técnicas para los servicios de localiza-
ción. Por tanto, se presenta una arquitectura flexible para poder abarcar el
futuro de la tecnología dentro de un marco preestablecido y, poder así, llevar
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a cabo pruebas estandarizadas al igual que se realizan para poder sacar un
producto al mercado.

• El trabajo estudia las necesidades que existen en los futuros servicios móviles
dependientes de la localización y las soluciones técnicas que puede aportar
la futura red 6G. Se propone una metodología que permita verificar en una
fase temprana las técnicas y algoritmos propuestos, y evaluar su respuesta
a las necesidades de los servicios.

6.2 Trabajo Futuro

Algunas posibles líneas de investigación que podrían dar continuidad al estudio reali-
zado en esta tesis son las siguientes:

• Desarrollo e investigación para una localización cooperativa en la que distintos
UEs combinen su información [126] usando diversas tecnologías radio basada en
multitecnología. Para este estudio, se deben crear protocolos de comunicación
entre dispositivos de diversa naturaleza de las que se pueda obtener la posición de
dicho dispositivo en relación con su contexto. Dicha información se puede verter
a la red celular y realizar el cálculo de la localización de los diferentes dispositivos
en la nube. Gracias a este tipo de cálculos, se permite conocer de manera ubicua
la posición de los diferentes dispositivos sin necesidad de densos despliegues de
una sola tecnología.

• La creación de un prototipo para llevar a la realidad el sistema de detección
y localización de víctimas en escenarios de emergencia. El primer estudio de
escenarios de emergencias [127] avala la necesidad de la creación de un sistema
que permita un mapeo rápido y preciso para detectar y localizar víctimas tras
una catástrofe. Diferentes tecnologías se pueden aplicar en este sistema como son
los sensores térmicos, lidar o 5G, además de los ya mencionados en el artículo
como son UWB, BLE y WiFi.

• Caracterizar la red 5G con medidas de marcas temporales. Debido a la fase
temprana de 5G durante el desarrollo de esta tesis, no se han conseguido obtener
marcas temporales como se indica en el 3GPP con multi-RTT [128]. Para ello
habría que modificar mínimamente el framework ya desarrollado durante esta
tesis para conseguir capturar dichos datos.
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• Uso de la inteligencia artificial para estimar aquellas fuentes precisas que se en-
cuentren en visión directa en los escenarios de interior. De esta forma, se busca
realizar un pesado óptimo de las diferentes fuentes de información que nos proveen
diferentes tecnologías. Para el caso de la fusión de las tecnologías, hay tres tecno-
logías que se postulan como predominantes en la localización precisa en escenario
de interior que son 5G, UWB y WiFi. Estas tecnologías ya se encuentran in-
tegradas en los dispositivos móviles más modernos. Por tanto, en unos años, los
dispositivos móviles se encontrarán rodeados de fuentes de información precisa y
el objetivo será conocer el estado de aquellas fuentes de información que tengan
mejores condiciones de propagación para reducir el error de posicionamiento.

6.3 Resultados

El trabajo llevado a cabo durante esta tesis ha dado lugar a diversas contribuciones
que se sintetizan en las siguientes secciones.

6.3.1 Publicaciones en revistas

Publicaciones derivadas de esta tesis

El trabajo realizado en esta tesis ha dado lugar a cinco artículos publicados en revistas
de alto impacto más otras dos en proceso de revisión, que se enumeran a continuación:

[I] CS Alvarez-Merino, HQ Luo-Chen, EJ Khatib and R Barco, "Opportunistic fu-
sion of ranges from different sources for indoor positioning," IEEE Communica-
tions Letters 25 (7), 2260-2264, 2021.

[II] CS Alvarez-Merino, HQ Luo-Chen, EJ Khatib and R Barco, "WiFi FTM, UWB
and Cellular-Based Radio Fusion for Indoor Positioning," Sensors 21 (21), 7020,
2021.

[III] CS Alvarez-Merino, EJ Khatib, HQ Luo-Chen, JL Michel, S Casalderrey-Díaz,
J Alonso and R Barco, "WiFi FTM and UWB Characterization for Localization
in Construction Sites," Sensors 22(14), 5373, 2022.

[IV] CS Alvarez-Merino, EJ Khatib, HQ Luo-Chen and R Barco, "Victim Detection
and Localization in Emergencies," Sensors 22 (21), 8433, 2022.
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[V] EJ Khatib, CS Alvarez-Merino, HQ Luo-Chen and R Barco, "Designing a 6G
testbed for location: use cases, challenges, enablers and requirements," IEEE
Access 11, 10053 - 10091, 2023.

[VI] CS Alvarez-Merino, EJ Khatib, HQ Luo-Chen, A Tarrías Muñoz and R Barco,
"Evaluation and Comparison of 5G, WiFi and fusion when incomplete maps for
Indoor Localization," IEEE Access, Under Review.

[VII] CS Alvarez-Merino, EJ Khatib, A Tarrías Muñoz and R Barco, "Exploring Indoor
Localization for Smart Education," IEEE Transactions on Learning Technolo-
gies, Under Review.

Además, se ha contribuido directamente a la publicación de un capítulo de un libro.

[VIII] S. Bartoletti, C. S. Alvarez-Merino, R. Barco, H. Chen, A. Conti, Y. Filippas,
D. Giustiniano, C. A. G. Vega, M. Hunukumbure, F. Jiang et al., “Positioning
methods,” Positioning and Location-based Analytics in 5G and Beyond, 2023

Publicaciones en revistas relacionadas con esta tesis

Paralelamente, el autor ha colaborado en proyectos de investigación a los que ha con-
tribuido y que han dado lugar a varias publicaciones en revistas indexadas.

[IX] HQ Luo-Chen, CS Alvarez-Merino, EJ Khatib and R Barco, "Method for Arti-
ficial KPI Generation With Realistic Time-Dependent Behaviour," IEEE Com-
munications Letters 25 (9), 2978-2982, 2021.

[X] J Mendoza, I de-la-Bandera, CS Álvarez-Merino, EJ Khatib, J Alonso, S Casalderrey-
Díaz and R Barco, "5G for Construction: Use Cases and Solutions," Electronics
10 (14), 1713, 2021.

6.3.2 Conferencias y workshops

Conferencias

También se han presentado varios trabajos en congresos nacionales e internacionales,
como se muestra a continuación.
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[XI] CS Alvarez-Merino, HQ Luo-Chen, EJ Khatib and R Barco, "Fusion of LTE
and UWB ranges for trilateration," XXXV Simposium Nacional de la Unión
Científica Internacional de Radio, Malaga, 2020.

[XII] CS Alvarez-Merino, HQ Luo-Chen, EJ Khatib and R Barco, "Aplicación móvil
para localización de interior mediante fusión de tecnologías," XXXVI Simposium
Nacional de la Unión Científica Internacional de Radio, Vigo, 2021.

[XIII] CS Alvarez-Merino, AT Muñoz, HQ Luo-Chen, EJ Khatib and R Barco, "Posi-
cionamiento 5G con mapas radio incompletos," XXXVII Simposium Nacional de
la Unión Científica Internacional de Radio, Cáceres, 2023.

[XIV] CS Alvarez-Merino, "Demostración de localización de usuarios en tiempo real
mediante la fusión de las tecnologías 4G y Wi-Fi, y la tecnología emergente
UWB," 1ª edición de Mobile Week, Málaga, 2021.

[XV] CS Alvarez-Merino, HQ Luo-Chen, JL Michel, EJ Khatib and R Barco, "UWB
and WiFi characterization for localization in construction sites," INTERACT
2nd MC and 1st Technical Meetings, Bolonia, 2022.

[XVI] CS Alvarez-Merino, "La localización del futuro en el 6G," 2ª edición de Mobile
Week, Málaga, 2022.

Otras Conferencias

[XVII] HQ Luo Chen, CS Álvarez-Merino, EJ Khatib and R Barco, "Time-dependent
KPI generation based on Copula," XXXV Simposium Nacional de la Unión
Científica Internacional de Radio, Malaga, 2020.

[XVIII] HQ Luo Chen, CS Álvarez-Merino, JC Baena González, EJ Khatib, R Barco,
"Herramienta de diagnosis para redes móviles basada en puntos sigmas de corre-
laciones," XXXVI Simposium Nacional de la Unión Científica Internacional de
Radio, Vigo, 2021.

[XIX] HQ Luo Chen, EJ Khatib, CS Álvarez-Merino, JC Baena González and R Barco,
"Detección de degradaciones en redes móviles basado en máquina de estados y
umbrales de Otsu," XXXVII Simposium Nacional de la Unión Científica Inter-
nacional de Radio, Málaga, 2022.
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6.3.3 Proyectos relacionados

Esta tesis ha sido parcialmente financiada por los siguientes proyectos:

• Proyectos Internacionales:

– Proyecto LOCUS (8.06.25/59.8062), Unión Europea, Proyectos Horizonte
2020. Número de la ayuda No.871249 en fondos de Investigación e Innova-
ción [12].

• Proyectos Nacionales:

– Proyecto Maori sobre Gestión inteligente de recursos radio en open radio
b5G/6G (TSI-063000-2021-53), Ministerio de Asuntos Económicos y Trans-
formación Digital, Plan de Recuperación, Transformación y Resiliencia [15].

– TEDES-5G: Técnicas 5G para una Edificación Eficiente y Segura (UMA-
CEIATECH-12), Universidad de Málaga, Energías renovables, eficiencia
energética y construcción sostenible [13].

– PENTA P18-FR-4647 Proyectos de investigación en colaboración con el
tejido productivo [14].

– Proyecto NEREA (RTC-2017-6661-7), Ministerio de Ciencia, Innovación y
Universidades – Agencia Estatal de Investigación, Fondos FEDER [129].
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